• Non ci sono risultati.

Measurement of the π0 electromagnetic transition form factor slope

N/A
N/A
Protected

Academic year: 2021

Condividi "Measurement of the π0 electromagnetic transition form factor slope"

Copied!
8
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurement

of

the

π

0

electromagnetic

transition

form

factor

slope

The

NA62

Collaboration

C. Lazzeroni

1

,

N. Lurkin

,2

,

A. Romano

UniversityofBirmingham,Edgbaston,Birmingham,B152TT,UnitedKingdom

T. Blazek,

M. Koval

∗∗

,3

FacultyofMathematics,PhysicsandInformatics,ComeniusUniversityinBratislava,84248Bratislava,Slovakia

A. Ceccucci,

H. Danielsson,

V. Falaleev,

L. Gatignon,

S. Goy

Lopez

4

,

B. Hallgren

5

,

A. Maier,

A. Peters,

M. Piccini

6

,

P. Riedler

CERN,CH-1211Genève23,Switzerland

P.L. Frabetti,

E. Gersabeck

7

,

V. Kekelidze,

D. Madigozhin,

M. Misheva

8

,

N. Molokanova,

S. Movchan,

Yu. Potrebenikov,

S. Shkarovskiy,

A. Zinchenko

JointInstituteforNuclearResearch,141980Dubna(MO),Russia

P. Rubin

9

GeorgeMasonUniversity,Fairfax,VA22030,USA

W. Baldini,

A. Cotta

Ramusino,

P. Dalpiaz,

M. Fiorini,

A. Gianoli,

A. Norton,

F. Petrucci,

M. Savrié,

H. Wahl

DipartimentodiFisicaeScienzedellaTerradell’UniversitàeSezionedell’INFNdiFerrara,I-44122Ferrara,Italy

A. Bizzeti

10

,

F. Bucci

11

,

E. Iacopini

11

,

M. Lenti,

M. Veltri

12

Sezionedell’INFNdiFirenze,I-50019SestoFiorentino,Italy

A. Antonelli,

M. Moulson,

M. Raggi

13

,

T. Spadaro

LaboratoriNazionalidiFrascati,I-00044Frascati,Italy

K. Eppard,

M. Hita-Hochgesand,

K. Kleinknecht,

B. Renk,

R. Wanke,

A. Winhart

5

InstitutfürPhysik,UniversitätMainz,D-55099Mainz,Germany15

R. Winston

UniversityofCalifornia,Merced,CA95344,USA

V. Bolotov

,

V. Duk

6

,

E. Gushchin

InstituteforNuclearResearch,117312Moscow,Russia

http://dx.doi.org/10.1016/j.physletb.2017.02.042

0370-2693/©2017TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

F. Ambrosino,

D. Di

Filippo,

P. Massarotti,

M. Napolitano,

V. Palladino

15

,

G. Saracino

DipartimentodiFisicadell’UniversitàeSezionedell’INFNdiNapoli,I-80126Napoli,Italy

G. Anzivino,

E. Imbergamo,

R. Piandani

16

,

A. Sergi

5

DipartimentodiFisicadell’UniversitàeSezionedell’INFNdiPerugia,I-06100Perugia,Italy

P. Cenci,

M. Pepe

Sezionedell’INFNdiPerugia,I-06100Perugia,Italy

F. Costantini,

N. Doble,

S. Giudici,

G. Pierazzini

,

M. Sozzi,

S. Venditti

DipartimentodiFisicadell’UniversitàeSezionedell’INFNdiPisa,I-56100Pisa,Italy

S. Balev

,

G. Collazuol

17

,

L. DiLella,

S. Gallorini

17

,

E. Goudzovski

1,2,5

,

G. Lamanna

18

,

I. Mannelli,

G. Ruggiero

19

ScuolaNormaleSuperioreeSezionedell’INFNdiPisa,I-56100Pisa,Italy

C. Cerri,

R. Fantechi

Sezionedell’INFNdiPisa,I-56100Pisa,Italy

S. Kholodenko,

V. Kurshetsov,

V. Obraztsov,

V. Semenov,

O. Yushchenko

InstituteforHighEnergyPhysics,142281Protvino(MO),Russia20

G. D’Agostini

DipartimentodiFisica,SapienzaUniversitàdiRomaandSezionedell’INFNdiRomaI,I-00185Roma,Italy

E. Leonardi,

M. Serra,

P. Valente

Sezionedell’INFNdiRomaI,I-00185Roma,Italy

A. Fucci,

A. Salamon

Sezionedell’INFNdiRomaTorVergata,I-00133Roma,Italy

B. Bloch-Devaux

21

,

B. Peyaud

DSM/IRFU–CEASaclay,F-91191Gif-sur-Yvette,France

J. Engelfried

InstitutodeFísica,UniversidadAutónomadeSanLuisPotosí,78240SanLuisPotosí,Mexico22

D. Coward

SLACNationalAcceleratorLaboratory,StanfordUniversity,MenloPark,CA94025,USA

V. Kozhuharov

23

,

L. Litov

FacultyofPhysics,UniversityofSofia,1164Sofia,Bulgaria24

R. Arcidiacono

25

,

S. Bifani

5

DipartimentodiFisicadell’UniversitàeSezionedell’INFNdiTorino,I-10125Torino,Italy

C. Biino,

G. Dellacasa,

F. Marchetto

Sezionedell’INFNdiTorino,I-10125Torino,Italy

T. Numao,

F. Retière

(3)

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received28December2016

Receivedinrevisedform14February2017 Accepted15February2017

Availableonline22February2017 Editor:W.-D.Schlatter

The NA62experimentcollectedalarge sampleofchargedkaondecays in2007withahighlyefficient triggerfordecaysintoelectrons.A measurementofthe

π

0electromagnetictransitionformfactorslope

parameter from 1.11×106 fully reconstructed K±→

π

±

π

0

D,

π

0

De+e

γ

events is reported. The

measuredvaluea= (3.68±0.57)×10−2isingoodagreementwiththeoreticalexpectationsandprevious

measurements,andrepresentsthemostpreciseexperimentaldeterminationoftheslopeinthetime-like momentumtransferregion.

©2017TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

0. Introduction

The Dalitz decay

π

0

D

e+e

γ

with a branching fraction of

B = (

1

.

174

±

0

.

035

)

% [1]proceedsthrough a

π

0

γ γ

process

with an off-shell photon converting into an e+e− pair. The

π

0 electromagnetic transition form factor (TFF) describes the devia-tionof thistransitionfromapoint-like interaction.It isan input tothecomputationofthe

π

0

e+edecayrate[2],aswellasthe

hadroniclight-by-lightscatteringcontributiontothemuon anoma-lousmagneticmoment

(

g

2

)

μ which atpresentcontributesthe second largest uncertainty on its Standard Model value [3]. The commonlyusedkinematicvariablesaredefinedintermsofthee± and

π

0 four-momenta(p

e±,0)as

*

Correspondingauthor.

**

Correspondingauthor.

E-mailaddresses:nicolas.lurkin@cern.ch(N. Lurkin),michal.koval@cern.ch (M. Koval).

1 SupportedbyaRoyalSocietyUniversityResearchFellowship. 2 SupportedbyERCStartingGrant336581.

3 Presentaddress:CERN,CH-1211Genève23,Switzerland. 4 Presentaddress:CIEMAT,E-28040Madrid,Spain.

5 Presentaddress:SchoolofPhysicsandAstronomy,UniversityofBirmingham, Birmingham,B152TT,UK.

6 Presentaddress:Sezionedell’INFNdiPerugia,I-06100Perugia,Italy.

7 Present address: Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany.

8

Presentaddress:InstituteofNuclearResearchandNuclearEnergyofBulgarian AcademyofScience(INRNE–BAS),Sofia,Bulgaria.

9 FundedbytheNationalScienceFoundationunderawardNo.0338597. 10 AlsoatDipartimentodiFisica,UniversitàdiModenaeReggioEmilia,I-41125 Modena,Italy.

11 AlsoatDipartimentodiFisica,UniversitàdiFirenze,I-50019SestoFiorentino, Italy.

12 AlsoatIstitutodiFisica,UniversitàdiUrbino,I-61029Urbino,Italy. 13 Presentaddress:UniversitàdiRoma“LaSapienza”,Roma,Italy.

14 FundedbytheGermanFederalMinisterforEducationandResearch(BMBF) un-dercontract05HA6UMA.

15 Presentaddress:PhysicsDepartment, ImperialCollegeLondon, London,SW7 2BW,UK.

16 Presentaddress:Sezionedell’INFNdiPisa,I-56100Pisa,Italy.

17 Presentaddress:DipartimentodiFisicadell’Universitàe Sezionedell’INFNdi Padova,I-35131Padova,Italy.

18 Presentaddress:DipartimentodiFisicadell’Universitàe Sezionedell’INFNdi Pisa,I-56100Pisa,Italy.

19 Presentaddress:DepartmentofPhysics,UniversityofLiverpool,Liverpool,L69 7ZE,UK.

20 PartlyfundedbytheRussianFoundationforBasicResearchgrant12-02-91513. 21 Presentaddress:DipartimentodiFisicadell’UniversitàdiTorino,I-10125Torino, Italy.

22 FundedbyConsejoNacionaldeCienciayTecnología(CONACyT)andFondode ApoyoalaInvestigación(UASLP).

23 AlsoatLaboratoriNazionalidiFrascatidell’INFN,Italy.

24 FundedbytheBulgarianNationalScienceFundundercontractDID02-22. 25 AlsoatUniversitàdegliStudidelPiemonteOrientale,I-13100Vercelli,Italy.

Deceased. x

=



Mee mπ0



2

=

(

pe+

+

pe

)

2 m2π0

,

y

=

2 pπ0

· (

pe+

pe

)

m2π0

(

1

x

)

,

withtheallowedkinematicregiondefinedas

r2

=



2me mπ0



2

x

1

,

|

y

| ≤



1

r 2 x

,

whereme and0 arethecorrespondingPDG[1]masses,andMee istheinvariantmassofthee+e−pair.Thedifferentialdecaywidth reads[4] d2

(π

0 D

)

dxd y

=

α

4

π

(π

0 2γ

)

(

1

x

)

3 x



1

+

y2

+

r 2 x



× (

1

+ δ(

x

,

y

))

|

F

(

x

)

|

2

,

where

(

π

0

2γ

)

is the

π

0

γ γ

decaywidth, the function

δ(

x

,

y

)

describestheradiativecorrectionsand

F(

x

)

istheelectromagnetic transitionformfactorofthe

π

0 toarealandvirtualphoton. The function

F(

x

)

isexpected tovary slowly inthe kinematicregion ofthe

π

0

D decayandisusuallyapproximatedbyalinearexpansion

F(

x

)

=

1

+

ax, wherea is theslope parameter. The vectormeson dominance (VMD) model [5,6] predicts a

π

0 TFF slope value of a

0

.

03,inagreementwithfurthertheoreticalestimates[7–10].

TheTFFslopehasbeendeterminedinthetime-likemomentum transferregionbymeasuringthe

π

0

D decayrate[11–15],all includ-ingradiativecorrections.TheTFFhasbeenmeasuredinthe space-like momentum transfer regionin the reactione+e

e+e

π

0, wherethe

π

0 isproducedby thefusion oftwophotonsradiated by theincomingbeamsanddecaystotwodetected photons[16]. The currentworldaveragea

=

0

.

032

±

0

.

004[1]isobtainedfrom time-like measurements [12–14] andthe extrapolation of space-likedata[16]usingaVMDmodel.

The NA62 experiment at the CERN SPS collected in 2007 a

largesampleofchargedkaonsdecayinginflightinvacuumwitha minimum-biastriggerconfiguration[17].TheK±decaysrepresent a source of tagged neutral pions; the K±

π

±

π

0 (K

2π ) decay channelaccountsfor63%of

π

0 production.Themeanfreepathof theneutralpionintheNA62experimentalconditionsisnegligible (fewμm).Thisletterreportsamodel-independentmeasurementof the

π

0TFFslopeparameterfromananalysisof1

.

11

×

106K

2π de-cays followedbythe prompt

π

0

D decay(denoted K2πD) usingthe fullNA622007dataset.

1. Beamanddetector

The NA62 experimental setup used in2007 was composed of

theNA48detector[18]andamodifiedbeamline[19]oftheearlier NA48/2experiment.

ThebeamlinewasdesignedtoprovidesimultaneouslyK+and K− beams.Theprimary 400 GeV/c protonbeamdeliveredby the

(4)

SPSimpingedonaberylliumtargetof40 cmlengthand0.2 cm

di-ameter.The secondarybeammomentawere selected bymagnets

in a four dipole achromat and a momentum-defining slit incor-porated into a beam dump. This 3.2 m thick copper/iron block providedthe possibility toblock eitherofthe K+ or K− beams. Theselectedparticleshadacentral momentumof74 GeV/c with a spreadof

±

1.4 GeV/c (rms). The beamswere focused and col-limated before entering a 114 m long cylindrical vacuum tank

containing the fiducial decay volume. The beams were mostly

composed of

π

±, witha K± fractionof approximately6%. Since the muon halo sweeping system was optimised for the positive beam in 2007, most of the data were recorded with the single K+ beamtoreducethehalobackground.The K+ andK− beams weredeflected horizontallyby asteering magnetatthe entrance of the fiducial decay volume at angles of

±(

0

.

23 to 0

.

30

)

mrad withrespect tothe detectoraxis,to compensateforthe opposite

3

.

58 mrad deflection by thedownstream spectrometer magnet. The polaritiesof those magnetic fieldswere regularly simultane-ously reversed to reduce theeffects caused by an asymmetry in thedetectoracceptance.

The momenta ofcharged particles were measured by a

spec-trometer composed of four drift chambers (DCH) and a dipole

magnet placed between the second and third chamber

provid-ing a horizontal transverse momentum kick of 265 MeV/c to

singly-chargedparticles.Themeasuredmomentumresolutionwas

σ

p

/

p

=

0

.

48%

0

.

009%

·

p,wherethemomentump isexpressedin GeV/c.Thespectrometer was housedinatank filledwithhelium atnearly atmosphericpressure,separatedfromthedecayvolume byathin(3

×

10−3X

0)Kevlar™window.

Thephotonswere detected andmeasured by aliquid krypton (LKr) electromagneticcalorimeter, whichis a quasi-homogeneous ionisationchamberwithan activevolume of6.7 m3 ofoctagonal cross-sectionandathicknessof127 cm,corresponding to27 X0. The LKr volume is divided into 13,248 cells of about 2

×

2 cm2 crosssectionwithoutlongitudinalsegmentation.Themeasured en-ergy resolution was

σ

E

/

E

=

3

.

2%

/

E

9%

/

E

0

.

42%, and the spatial resolution for the transverse coordinates x and y was 0

.

42 cm

/

E

0

.

06 cm,wheretheenergyisgiveninGeVinboth cases.

Ascintillatorhodoscope(HOD)was locatedbetweenthe spec-trometerandtheLKrcalorimeter.Itconsistsofasetofscintillators arrangedintoaplaneof64verticalcountersfollowedbyaplaneof 64horizontalcounters.Eachplanewasdividedintofourquadrants of16countersprovidingafasttriggersignalforchargedparticles.

2. Datasampleandtriggerlogic

The analysis is based on the full data set collected during 4 monthsin2007,correspondingtoabout2

×

1010K±decaysinthe vacuumtank.A totalof65%(8%)oftheK+(K−)fluxwascollected insingle-beammodewhiletheremaining27%werecollectedwith simultaneous K± beams witha K+

/

K− flux ratio of2.0. During partofthedatataking(55%ofthe K±flux), a 9.2 X0 thick trans-versehorizontalelectronabsorber lead(Pb) barwasinstalled be-tweenthetwoHODplanes,approximately1.2 minfrontoftheLKr calorimeter,tostudymuon-inducedelectromagneticshowers[17]. A totalof11rowsofLKrcalorimetercellswere shadowedbythe bar,correspondingtoabout10%ofthetotalnumberofcells.

The100 kHzkaondecayrateinthevacuumvolumeduringthe spillenabledtheuseofaminimum-biastriggerconfigurationwith ahighly efficienttrigger chainoptimised toselectevents withat leastoneelectron(e±)track.

The low level hardware trigger required a coincidence ofhits inat least one hodoscope quadrant in both planes (the Q1 con-dition),upper andlower cutson the hit multiplicity in the drift

chambers(the1-trackcondition),andaminimumtotalenergy de-posit of 10 GeV in the LKr calorimeter(the ELKr condition).The high level software trigger (HLT) condition required atleast one trackwith5 GeV/c

<

p

<

90 GeV/c and E

/

p

>

0

.

6,where E isthe energyreconstructed inthe calorimeterand p isthemomentum reconstructedinthespectrometer.Downscaledminimumbias trig-gerstreamswerecollectedtoevaluatethetriggerefficiencies.

3. Simulatedsamplesand

π

0

Ddecaysimulation

Monte Carlo (MC) simulations of the K2πD decay chain and two other K± decay chains producing

π

0 Dalitz decays, K±

π

0

De±

ν

andK±

π

D0

μ

±

ν

(denoted Ke3D andKμ3D,respectively), were performedwitha

π

0 TFFslope a

MC

=

3

.

2

×

10−2.Separate simulated samples,proportionally to the numberof kaon decays recorded, were produced foreach datataking condition. The to-tal simulatedsample amounts to386 M K2πD,105 M Kμ3D and 103 M Ke3D eventswithinthe97 mlongfiducialdecayregion.All thesemodescontribute tothe

π

0

D sample, althoughtheselection isoptimizedforK2πD.

Theradiativecorrectionstothetotal[4]anddifferential[20–22]

π

D0 decaywidthshave beenstudied extensively.Theyhave tobe considered for the TFF measurement since their effect on the x spectrumiscomparabletotheeffectoftheTFF.Thecalculationof theradiativecorrections[22]implementedintheMCsimulationof the

π

0

D decayforthepresentanalysisincludes realphoton emis-sion from the

π

0

D decay vertex. It also includes the one-photon irreduciblecontribution,neglectedinearlierstudies,whichhasan effectof

|

a

|

0

.

5

×

10−2 ontheslopeofthex spectrum.Higher order correction terms not included inthe simulation contribute totheslopeby

|

a

|

<

0

.

01

×

10−2,whichisconsideredasa sys-tematicuncertainty(Table 1).

4. Dataanalysis

4.1. Eventreconstructionandselection

Hits and drift times in the DCH and a detailed map of the magnetic field are used to reconstruct track directions and mo-menta. Three-track vertices are reconstructed by a Kalman filter algorithmextrapolatingtracksegmentsfromtheupstreampartof thespectrometerintothedecayvolume,takingintoaccount mul-tiplescatteringinthe heliumandtheKevlarwindow, theEarth’s magnetic field and residual vacuum tank magnetization. The re-constructedK±

π

±

π

+

π

−invariantmassandthemissingmass in the K±

μ

±

ν

decay are monitored and used for fine cali-brationofthespectrometermomentumscaleandDCHalignment. Clustersofenergydeposition intheLKrcalorimeterare foundby locating maxima in space and time in the digitized pulses from individual cells. Reconstructed energies are corrected for energy outsidetheclusterboundaries,energylostinisolatedinactivecells (0.8%ofthetotalnumber),sharingofenergybetweenclusters,and non-linearityforclusterswithenergybelow11 GeV.Electrons pro-duced in K±

π

0e±

ν

decays are used to calibrate the energy response.

ThemainK2πD selectioncriteriaarethefollowing.

The event should contain exactly one reconstructed 3-track vertex, whichshouldbe locatedwithin thefiducial decay re-gionandbegeometricallycompatiblewithabeamkaondecay. Thevertexchargeqvtx,definedasthesumofthetrackcharges, shouldmatchthebeamchargeinthesingle-beammode. Oth-erwiseitshouldsatisfyarelaxedcondition

|

qvtx

|

=

1.Thetrack withthechargeoppositetoqvtxisnecessarilyane±candidate, whilethesame-signtrackscanbeeither

π

±ore±candidates.

(5)

Fig. 1. Reconstructed(a)π±π0and(b)e+eγ massdistributionsfordataandsimulatedcomponents.Theradiativeshouldersinthereconstructedmassesarewell

repro-ducedintheMCthankstothesimulationoftheradiativephoton.Theadoptedmassselectioncriteriarepresentedbythearrowsareasymmetricwithrespecttothenominal K±andπ0masses.

The tracks are required to be in time (within 25 ns of the trigger time and 15 ns of each other), and within the geo-metricalacceptance ofthe drift chambers. The allowed track momentumrangeis(2–74) GeV/c,excludingthelow

momen-tum range where a 2% deficit of data with respect to MC

simulation is seen. Events with a photon converting into an e+e−pairinthematerialinorinfrontofDCH1(Kevlar win-dow,helium)aresuppressedbyrequiringaminimumdistance of2 cmbetweentheimpactpoints ofevery trackpairinthe firstdriftchamber,asverifiedbysimulationofK2π decays.

Reconstructedclustersofenergydeposition intheLKr calori-meterareusedtoidentifyphotoncandidates.A photon candi-date cluster should be geometrically isolated fromthe track impact points in the LKr calorimeter (dt

>

20 cm from the same-sign tracks and dt

>

10 cm from the remaining track), within10 nsofeach trackandwithmorethan2 GeVof en-ergy.Thephoton4-momentumisreconstructedassumingthat the photon originates fromthe same vertexas the tracks. If more than one photon candidate is found, the event is re-jected.

Thetotalreconstructedmomentumshouldbecompatiblewith thebeammomentum,in therange(70–78) GeV/c, andthere should be no missingtransverse momentum withrespect to thebeamaxiswithintheresolution: p2

t

<

10−5

(

GeV/c

)

2. Par-ticleidentification usingan E

/

p ratio isnot requiredthanks tothelow backgroundinthesample,reducing the systemat-icsassociatedtothemisidentificationandincreasingtheK2πD acceptance by more than a factor of two. The

π

/

e ambigu-ity for the two same-sign tracks is resolved by testing the two possible mass assignments. For each hypothesis, the re-constructedkinematicvariablesshouldbe

|

x

|,

|

y

|

<

1,andthe reconstructed e+e

γ

and

π

±

π

0 masses should be close to thenominal ones: Meeγ inthe range(115–145) MeV/c2 and Mππ intherange(460–520) MeV/c2.Onlyeventswithasingle validhypothesisareselected.Theprobabilityofcorrect (incor-rect)massassignmentevaluatedwiththe K2πD MCsample is 99.62%(0.02%).Theremaining0.36%ofeventshaveeitherzero ortwovalidhypothesesandarerejected.

The triggerconditions described inSection 2are reproduced on simulated samples. To eliminate edge effects due to dif-ferentcalibrationandresolution betweenthetriggerandthe

offline analysis, tightervariants ofthe triggercriteriaare ap-pliedtobothdataandMCsamples.TheofflineELKrcondition requires a minimumof 14 GeV ofelectromagnetic energyin the LKr calorimeter summed over the reconstructed photon and e± clusters. The offline condition corresponding to the HLTrequiresatleastonetrackwhoseimpactpointontheLKr calorimeterfrontplaneiswithinitsacceptanceandnotbehind thePbbar,p

>

5

.

5 GeV/c andE

/

p

>

0

.

8,effectivelyrequesting thatatleastonee± trackisdetectedinthecalorimeter.

A 1% deficit in the data/MC ratio is seen for events with x

<

0

.

01 due to the steeply falling acceptance. For this rea-son the signal region is defined as x

>

0

.

01, equivalent to Mee

>

13

.

5 MeV/c2.

The selected K2πD sample amountsto 1

.

11

×

106 events.The overallacceptancesoftheselectionevaluatedwithMCsimulations are 1.90% for K2πD decays, 0.02%for Kμ3D decaysand 0.01%for Ke3D decays.The K2πD acceptancesforperiodswithandwithout thePbbarinstalledare1.64%and2.23%,respectively.

Thereconstructed

π

±

π

0ande+e

γ

invariantmassspectraare

shown in Fig. 1; the mass resolutions obtainedfrom a Gaussian fit are 3.7 MeV/c2 and1.5 MeV/c2 (rms), respectively. The recon-structed spectrum of the x variable and the acceptances for the decay channels considered are shown in Fig. 2. The e+e− mass resolutiondeterminedfromthe K2πD MC samplecanbe approxi-matedby

σ

ee

=

0

.

9%

·

Mee,whichtranslatesintotheresolutionon thex variableas

σ

x

=

1

.

8%

·

x.

4.2. Fitprocedure

A

χ

2 fitwithfree MCnormalisationinequallypopulatedbins comparing the data andMC reconstructed x distributions is per-formedtoextracttheTFFslope.A numberofslopehypothesesah aretestedbyreweightingasinglesetofMCeventssimulatedwith aslopeaMC

=

3

.

2

×

10−2 usingtheweights

w

(

ah

)

=

(

1

+

ahxMC

)

2

(

1

+

aMCxMC

)

2

,

wherexMCisthetruex valueforeachevent.Theminimizationof the

χ

2 teststatisticsyieldsthefollowingresult:

(6)

Fig. 2. (a)Spectraofthereconstructedx variablefordataandMCcomponents.(b)Acceptancesofthe K2πD selectionforeachdecayasfunctionsofthex variable.The

acceptancesforK 3Ddecays( =e;μ)arescaledupbyafactorof50.Thedropinthefirstbinisduetothesignalregiondefinition(x>0.01).

Fig. 3. Ratioofthereconstructedx distributionsfordataandMC,wheretheMC samplecorrespondstoa=0.TheeffectofapositiveTFFslope(a>0)isclearlyseen inthisillustration.DataandMCeventsaredistributedinto25equallypopulated bins;the horizontalpositionsofthemarkerscorrespondtothebinbarycentres. Thesolidlinerepresents|F(x)|2withthemeasuredcentralslopevalue:a=3.68× 10−2.Thedashedlinesindicatethe±1σband.Onlythestatisticaluncertaintiesare shown.

a

= (

3

.

68

±

0

.

48

±

0

.

18

)

×

10−2

,

where the uncertainties are statistical due to the limited data andMC sample sizes. The fitgives

χ

2

/

ndf

=

54

.

8

/

49, whichhas a p-value of 26.4%. The fit result is illustrated in Fig. 3. Using a quadratic function

|

F(

x

)

|

2

=

1

+

2bx

+

cx2, the fit results are b

= (

3

.

71

±

0

.

51

)

×

10−2andc

= (

0

.

00

±

0

.

19

)

.

4.3.Systematiceffects

4.3.1. Calibration,resolutionandbeamsimulation

Thespectrometermomentumscalemodifiesproportionallythe x variable.The corrections applied to the momentum calibration haveatypicalrelativesizeoftheorderof10−3.Thesensitivityof thefittoaresidualmiscalibrationhasbeenassessedconservatively byturningthecorrectionsoff,leadingtoashiftofthefitresultof

a

= −

0

.

16

×

10−2 considered asthe systematic uncertainty on thespectrometercalibration.A similarprocedureisappliedforthe chambermisalignmentcorrectionwithnosignificanteffectonthe fitresult.

The spectrometer mass resolution has been evaluated sepa-rately for individual data-taking periods usingsamples of K±

π

±

π

+

π

− decays. The maximum relative difference observed on theresolutionofthereconstructedsquared3-pionsmassbetween dataandMC is2%. ScalingtheMC resolutionofthex variableby 0.98resultsinashiftof

a

=

0

.

05

×

10−2,whichisconsideredas asystematicuncertainty.

The corrections applied to the energies measured in the LKr calorimeteraffecttheTFFsloperesultindirectlythroughthe pho-ton selectionacceptance.A correctionforthenon-linearityinthe energyresponseinthedatasamplewithanalternativefunctionis usedto evaluatethe sensitivitytothecorrection function, result-inginashiftof

a

=

0

.

03

×

10−2.A globalphotonenergyscaling factorof1.001,whichisthetypicalsizeoftheenergycorrections, appliedonlyintheMCsamplecausesashiftof

a

=

0

.

02

×

10−2. The overallsystematicuncertainty duetothe LKrenergy calibra-tion is assigned as the sum of these two effects in quadrature:

a

=

0

.

04

×

10−2.

The beam momentum is simulated according to the central

value measured separately fordifferent data takingperiods from fullyreconstructed K±

π

±

π

+

π

− decays.A remaining

discrep-ancy betweendata andMC in the tails ofthe beammomentum

spectrumaffectstheTFFslopemeasurementthroughthe K± mo-mentumdependenceoftheacceptance.Afterapplyingacorrection toimprovethespectrumdata/MCagreement,themeasuredslope shifts by

a

=

0

.

03

×

10−2, whichis considered asa systematic uncertainty.

4.3.2. Triggerefficiency

The efficiencies ofindividual components ofthe signal trigger chain have been measured using control data samples collected viaalternativetriggerchains.Sincenoinefficienteventshavebeen found,upperlimitsontheinefficienciesat90%CLhavebeen eval-uatedforeachtriggerconditions:0.06%(Q1),0.10%(1-track),0.03% (ELKr)and0.03%(HLT).

Possible systematic effects caused by each trigger condition have been investigated separately by removing potentially ineffi-cient events either fromthe data or the MC sample. The Q1

(7)

ef-Table 1

Summaryoftheuncertainties.

Source a×102

Statistical – data 0.48 Statistical – MC 0.18 Total statistical 0.51 Spectrometer momentum scale 0.16 Spectrometer resolution 0.05 LKr calibration 0.04 Beam momentum spectrum simulation 0.03 Calorimeter trigger inefficiency 0.06 Accidental background 0.15 Particle misidentification 0.06 Neglectedπ0

Dsources 0.01

Higher order radiative contributions <0.01 Total systematic 0.25

ficiencyis modeled by introducing fully inefficientgaps between theHODquadrantswith0.2 mmwidthtunedusingdata/MC com-parison in other decay channels. This leads to a Q1 inefficiency of0.02%forK2πD events.Energeticphotonsmayinitiate showers by interactingwiththe beampipe material, causingthe DCHhit multiplicities to exceed the limitsallowed by the 1-track trigger condition.Thesensitivitytothiseffectistestedbyremovingfrom theMC K2πD sample0.10%ofeventswitharadiativephotonwith an energy above 0.5 GeV traversing the beampipe. Forthe ELKr andHLT triggers, events closest to failinga trigger condition are removed fromthe datasample.Those areeventswiththelowest reconstructedenergyintheLKrcalorimeterfortheELKrcondition, andeventswiththelowestmaximumtrack E

/

p ratiofortheHLT condition.Inbothcasesthefractionofremovedeventsisequalto theupperlimitsoninefficienciesquotedabove. Theonlysizeable change inthe TFF slope resulthas been observed by testingthe ELKr trigger condition, resulting in a systematic uncertainty esti-mateof

a

=

0

.

06

×

10−2.

4.3.3. Backgrounds

The effect of accidental background is investigated by releas-ingindependentlythetimingcutsandconstraintsonthenumbers oftracks andvertices in the selection.The number ofadditional eventsincludedintothedatasampleforeachvariationofthe se-lectionislessthan 6

×

103.The totalsystematicuncertainty due toaccidentalsisevaluatedtobe

a

=

0

.

15

×

10−2.

Themisidentificationofchargedparticlesisstudiedbya mod-ificationoftheselectioncriteria.Thepionmassisassignedtothe trackwiththechargeoppositetoqvtxinthekinematicevent iden-tificationtoselect K±

e±e±

π

γ

candidates.Sincethisprocess violatesleptonnumberconservation,all eventspassing this“LNV selection” are considered to be events with misidentified tracks. A totalof188eventsfromthefulldatasetpasstheLNVselection. Usingthesame selectionontheMC samples,itisestimatedthat mostofthoseeventsaregenuine K2πD decayswithmisidentified

π

± ande∓tracks,while

(

42

±

18

)

dataeventsarenot accounted for.Thex distributionoftheseeventsisaddedtothereconstructed K2πD MCone.TheTFFslopeshiftsby

a

=

0

.

06

×

10−2,whichis consideredasasystematicuncertainty.

Removingthe Kμ3D andKe3D MC samplesfromthefit proce-dure results in a shift ofthe slope of

a

=

0

.

01

×

10−2. This is consideredasanestimateofthesystematicuncertaintyontheTFF slopeduetotheneglected

π

0sourcesastheotherneglectedkaon decaymodesproducingneutralpionsaccount forlessthan 4% of

π

0 production.

The acceptance of the K2πD selection for the K2π decay

fol-lowed by

π

0

γ γ

is estimated with MC simulations to be

Fig. 4. Comparisonoftheπ0TFFslopemeasurementsinthetime-likemomentum transferregion[11–15].

smaller than10−7,confirming thatthe minimaldistance

require-ment between tracks in the first DCH efficiently removes the

events withphoton conversion.The reduction ofdetector accep-tance by the Pb bar (Section 2) doesnot lead to anysystematic uncertainties since eventswithaparticle withinthe leadbar ac-ceptancearediscarded.

5. Result

The statistical and systematic uncertainties discussed in the previous sections are summarised in Table 1. The result of the measurementofthe

π

0 TFFslopeparameteris

a

=



3

.

68

±

0

.

51stat

±

0

.

25syst



×

10−2

= (

3

.

68

±

0

.

57

)

×

10−2

,

which is in good agreement with the theoretical predictions

[5–10].A comparison withprevious

π

0

D measurements is shown

inFig. 4.

6. Conclusions

The slope ofthe electromagnetictransition formfactorof the

π

0 is measured from a sample of 1

.

11

×

106

π

0 Dalitz decays. The resulta

= (

3

.

68

±

0

.

57

)

×

10−2 represents the most precise measurementoftheformfactorslopeinthetime-likemomentum region.The15%relativeuncertaintyrepresentsanimprovementby afactorof2withrespecttothepreviousbestmeasurement[15].

Acknowledgements

We expressour gratitude to the staff of the CERN laboratory and the technical staff of the participating laboratories and uni-versities for their efforts in the operation of the SPS accelerator, theexperimentanddataprocessing.WethankT.Husekforfruitful discussions andcollaborationonthe

π

0

D decaygenerator develop-ment.

(8)

References

[1]C.Patrignani,etal.,Chin.Phys.C40(2016)100001. [2]T.Husek,K.Kampf,J.Novotný,Eur.Phys.J.C74(2014)3010. [3]A.Nyffeler,Phys.Rev.D94(2016)053006.

[4]D.W.Joseph,NuovoCimento16(1960)997.

[5]M.Gell-Mann,F.Zachariasen,Phys.Rev.124(1961)953. [6]P.Lichard,Phys.Rev.D83(2011)037503.

[7]K.Kampf,M.Knecht,J.Novotný,Eur.Phys.J.C46(2006)191. [8]P.Masjuan,Phys.Rev.D86(2012)094021.

[9]M.Hoferichter,B.Kubis,S.Leupold,F.Niecknig,S.P.Schneider,Eur.Phys.J.C 74(2014)3180.

[10]T.Husek,S.Leupold,Eur.Phys.J.C75(2015)586.

[11]J.Fischer,etal.,Phys.Lett.B73(1978)359. [12]H.Fonvieille,etal.,Phys.Lett.B233(1989)65. [13]F.Farzanpay,etal.,Phys.Lett.B278(1992)413. [14]R.MeijerDrees,etal.,Phys.Rev.D45(1992)1439. [15]P.Adlarson,etal.,arXiv:1611.04739[hep-ex],2016. [16]H.J.Behrend,etal.,Z.Phys.C49(1991)401. [17]C.Lazzeroni,etal.,Phys.Lett.B719(2013)326. [18]V.Fanti,etal.,Nucl.Instrum.MethodsA574(2007)433. [19]J.R.Batley,etal.,Eur.Phys.J.C52(2007)875. [20]B.E.Lautrup,J.Smith,Phys.Rev.D3(1971)1122. [21]K.O.Mikaelian,J.Smith,Phys.Rev.D5(1972)1763. [22]T.Husek,K.Kampf,J.Novotný,Phys.Rev.D92(2015)054027.

Figura

Fig. 1. Reconstructed (a) π ± π 0 and (b) e + e − γ mass distributions for data and simulated components
Fig. 2. (a) Spectra of the reconstructed x variable for data and MC components. (b) Acceptances of the K 2 π D selection for each decay as functions of the x variable
Fig. 4. Comparison of the π 0 TFF slope measurements in the time-like momentum transfer region [11–15] .

Riferimenti

Documenti correlati

While economic vulnerability is not significantly different between conflict and non-conflict countries, human capital is 1.4 times higher on average in peaceful LDCs.. Analysis

Il razionamento del credito, in linea generale, deriva dall’impossibilità per un operatore di accedere ad una quantità di credito richiesta; ciò produce, in termini

14It is again interesting to note that Chittenden [1970], when considering the reform of the Bretton Woods system, also recognised the asymmetry of costs and called for

Pertanto, si è scelto di correlare le competenze con ognuna delle variabili, quali, ad esempio, le promozioni, il reddito, il livello gerarchico, la posizione occupata,

Any answer depends on our understanding of (a) the concept of interpretation as such and (b) the principle of effet utile – in a way the Court’s interpretive leitmotif and as I

Our study shows for the first time that in bronchial epithelium the levels of Hsp60 and its co-chaperonin Hsp10, and Hsp40 are significantly increased in patients with

Gazzoli, Francesca Lorandini, Matteo Fadini, Federico Saviotti, Camilla Russo, Carlo Tirinanzi De Medici e Alessia Versini.. Il progetto grafico e l’impaginazione è opera di