• Non ci sono risultati.

Show that S−1R is a UFD

N/A
N/A
Protected

Academic year: 2022

Condividi "Show that S−1R is a UFD"

Copied!
1
0
0

Testo completo

(1)

Commutative Algebra (2014–15)

Commutative Algebra Test 20/01/2015

Exercise 1. Let R be a noetherian UFD and S ⊆ R − {0} a multiplicative subset. Show that S−1R is a UFD. Is it true that S−1R UFD =⇒ R UFD? Prove it, or provide a counterexample.

Exercise 2. Let R be a ring and S ⊆ R − {0} a multiplicative subset, ϕ : R → S−1R the canonical map ϕ(x) = x1. Let I ⊂ R be an ideal such that I ∩ S = ∅.

a) Show that if I is prime, then ϕ−1(S−1I) = I.

b) For an arbitrary ideal, is ϕ−1(S−1I) = I? Prove it, or provide a counterexample.

c) Same as b), but under the assumption that R is a domain.

d) Suppose that R is a noetherian domain, S = {1, f, f2, . . .}. Assume that both f R and I are prime ideals. Show that I is principal if and only if S−1I is principal.

Exercise 3.

a) Let R be a noetherian domain, f ∈ R a prime element. Show that R is a UFD if and only if Rf is a UFD.

b) Let k be an algebraically closed field and R = k[X, Y, Z, U, V ]/(X2 + Y2 + Z2 − U V ).

Assume that the characteristic of k is not 2. Show that R is a UFD.

c) Show that R is not regular.

Exercise 4. Let k be an algebraically closed field and A = k[X, Y ]/(X3+ X − Y2). Assume that the characteristic of k is not 2. As usual, let x, y be the images of X, Y in A.

a) Show that A is a Dedekind domain.

b) Describe the splitting of prime ideals in the extension k[X] ⊂ A.

c) Using the norm, show that A×= k×. d) Show that y is irreducible.

e) Let m = (x, y). Compute a uniformiser for mAm. f) Show that Pic(A) 6= 0. Conclude that A is not a UFD.

g) Find an element in A with two non-equivalent factorisations.

You can submit your answers in english, french or italian.

Riferimenti

Documenti correlati

He expects to get money, because they look at him like they want to do something for him but, instead, as Rose described to us today, they say to him, “Look, we’re poor like you,

Since 2008, national education strategies for global citizenship have been promoted by many European countries on the basis of the Charter for Global Education for

Bruno Losito / Università degli Studi di Roma Tre Andrea Maccarini / Università di Padova Denis Meuret / Université de Bourgogne, Dijon Marcella Milana / Università degli Studi

Bruno Losito / Università degli Studi di Roma Tre Andrea Maccarini / Università di Padova Denis Meuret / Université de Bourgogne, Dijon Marcella Milana / Università degli Studi

Bruno Losito / Università degli Studi di Roma Tre Andrea Maccarini / Università di Padova Denis Meuret / Université de Bourgogne, Dijon Marcella Milana / Università degli Studi

Bruno Losito / Università degli Studi di Roma Tre Andrea Maccarini / Università di Padova Denis Meuret / Université de Bourgogne, Dijon Marcella Milana / Università degli Studi

Bruno Losito / Università degli Studi di Roma Tre Andrea Maccarini / Università di Padova Denis Meuret / Université de Bourgogne, Dijon Marcella Milana / Università degli Studi

(Si vous avez commencé à donner le biberon et que vous souhaitez passer à l'allaitement maternel, sachez que c'est encore possible. Cependant, la transition n'est pas toujours