• Non ci sono risultati.

Wigner approach to a new two-band envelope function model for quantum transport

N/A
N/A
Protected

Academic year: 2021

Condividi "Wigner approach to a new two-band envelope function model for quantum transport"

Copied!
38
0
0

Testo completo

(1)

ICTT19 ICTT19

19th International Conference on Transport Theory 19th International Conference on Transport Theory

Budapest

Budapest, Ju , July ly 24- 24 - 30, 2005 30 , 2005

Giovanni Frosali

Dipartimento di Matematica Applicata “G.Sansone”

giovanni.frosali@unifi.it

Wigner approach to a new two-band

envelope function model for quantum transport Wigner approach to a new two-band

envelope function model for quantum transport

Omar Morandi

Dipartimento di Elettronica e Telecomunicazioni

omar.morandi@unifi.it

(2)

Plain of the talk

• Description of the model

• Description of the model

• Numerical applications

• Numerical applications

• Mathematical problem

• Mathematical problem

• Multiband (MEF) model

• Mathematical setting

• Well posedness of the Multiband-Wigner system

• Multiband-Wigner picture

• Description of the numerical algorithm

(3)

Problem setting: unperturbed system

• Homogeneous periodic crystal lattice:

• Time-dependent evolution semigroup:

0

 

( ) H

i d x x

dt   

H0

( , ) x t e

i t

( , ) x t

0

 

2 2

0

0

H ( )

2 V

per

x

   m  

No interband transition are possible if is a Bloch function ( , )  x t

0

H

0

n

( , ) k xE

k

n

( , ) k x

E ( )n

( , ) ( , )

i k t

x t e

n

k x

 

( , ) x t

0

n

( , ) k x

 

(4)

Multiband models: derivation Multiband models: derivation

   

1

2

n Ri n i n i

R w x R

  

Wannier envelope function

  1  

2 ,

ik x i

n n

R

w x R

i

u k x e d k

 

Wannier function

   ,

1 2

i x n

k

u k x e

n

k dk

  

Bloch envelope function

Bloch function

is the (cell. averaged) probability to find the electron in the site R and into n-th band

 

2

n

R

i

• Non Homogeneous lattices

(5)

  1  

2 ,

ik x i

n n

R

w x R

i

u k x e d k

 

   

1

2

n Ri n i n i

R w x R

  

Wannier envelope function

Wannier function

High oscillating behaviour

The direct use of Wannier basis is a difficult task!!

,

u k x

n

L-K Kane

,

, ,0

0 Bloch L K Bloch n k

n k n

k

u u u k

k

  

, ,0

Kane Bloch

n k n

uu

“k p” m eth od s

In literature are proposed different approximations of

• We loose the simple interpretation of the envelope function u k x

n

,

Multiband models: derivation

Multiband models: derivation

(6)

MEF model: derivation MEF model: derivation

  1  

2

ikRi

FB

n i

Z

n

k e dk

R

   

To get our multiband model in Wannier basis:

We recover un approximate set of equation for in the Bloch basis (momentum space)

• We Fourier transform the equations obtained (coordinate space)

n

  k

Our approach

   

1

2

n Ri n i n i

R w x R

  

Wannier function

   ,

1 2

i x n

k

u k x e

n

d

k k

  

Bloch function

(7)

MEF model characteristics:

MEF model characteristics:

• Direct physical meaning of the envelope function

• Easy approximation (cut off on the index band)

• Highlight the action of the electric field in the interband transition phenomena

• Easy implementation: Wigner and quantum-hydrodynamic formalism

Hierarchy of “kp” multiband effective mass models,

where the asimptotic parmeter is the “quasi-momentum” of the electron

(8)

MEF model: derivation MEF model: derivation

(

n

) ( )

n

d , |

ext

| ,

n'

( ') 0

n

E Ek k n k U n kk

  

     

| , n k  u k x e

n

( , )

ikx

H

0

U

ext

|   E |  

First approximation:

| u

n k,

 u k x

n

( , )

 

, ', '

, |

ext

| , ˆ

e tx

' u

n k

|

n k

n k U n k   U k ku

    

' '

,

|

, ' n

( , )

n

( ', )

n k n k

cell

u k x u k x

u dx

u  

By exploiting the periodicity of and for slow varying external

potentials u k x

n

( , )

(9)

MEF model: formal derivation MEF model: formal derivation

0

, ,

,

, '

'

'

'

(k,k') ' P (k,k '

| )

n n

n k n n

n k

E

k k

u u m

    

  2 ( , )

'

P , '

n x n

( ', )

c n,

e l n

l

u k x u k x dx

k k

  

 

2

2 '

,

0 '

( , ) ( ) ( ')

2

n n

E k

n

E k

n

2 k k

E k k     m  

 

Evaluation of matrix elements

n k,

|

n k', ' n

( , )

n'

( ', )

cell

u k x u k x

u dx

u  

Kane momentum matrix

(10)

MEF model: derivation MEF model: derivation

(

n

) ( )

n

d , |

ext

| ,

n'

( ') 0

n

E Ek k n k U n kk

  

     

2

, '

0 , '

'

( ) ( ) ( ) ˆ ( ') ( ')d

' ˆ( ') P (k,k') ( ')d

n

n n

n n n

n

n n n n

E k E k k U k k k k

i k k U k k k

E k

m

  



   

 

 

  

(11)

   

,

2 2 *

, '

' '

0 0

'

, ' , '

ˆ M ˆ

(0,0) ' ' (

P (

d 0 ' d

0)

, ) ,

0

0

n n

n n

n n n n n

n

n n

n

n

i k k k U k ik k k U k

E m E

m  

 

   

 

   

 

• Our aim: simplify the above equation.

“Interband term”:

“Interband term”:

 

,

2 2

, ' 0

' , '

0 , '

'

' ˆ P (k ' ˆ

, ' ,k')

n

d P (0 ,0)

n

d

n n n n

n n n n

n n n n

E k k

k k k k

i U k i U k

mm E

   

  

    

  

MEF model: derivation MEF model: derivation

We retain only the first order term

We retain only the first order term

Second approximation:

(12)

MEF model: derivation MEF model: derivation

ˆ

'

( ) ( ) ( ) ( ') ( ')d

n n n n

EkE kk   U k k   k k

Approximate system Approximate system

, ,

2

' '

0 '

P (0,0

ˆ )

'

n n

d

n n

n

n n

E

i k k U k

m



 

  

F

k

 

k

 

n

x

n

 = F 

(

n

) ( )

n

d , |

ext

| ,

n'

( ') 0

n

E Ek k n k U n kk

  

     

We write it in coordinate space

We write it in coordinate space

(13)

MEF model: first order MEF model: first order

 

 

2

2 2

1 1

1 2

* 2

0 2

2 2

2 2

2 1

* 2

0

P 2

P 2

c

c g

v

v g

i E U U

t m x m E x

i E U U

t m x m E x

   

   

        

   

 

  

     

   

 

 

Physical meaning of the envelope function:

Physical meaning of the envelope function:

| ( )

2

i

n i

R cell

n dxR

  

| n

The quantity represents the mean probability density to find the electron into n-th band, in a lattice cell.

 

2

i

x

(14)

• intraband dynamic

MEF model: first order MEF model: first order

Effective mass dynamics:

Effective mass dynamics:

Zero external electric field: exact electron dynamic

 

 

2

2 2

1 1

1 2

* 2

0 2

2 2

2 2

2 1

* 2

0

P 2

P 2

c

c g

v

v g

i E U U

t m x m E x

i E U U

t m x m E x

   

   

        

   

 

  

     

   

 

 

(15)

• intraband dynamic

• interband dynamic

first order contribution of

transition rate of Fermi Golden rule

MEF model: first order MEF model: first order

Coupling terms:

Coupling terms:

( , )

T nn k   k

 

 

2

2 2

1 1

1 2

* 2

0 2

2 2

2 2

2 1

* 2

0

P 2

P 2

c

c g

v

v g

i E U U

t m x m E x

i E U U

t m x m E x

   

   

        

   

 

  

     

   

 

 

(16)

Problems in the practical use of the Kane model:

Problems in the practical use of the Kane model:

2

2 2

1 1 2

2 1

0 0

2

2 2

2 2 1

2 2

0 0

2 2

Kane Kane Kane

Kane c

Kane Kane Kane

Kane v

i V P

t m x m x

i V P

t m x m x

   

   

   

   

   

 

  

    

   

 

 

Kane model Kane model

• Strong coupling between envelope function related

to different band index, even if the external field is null

• Poor physical interpretation ( )

iKane

 

2

i

n x    x

(17)

Wigner function:

Phase plane representation: pseudo probability function f x p,

,1/ 2   / 2

2

f x p x m x m e d

ip

    

   

Wigner equation Liouville equation Classical limit

 0

  x

2

n x   f x p dp,

   

  J x   p f x p dp,

m       

Moments of Wigner function:

Wigner picture:

Wigner picture:

(18)

n

n-th band component

d H

idt  

 

1

,.., 

n

t

 

General Schrödinger-like model

matrix of operator

Wigner picture:

Wigner picture:

H,   H

x

H

y

i d

dt

     

 

1

   

1 1

1

,

n

n n n

x y

x y

   

   

 

 

  

 

 

  

Density matrix

(19)

H

x

H

y

1

i df f

dt  W  W

-

Wigner picture:

Wigner picture:

Evolution equation

Multiband Wigner function

,    1/ 2 , / 2

2

ip

ij ij

f x p x m x m e d

 

  

W    

Introduced by Borgioli, Frosali, Zweifel [1]

• Well-posedness of the two band Kane-Wigner System

[1]

G. Borgioli, G. Frosali and P. Zweifel, Wigner approach to the two-band Kane model for a tunneling diode, Transp. Teor.Stat. Phys. 32 3, 347-366 (2003).

(20)

H

x

H

y

1

i df f

dt  W  W

-

Wigner picture:

Wigner picture:

Evolution equation

Multiband Wigner function

 

 

2 2 2

* 2

0

2 2 2

* 2

0

P H = 2

P

2

c

c g

v

g v

E U U

m x m E x

U E U

m E x m x

   

   

   

 

   

    

   

 

 

 

Two band MEF model

Two band Wigner model

,    1/ 2 , / 2

2

ip

ij ij

f x p x m x m e d

 

  

W    

(21)

 

 

*

0

*

0

2

*

0

2 2

4

cc cc cc cc cv

g

vv

vv vv vv cv

g

cv cv cv cv cc vv

g

f p P

f i f f

t m m E

f p P

f i f f

t m m E

f i P

i p f i f i f f

t m m E

 

 

  

      

 

 

      

  

  

              

  

 

Wigner picture:

Wigner picture: Two band Wigner model

,   

2

ii i

f x p dp   x

Moments of the multiband Wigner function:

represents the mean probability density to find the electron into n-th band, in a lattice cell.

,

f x p dp

ii

(22)

Wigner picture:

Wigner picture: Two band Wigner model

  / 2 / 2

p 1

 

p

ij

f

ij

   V x

i

   mV x

j

   m  

f

ij

F F

  / 2

-1

 

p

f

ij

    V x    m  

p

f

ij

F F

 

 

*

0

*

0

2

*

0

2 2

4

cc cc cc cv

g

vv

vv vv cv

g

cv cv c

cc

vv

c c vv

g

v v c

f p P

f i f f

t m m E

f p P

f i f f

t m m E

f i P

i p f i f i f f

t m m E

 

 

  

      

 

 

      

  

  

              

  

 

(23)

 

 

*

0

0

2

*

0

*

2 2

4

cv g

c

cc cc cc cc

vv

v g

cv cv

vv vv vv

cv cv cc vv

g

P f

m E

P f

m E

f i P

i p f i f i f f

t

f p

f i f

t m

f p

f i f

m m E

t m

 

  

 

 

 

 

   

              

  

  

    

 

Wigner picture:

Wigner picture: Two band Wigner model

  ,  

i

ii i

f x v  W 

• intraband dynamic: zero coupling if the external potential is null

(24)

 

 

*

2

*

0 0

0

*

2 2

4

cv g

c

cc cc cc cc

vv

vv vv vv

cv cv cv c

v g

v cc vv

g

f p

f i f

t m

f p

f i f

t m

f i P

i p f i f i f f

t

P f

m E

P f

m E

m m E

  

    

 

 

    

  

  

              

  

 

 

 

Wigner picture:

Wigner picture: Two band Wigner model

  ,  

i

ii i

f x v  W 

• intraband dynamic: zero coupling if the external potential is null

• interband dynamic: coupling like G-R via f

cv

x p ,

(25)

Mathematical setting Mathematical setting

 

 

2 2

1

: ; 1

2

f f L p dx dp

X    

1 1 1

X X

H    X

   

, ,

i 1

H

i

f g

i X

f g

Hilbert space:

Weighted spaces:

  x p , 

2

1 D problem:

,  H

f g

(26)

Mathematical setting Mathematical setting

 

(0)

0

i d B C

dt A

   

 

 

f f f

f f

H f

the two band Wigner system admits a unique solution

2,

( )

ext x

UW

 If the external potential

0

D A    H f

f

cc

, f

vv

, f

cv

f

T

(27)

Mathematical setting Mathematical setting

2

2

* * * 2

, , 1

4

p p

diag i i p

m x m x x

A m

    

         

e iAt

Unbounded operator unitary semigroup on H

Stone theorem

 

(0)

0

i d B C

dt A

   

 

 

f f f

f f

2

3 1

1 2

f : ,

2

( ) f f , f

H

A x

D    xx X

 

    

 

 

(0)

0

i d B C

dt A

   

 

 

f f f

f f

H f

the two band Wigner system admits a unique solution

2,

( )

ext x

UW

 If the external potential

f

cc

, f

vv

, f

cv

f

T

(28)

 

(0)

0

d B C

i A

dt

  

 

 

f f f

f f

 

1

 

p

ij ij

fV x

i

   / 2 mV x

j

   / 2 m

p

f

ij

F F

 

-1

 

p

f

ij

    U x    / 2 m  

p

f

ij

F F

cc

,

vv

,

cv

d

Biag   

   

   

   

0

0 0 2

0 0 2

g

0

C P

m E i i

 

  

 

 

  

 

  

 

 

 

Mathematical setting Mathematical setting

H f

the two band Wigner system admits a unique solution

2,

( )

ext x

UW

 If the external potential

f

cc

, f

vv

, f

cv

f

T

(29)

Symmetric bounded operators

 

(0)

0

d B C

i A

dt

  

 

 

f f f

f f

  H

,

B C  B

1, ( x)

ij ij

f

X

c U

ext W

f

ij X

 

2, ( x)

W X

ij X ext ij

f c U f

cc

,

vv

,

cv

d

Biag   

Mathematical setting Mathematical setting

H f

the two band Wigner system admits a unique solution

2,

( )

ext x

UW

 If the external potential

f

cc

, f

vv

, f

cv

f

T

   

   

   

0

0 0 2

0 0 2

g

0

C P

m E i i

 

  

 

 

  

 

  

 

 

 

(30)

 

(0)

0

i d A B C

dt

   

 

 

f f f

f f

The operator generate semigroup A B C  

The unique solution of (1) is

Mathematical setting Mathematical setting

 

0 i A B C t

e

 

f f

H f

the two band Wigner system admits a unique solution

2,

( )

ext x

UW

 If the external potential

f

cc

, f

vv

, f

cv

f

T

(31)

Numerical implementation: splitting scheme Numerical implementation: splitting scheme

Linear evolution semigroup

 

0

i t

e

A+ B+C

f f

,j

( ,

i j

)

i

x p

f = f is a three element vector

+

t i 2t i t i 2t i t

e

i

e e e e

   

A B A C

A+ B C

  

+

f

ij

( , )

t n

i t i

i j t

e

A+ B+C

f x p    e

A+ B C

  t n  

Discrete operator

,

f

i j

Uniform mesh x

i

  i

x

p

j

  j

p

(32)

Numerical implementation: splitting scheme Numerical implementation: splitting scheme

2 2

ij x

ˆ

ij

f f

t t

i i

e e

  

 

A

F

-1 A

ij x ij

ˆf  F     f f.f.t.

2

2

* * * 2

, , 1 4

p p

diag i i p

m x m x m x

    

          

A

2

* * *

2 , 2 , 2 1

4

j j

p p

diag i i p

mmm

 

     

 

A

+C

t i 2t i t i 2t i t

e

i

e e e e

   

A B A C

A+ B

Approximate solution of

(0) i d

dt

  

 

 

f A

f

f f

(33)

Numerical implementation: splitting scheme Numerical implementation: splitting scheme

ij p ij

ˆf  F     f f.f.t.

(0)

0

i d dt

  

 

 

f B

f

f f

cc

,

vv

,

cv

diag   

B

   

'

'

/ 2 / 2

1 '

2

i j i v v

ij ij

v

V x m V x m

f e

dv d

 

 

  

 

   

 

ij

1 / 2 / 2

2 V x

i

m V x

j

m

  

      

cc

,

vv

,

cv

diag   

B

Approximate solution of

2 2

ij p

ˆ

ij

f f

t t

i i

e e

  

 

B

F

-1 B

+C

t i 2t i t i 2t i t

e

i

e e e e

   

A B A C

A+ B

(34)

Space coo

rdinate Momentu

m coordinate

x p

,

cc

x p

f Conduction band

(35)

Space coo

rdinate Momentu

m coordinate

x p

,

cc

x p

f Conduction band

Space coordinate Momentum coordinate

x

p Valence band

,

vv

x p

f

(36)
(37)

,

cc

x p

f Conduction band

 

cc

x p ,

 f

Valence band

,

vv

x p

f

 

cv

x p ,

 f

Stationary state: Thermal distribution

(38)

Conclusion

• Multiband-Wigner model

• Well posedness of the Multiband-Wigner system

• Application to IRTD

Next steps

• Extention of MEF model to more general semiconductor

• Well posedness of Multiband-Wigner model coupled with Poisson eq.

• Calculation of I-V IRDT characteristic for self-consistent model

Riferimenti

Documenti correlati

This was a prospective, 12‐week, case‐control study that aimed to investigate the efficacy (primary outcome) and the tolerability of DLX in the treatment of depression in cancer

Part I has been devoted to the controller selection strategy in case of multivariable systems. The selection is carried out with respect to a finite family of pre-fixed controllers

Using as a starting point the quantum programming language Quipper and the quantum model checking system QPMC, we developed a tool, called Entangλe, for the translation of

We derive a fluid-dynamical system describing electron transport in quantum, high- field regime, starting from Wigner equation.. Under the high-field assumption, quan- tum advection

The third, recently derived within the usual Bloch-Wannier formalism, is formulated in terms of a set of coupled equations for the electron envelope functions by an expansion in

The Wigner formulation consists of a four-by-four system, containing two effective mass Wigner equations (one for the electron in conduction band and one for the valence band)

Analogously, two-band zero-temperature quantum fluiddynam- ical models 1,2 can be derived by applying the Madelung ansatz either to the two-band Schr¨ odinger-like model introduced

The typical band di- agram structure of a tunneling diode is characterized by a band alignment such that the valence band at the positive side of the semiconductor device lies above