• Non ci sono risultati.

Constraint Satisfaction Problems

N/A
N/A
Protected

Academic year: 2021

Condividi "Constraint Satisfaction Problems"

Copied!
45
0
0

Testo completo

(1)

Constraint Satisfaction

Problems

(2)

Sommario

n 

Constraint Satisfaction Problems (CSP)

Constraint Programming = rappresentazione e ricerca soluzione di CSP

n 

Backtracking search for CSPs

n 

Local search for CSPs

(3)

Constraint satisfaction problems (CSPs)

n  Standard search problem:

n  Stato: “scatola nera“ – any data structure that supports successor function, heuristic function, and goal test

n  CSP:

n  Stato definito da variablili Xi con valori in un dominio (cont o disc) Di

n  goal test insieme di constraints che specifica combinazioni possibili di valori per sottoinsimi di variabili (constraints espliciti e impliciti)

n  Esempio 8-regine

n  Semplice esempio di linguaggio formale di rappresentazione

n  Permette lo sviluppo di general-purpose algorithms con più potere degli algoritmi standard di ricerca

(4)

Example: Map-Coloring

n  Variables WA, NT, Q, NSW, V, SA, T

n  Domains Di = {red,green,blue}

n  Constraints: regioni adiacienti devono avere colori

n  Ad es., WA ≠ NT (implicito) o, esplicitamente, (WA,NT) in {(red,green), (red,blue),(green,red), (green,blue),(blue,red),(blue,green)}

(5)

Example: Map-Coloring

n 

Solutions are complete and consistent assignments, e.g., WA = red, NT = green,Q = red,NSW =

green,V = red,SA = blue,T = green

(6)

Constraint graph

n  Binary CSP: each constraint relates two variables

n  Constraint graph: nodes are variables, arcs are constraints

(7)

Varieties of CSPs

n  Discrete variables

n  finite domains:

n  n variables, domain size d ! O(dn) complete assignments

n  e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)

n  infinite domains:

n  integers, strings, etc.

n  e.g., job scheduling, variables are start/end days for each job

n  need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

n  Continuous variables

n  e.g., start/end times for Hubble Space Telescope observations

n  linear constraints solvable in polynomial time by linear programming

(8)

Varieties of constraints

n 

Unary constraints involve a single variable,

n  e.g., SA ≠ green

n 

Binary constraints involve pairs of variables,

n  e.g., SA ≠ WA

n 

Higher-order constraints involve 3 or more variables,

n  e.g., cryptarithmetic column constraints

(9)

Example: Cryptarithmetic

n  Variables:

F T U W R O X1 X2 X3

n  Domains: {0,1,2,3,4,5,6,7,8,9}

n  Constraints:

n Alldiff (F,T,U,W,R,O) variabili tutte con valori diversi!

n  O + O = R + 10 · X1

n  X1 + W + W = U + 10 · X2 X + T + T = O + 10 · X

hyper constraint graph

(10)

Many Real-world CSPs

n  Assignment problems

n  e.g., who teaches what class

n  Timetabling problems

n  e.g., which class is offered when and where?

n  Transportation scheduling

n  Factory scheduling

n  Boolean satisfiability

n  ….

n  Notice that many real-world problems involve real-valued

(11)

Standard search formulation (incremental)

Let's start with the straightforward approach, then fix it States are defined by the values assigned so far

n  Initial state: the empty assignment { }

n  Successor function: assign a value to an unassigned variable that does not conflict with current assignment

! fail if no legal assignments

n  Goal test: the current assignment is complete

1.  This is the same for all CSPs!

2.  Every solution appears at depth n with n variables à use depth-first search

3.  b = (n - l )d at depth l, hence n! · dn leaves !!

(12)

Backtracking search

n  Variable assignments are commutative:

[ prima WA = red poi NT = green ] stessa cosa di:

[ prima NT = green poi WA = red ]

n  Only need to consider assignments to a single variable at each node à b = d and there are dn leaves

n  Depth-first search for CSPs with single-variable assignments is called backtracking search

n  Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for n ≈ 25

(13)

Backtracking search

(14)

Backtracking example

(15)

Backtracking example

(16)

Backtracking example

(17)

Backtracking example

(18)

Improving backtracking efficiency

n 

General-purpose methods can give huge gains in speed:

n 

Which variable should be assigned next?

n 

In what order should its values be tried?

n 

Can we detect inevitable failure early?

(19)

Most constrained variable

n 

Most constrained variable:

Scegli la var con meno valori accettabili

n 

minimum remaining values (MRV) heuristic

(20)

Most constrain ing variable

n 

Criterio aggiuntivo di preferenza tra most constrained variables

n 

Most constraining variable (degree heuristic):

n 

Scegli la variabile con il maggior numero di vincoli

con le variabili rimanenti

(21)

Least constraining value

n 

Data una variabile, scegli il valore meno vincolante:

n 

the one that rules out the fewest values in the remaining variables

n 

Combining these heuristics makes 1000

queens feasible!

(22)

Forward checking

n  Idea:

n  Keep track of remaining legal values for unassigned variables

n  Terminate search when any variable has no legal values

(23)

Forward checking

n  Idea:

n  Keep track of remaining legal values for unassigned variables

n  Terminate search when any variable has no legal values

(24)

Forward checking

n  Idea:

n  Keep track of remaining legal values for unassigned variables

n  Terminate search when any variable has no legal values

(25)

Forward checking

n  Idea:

n  Keep track of remaining legal values for unassigned variables

n  Terminate search when any variable has no legal values

(26)

Constraint propagation (Inference)

n  Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

n  NT and SA cannot both be blue!

n  Constraint propagation repeatedly enforces constraints locally

(27)

Arc consistency

n  Simplest form of propagation makes each arc consistent

n  X àY is consistent iff

for every value x of X there is some allowed y of Y

(28)

n  Simplest form of propagation makes each arc consistent

n  X àY is consistent iff

for every value x of X there is some allowed y of Y

Arc consistency

(29)

Arc consistency

n  Simplest form of propagation makes each arc consistent

n  X àY is consistent iff

for every value x of X there is some allowed y

n  If X loses a value, neighbors of X need to be rechecked

(30)

Arc consistency

n  Simplest form of propagation makes each arc consistent

n  X àY is consistent iff

for every value x of X there is some allowed y

n  If X loses a value, neighbors of X need to be rechecked

n  Arc consistency detects failure earlier than forward checking

n  Can be run as a preprocessor or after each assignment

(31)

Arc consistency algorithm AC-3

(32)

Backtraching with Inference

(33)

Esempio Sudoku: AC-3 utile?

(34)

Esempio Sudoku

n 

Formulare il problema come CSP (variabili, domini, vincoli)

n 

Applicare AC-3 al problema precedente:

provare ordine E6, I6, A6, ….

n 

Quanto è utile AC-3 nell’esempio?

(35)

Esercizio AC-3

n 

3 variabili: x, y, z

n 

Dom(x)={3,5}, Dom(y)={7}, Dom(z)={4,7}

n 

Vincoli: x ≠ y, x < z, y ≠ z

n 

AC(x,z): si/no?

n 

AC(z,x): si/no?

n 

AC(z,y): si/no?

n 

….

(36)

Esercizio AC-3: soluzione

n 

….

(37)

Local search for CSPs

n  Hill-climbing, simulated annealing typically work with

"complete" states, i.e., all variables assigned

n  To apply to CSPs:

n  allow states with unsatisfied constraints

n  operators reassign variable values

n  Variable selection: randomly select any conflicted variable

n  Value selection by min-conflicts (general) heuristic:

n  choose value that violates the fewest constraints

n  i.e., hill-climb with h(n) = total number of violated constraints

(38)

Example: 4-Queens

n  States: 4 queens in 4 columns (44 = 256 states)

n  Actions: move queen in column

n  Goal test: no attacks

n  Evaluation: h(n) = number of attacks

n  Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability: n = 10.000.000 is solvable!!

(39)

Esempio: 8 regine

(40)

Local Search: Min-Conflic

n 

Funziona molto bene quando il problema contiene molte soluzioni

n 

Usato per schedulare le osservazioni del telescopio Spaziale Hubble:

Drastica riduzione dei costi computazionali: una

settimana di osservazioni schedulata in 10 minuti

(prima in tre settimane!)

(41)

Da arc-consistency a n -consistency

n  Estensione del concetto di arc(2)-consistenza

n  3-consistenza:

per ogni tripla (X,Y,Z):

per ogni (X=v, Y=w) che soddisfa Cxy Esiste Z=k tale che

Cxz e Czy sono soddisfatti

n  Anche chiamata path-consistenza perchè considera un cammino da X a Y attraverso Z

n  Imporre la path-consistenza vuol dire eliminare gli

assegnamenti a X e Y che non soddisfano la proprietà, cioè

(42)

Esempi di 3-consistenza (1)

n  Si consideri il problema colorazione mappa australia con due colori: blu e rosso

n  Il CSP ha soluzione?

n  Imporre la proprietà di arc-consistency al CSP come modifica I domini?

n  Il CPS arc-consistente è anche path-consistente?

n  Se non lo è come si modificano i vincoli binari? (Cioè gli assegnamenti binari ammessi dai relativi vincoli)

(43)

Esempi di 3-consistenza (3)

n  Si consideri il seguente CSP:

X <= Y, Y < Z, X <= Z

Dom(X)={1,2}, Dom(Y)={1,3}, Dom(Z)={2,4}

n  E’ arc-consistente?

n  E’ path-consistente?

n  Se non lo è, quali sono gli assegnamenti binari da rimuovere?

(44)

K-consistenza e strong consistency

n  La 1-2-3 consistenza si generalizza a k-consistenza con k>=1:

Ogni assegnamento consistente per X1, …, X(k-1) può essere esteso a un assegnamento consistente per

X1, …, Xk

n  Strong k-consistency:

vale q-concistency per ogni valore di q in {1…k}

n  Theorema: Se il CSP ha n variabili e vale strong n-consistency allora posso trovare soluzione, se esiste, con un algoritmo

polinomiale (alla lavagna)

(45)

Summary

n  CSPs are a special kind search problem:

n  Molte applicazioni

n  states defined by values of a fixed set of variables

n  goal test defined by constraints on variable values

n  Backtracking = depth-first search with one variable assigned per node

n  Variable ordering and value selection heuristics help significantly

n  Forward checking prevents assignments that guarantee later failure

n  Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies

n  Iterative min-conflicts is usually effective in practice

Riferimenti

Documenti correlati

[r]

Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 The Scientific World Journal. Hindawi

But, the late implementation of the prevention provisions and the lack of the urban planning documents concerning the natural hazards have led to a development of the urbanism in

According to this Federal Law, the specifics of the technological process of mining, as well as associated coal mining and processing operations, the continuous movement of

Finite domains (ex: Booleans, bounded integers, lists of values) domain size d =⇒ d n complete assignments (candidate solutions) e.g. Boolean

use the constraints to reduce the set of legal values for a variable Constraint propagation can either:!. be interleaved

!  Keep track of remaining legal values for unassigned variables. !  Terminate search when any variable has no