• Non ci sono risultati.

Crossed-channel Compton Crossed-channel Compton Scattering Scattering

N/A
N/A
Protected

Academic year: 2022

Condividi "Crossed-channel Compton Crossed-channel Compton Scattering Scattering"

Copied!
23
0
0

Testo completo

(1)

Crossed-channel Compton Crossed-channel Compton

Scattering Scattering

George – Catalin SERBANUT George – Catalin SERBANUT

Bad Honnef, May 28

Bad Honnef, May 28 th th , 2005 , 2005

(2)

Contents Contents

 Brief theoretical overview Brief theoretical overview

 CLEO/VENUS experiment CLEO/VENUS experiment

 E760 experiment E760 experiment

 E835 experiment E835 experiment

 PANDA experiment PANDA experiment

 Conclusions and outlook Conclusions and outlook

(3)

Introduction

Introduction

(4)

CCCS Overview

CCCS Overview

(5)

Wigner Distribution Wigner Distribution

) r , r ( ) e

2 (

r d )

2 (

r ) d

p ( n :

transform Fourier

) r ( ) r ( )

r , r ( :

matrix Density

2 1 /

) r r ( p i 3 2 3 3

1 3

2 1

* 2

1

2

1

 

 

 

 

 

 

  

 

 

  

 

 

  

R

2 r 1

, 2 R r 1

) e 2

(

R d )

2 (

r ) d

p ( n :

transform Fourier

2 R r 1

2 R r 1

2 R r 1

, 2 R r 1

: matrix Density

/ R p i 3 3 3

3

*

 

 

 

 

 

 

 

 

(6)

Wigner Distribution Wigner Distribution

2 R r 1 r , 2 R r 1

r

1

  

2

 

    

 

 

  

 

 

  

 

 

  

R

2 r 1 , 2 R r 1

) e 2 (

R d )

2 (

r ) d

p ( n :

transform Fourier

2 R r 1

2 R r 1

2 R r 1

, 2 R r 1

: matrix Density

/ R p i 3 3 3

3

*

 

 

 

 

 

 

 

 

 

 

  

) p , r ( ) W 2

( r ) d

p ( n : transform Fourier

) p , r ( W p d r

: matrix Density

2 R r 1 , 2 R r 1 ) e

2 (

R ) d

p , r ( W :

on distributi y

probabilit quasi

Wigner

3 3 3

/ R p i 3 3

 

 

 

 

 

(7)

Breit Frame & Fierz Transforms Breit Frame & Fierz Transforms

 

 

 

) m 4 /(

1 m E

E

2 / p

p 0

E E

0 p

p :

Definition Frame Breit

2 2

2 1

2 1

2 1

0

2

1

 

 

 



scalar pseudo

vector pseudo

tensor vector scalar 1

: ) ( Transform Fierz

5 5





 and of

n combinatio

linear the

from only

arise

system Breit

the in transition

flip non

and flip

helicity  

(8)

Form (Structure) Factors - Form (Structure) Factors -

Introduction Introduction

) p ( u ) ( M F

2 ) i

( F )

p ( u T ) T

' x x ( G ) 0 ( j

) 0 ( j

p

| ) 0 ( j

| p T

T

| T

| k

d

1 2

2 N 2

1 2

em fi fi

like int po

1 2

em fi fi

i f

2 fi f

' N 'l lN

 

 

    

 

 





 

(9)

Form (Structure) Factors - Form (Structure) Factors -

Introduction Introduction

 e ( p ) p )

2 (

p

R d

3 ipr

3

 

         

2 p 1 ) 0 ( 2 j

p 1 2 )

p 1 ( 2 )

p 1 ) (

2 (

p ) d

(

F

3 * 0

3

N N

N N

M

| p

|

|

| R

/ 1

| p

| / 1

| r

|

M / 1

| r

|

|

| / 1

| r

| R

| r

|











    

 

frame Breit

in density e

arg ch of element matrix

2 ) 1 0 ( 2 j

) 1 ( F M

2

N

    

0

   )

p ( u ) (

G ) p ( u ) (

F  

2 E

 

2 1

) (

F ) (

F ) (

G

) (

M F ) 4

( F ) (

G

2 2

2 1 2

M

2 2 2

N 2 2

1 2

E

 

(10)

CCCS Specific Cross-Section CCCS Specific Cross-Section

N q N

q 1

1 q i q

i

p / p

; p / p x

P , A , V i for ) s , , x ( dx )

s ( F

P , A , V i for )

s ( F e R

q

q i 2 q

i

  

 

) v , v ( v

) v v 2( v 1

v , v , v v

: on quantizati cone

Light

2 1

3 0

Handbag Diagram

s tu sin 2

s u cos t

) s ( M R 4 ) s s ( R ) s ( R cos

) s ( sin R

1 s

4 dt

d 2

2 P N 2

P A

2 2 2 V

2 2 em

 





   

 





2

2 2

2 2

sin

) ( cos

) ( 4

cos

s R s

R s

d

d

em V

A

2 2

2 2 2

cos 1

cos ln 1

cos 2 1 1

with cos

4

A V

eff

em Reff R R R

s

 

 

 

 

 

(11)

CLEO/VENUS Data CLEO/VENUS Data

2 A 2

V 2

eff 2

eff 2

em R

cos 1

cos ln1

cos 2 1 1 R R with cos R

s

4

 

4 eff

2

R ( s ) ( 6 . 5 0 . 5 ) GeV

s  

5 2

s GeV 1 nb 25 . 7647 6

. 0

cos   

s

2

R

eff

[ G eV

4

]

s [GeV

2

]

6 2

eff

~ s

dt

; d s

~ R : . const s

/

t 

(12)

E760 Detector Layout

E760 Detector Layout

(13)

E760 Data

E760 Data

(14)

E760 Analysis E760 Analysis









 

 

% 96

~ 0

0

% 98

~ 0

p p

p p

p p

energy those

for even

respected is

law power s

' Brodsky the

: . const s

/ t 

) s / t ( f s

~ )

dt / d ( : s

and fixed s

/ t

: law power s

' Brodsky

) ension dim space Fock ( 2 CD AB

 

(15)

E835 Detector Layout

E835 Detector Layout

(16)

PANDA Detector

PANDA Detector

(17)

Preliminary Analysis Preliminary Analysis

3.6 GeV

20 MeV

(18)

Preliminary Analysis Preliminary Analysis

3.6 GeV

50 MeV

(19)

Preliminary Analysis Preliminary Analysis

energy cut colinearity cut



2

2 2

2 2

sin

) ( cos

) ( 4

cos

s R s

R s

d

d

em V

A

 angular cut

relative loss = ratio between the number of events remained after applying the cuts and the number of generated events

quality = ratio between the number of good events and the total number of events

pb 17500 pb

420 pb

20 :

GeV 13

s

pp pp 0 pp 0 0

2

  

 





(20)

Preliminary Analysis Preliminary Analysis

threshold = 20 MeV

threshold = 50 MeV

(21)

Conclusions and Outlook Conclusions and Outlook

 Comparing with the other experiments, PANDA Comparing with the other experiments, PANDA has a better coverage of the EMC

has a better coverage of the EMC

 Taking into account the HESR beam momentum Taking into account the HESR beam momentum (up to 15 GeV) and the PANDA luminosity (10

(up to 15 GeV) and the PANDA luminosity (10 7 7 annihilations per second), the best range of the annihilations per second), the best range of the

beam momentum for studying CCCS is [6,10]

beam momentum for studying CCCS is [6,10]

GeV GeV

 The main channel can be disentangled from the The main channel can be disentangled from the background in that beam momentum range

background in that beam momentum range

 Further studies are conducted in Giessen (better Further studies are conducted in Giessen (better statistics, EMC reconstructed energy and

statistics, EMC reconstructed energy and position of the photons, sosf)

position of the photons, sosf)

(22)

CCCS Group in Giessen:

CCCS Group in Giessen:

Project leader: Prof. Michael Dueren Dr. Bjoern Seitz

Dr. Hasko Stenzel

M.Sc. George-Catalin Serbanut

(23)

End of Presentation

End of Presentation

Riferimenti

Documenti correlati