• Non ci sono risultati.

Latest results from the Alpha Magnetic Spectrometer: positron fraction and antiproton/proton ratio

N/A
N/A
Protected

Academic year: 2021

Condividi "Latest results from the Alpha Magnetic Spectrometer: positron fraction and antiproton/proton ratio"

Copied!
57
0
0

Testo completo

(1)

Latest results from the Alpha Magnetic Spectrometer:

positron fraction and antiproton/proton ratio

Andrei Kounine / MIT

April 15, 2015 AMS Days at CERN

(2)

Cited >350 times

First Result from the AMS on the ISS: Precision

Measurement of the Positron Fraction in Primary Cosmic

Rays of 0.5-350 GeV”

Analysis is based on 25 billion events collected during the first

18 months of operations: from May 19, 2011 to December 10,

2012

Selected by APS as a Highlight of the Year 2013

(3)

Collision of “ordinary” Cosmic Rays produce e+, p..

Collisions of Dark Matter (neutralinos,

χ)

will produce additional e+, p, …

The Origin of Dark Matter

~ 90% of Matter in the Universe is not visible and is called Dark Matter

M. Turner and F. Wilczek, Phys. Rev. D42 (1990) 1001

Donato  et  al.,  PRL  102,  071301  (2009)  

Antiprotons: χ + χ → p + …

Collision  of  Cosmic  Rays  

mχ= 1 TeV Positrons: χ + χ → e+ + …

mχ=800 GeV

Collision  of  Cosmic  Rays   mχ=400 GeV

e± energy [GeV]  

e

+

/(e

+

+ e

-

)

I.  Cholis  et  al.,  JCAP  0912  (2009)  007    

(4)

Leak rate: CO2 5 µg/s

Storage: 5 kg, >30 years lifetime

Transition Radiation Detector:

TRD

Identify e+, reject P

e

+

p e

-

p

TRD beam test

(5)

TRD performance on ISS

TRD estimator

Pr o b ab ili ty

electron proton

TRD estimator = -ln(P

e

/(P

e

+P

p

))

Normalized

probabilities

P

e

and P

p

(6)

TRD performance on ISS

Pr o to n r ej ec ti o n a t 90 % e

+

e ffi ci en cy

Rigidity (GV)

70%

80%

90%

ε

e

Typically, 1 in 1,000 protons may be identified as a positron

(7)

1

5 6 3 4

7 8 9

2

TRD

ECAL RICH

MAGNET

TOF

TOF

Silicon Tracker

Test Beam

MDRP = 2.0 TV

σ = 10 µm

(8)

Calorimeter (ECAL)

A precision, 17 X0, TeV, 3-dimensional measurement of the directions and energies of light rays and electrons

50 000 fibers, φ = 1 mm distributed uniformly Inside 1,200 lb of lead

e±

Lead foil

Fibers

Test Beam Results

(9)

SeparaDon  of  protons  and  electrons  with  ECAL    

ECAL estimator F ra cti o n o f ev en ts ISS data: 83–100 GeV

Boosted Decision Tree, BDT:

19 variables describing

3D shower shape combined

(B.Roe et al., NIM A543 (2005) 577)

protons electrons

ε

e = 90%

(10)

ECAL Performance in space

Proton Electron Separation

Typically, 1 in 10,000 protons may be identified as a positron

(11)

mχ=800 GeV

 e+,  e-­‐  from  Collision  of  Cosmic  Rays    

mχ=400 GeV

e± energy [GeV]  

e+ /(e+ + e- )

χ + χe+ + …

1. The energy at which it begins to increase.

2. The rate of increase with energy 3. The existence of sharp structures.

4. The energy beyond which it ceases to increase.

6. The rate at which it falls beyond the turning point.

5. Isotropy.

(12)

New  Results  on  the  Positron  FracDon    

Energy range from 0.5 to 500 GeV based on 10.9 million positron and electron events selected from the sample of 41 billion events.

This measurement extends the energy range of our previous observation and increases its precision.

PRL 113, 121101 (2014)

(13)

Event selection.

-  DAQ:

-  livetime > 50% (no SAA)

-  Geomagnetic cutoff:

-  E>1.2·max cutoff -  TRACKER:

-  Track quality

-  geometrical match with ECAL shower

-  TRD:

-  at least 15 hits

-  TOF:

-  downgoing particle, -  β>0.8, 0.8<Z<1.4

-  ECAL:

-  shower axis within the fiducial ECAL volume

-  electromagnetic shape of the shower

TRD

ECAL

RICH

1

MAGNET ACC

Tracker

2 3-4

5-6 7-8

9

424 GeV positron

(14)

TRD estimator

p

Analysis:  2D  fit  to  measure  Ne

±

 and  Np  

2D reference spectra for the signal and the background are fitted to data in the [TRD estimator- log(E/|P|)] plane.

83.2-100 GeV

The method combines information from

Ø  TRD Ø  ECAL Ø  Tracker.

It provides better statistical accuracy compared to cut- based analysis.

log ( E / |P| )

e

±

Probability density

(15)

Results of the fit:

The TRD Estimator shows clear separation between protons and positrons with a small charge confusion background

Ev en ts

TRD Estimator (83.2-100 GeV)

p

eè e+

e+ Data

Fit

Positrons Protons

Charge confusion χ2/d.f.=0.60

(eè e+)

(16)

Results of the fit: in the signal region only 1 % of protons

Ev en ts

log

10

(E/p)

Data Fit

Positrons Protons

Charge confusion χ2/d.f.=0.60

TRD Estimator < 0.75

p eè e+

e+

(eè e+)

(17)

Systematic error on the positron fraction:

1. Acceptance asymmetry

Difference  between  positron  and  electron  acceptance  

due  to  known  minute  tracker  asymmetry  

(18)

The  measurement  is  stable  over  wide  variaDons  of  the  cuts    in  the  ECAL  Shower  Shape  ,  E/p  matching,  etc.  

For  each  energy  bin,  over  1,000  sets  of  cuts  (trials)  were  analyzed.    

Width = 0.006 173 – 206 GeV

Number of trials

Number of trials

Systematic error on the positron fraction:

2. Selection dependence

(19)

Bin  width:  2σ  at  5  GeV;  4σ  at  50  GeV;  8σ  at  100  GeV;  19σ  at  300  GeV.  

For  the  positron  fracDon,  these  errors  are  negligible  above  5  GeV.    

SystemaDc  error  on  the  positron  fracDon:    

3.  Absolute  energy  scale  and  Bin-­‐to-­‐bin  migraDon  

Test Beam

Absolute  energy  scale  at  the  top  of  AMS  is  calibrated  in  the  e

±

 beams  and  

verified  in  space  using  minimum  ionizing  parDcles  and  the  raDo  E/p.    

(20)

DefiniDon  of  the  reference  spectra  is  based  on  pure   samples  of  electrons  and  protons  of  finite  staDsDcs.    

TRD  esDmator  

Pro ba bi lit y  

electron   proton  

Systematic error on the positron fraction:

4. Reference spectra

(21)

TRD TOF

Tracker

TOF

ECAL

e+ e

e+

Two  sources:  1)  large  angle  sca`ering  and  2)  producDon  of  secondary  tracks   along  the  path  of  the  primary  track.  Both  are  well  reproduced  by  the  Monte   Carlo.    The  small  difference  is  taken  as  a  systemaDc  error.    

Systematic error on the positron fraction:

5. Charge confusion

Energy [GeV]

10 102

Charge Confusion

10-4

10-3

10-2

10-1

1

AMS data

MC predictions

(22)

1.8%   0.8%  

19%   13%  

4.5%   1.5%  

(23)

(i) The energy at which it begins to increase.

(24)

(ii) The rate of increase with energy.

(iii) The non-existence of sharp structures.

(25)

(iv) The energy beyond which it ceases to increase.

(26)

Galactic

coordinates (b,l)

Significance

The fluctuations of the ratio e+/e are isotropic.

The anisotropy in galactic coordinates:

δ ≤ 0.030 at the 95% confidence level

(v) The isotropy.

C1 is the dipole moment

(27)

200 400 600 800 1000 0

0.05 0.1 0.15

0.2

e

±

energy [GeV]

Po si tr o n fr ac ti o n

Pulsars

Collision of cosmic rays

m χ = 700 GeV

275±32 GeV

Current status

(vi) The expected rate at which it falls beyond the turning point.

I. Cholis and D. Hooper, Phys.Rev. D88 (2013) 023013 J. Kopp, Phys. Rev. D 88 (2013) 076013

(28)

e

±

energy [GeV]

Po si tr o n fr ac ti o n

Pulsars

Collision of cosmic rays

m χ = 700 GeV

275±32 GeV

In 10 years from now

(vi) The expected rate at which it falls

beyond the turning point.

(29)

Positron  E=870  GeV  

Front  view                                                  Side  view  

AMS  measures  positrons  up  to  ~1  TeV  

(30)

Φ

e+    

=  C

e+  

Ε

−γe+

 +  C

s

Ε

−γs  

e

−E/Es

    Φ

e-­‐  

 =  C

e-­‐  

Ε

−γe-­‐

 +  C

s

Ε

−γs  

e

−E/Es  

Es  =  540              GeV      χ+250  −130   2/  n.d.f.  =  36.4/58  

Minimal  Model:  Fit  to  the  data  

(31)

Many  models  proposed  to  explain   the  physics  origin  of  the  source  term:  

 

1) ParDcle  origin:    Dark  Ma`er  

2) Astrophysics  origin:  Pulsars,  SNRs  

3) Secondaries:  peculiariDes  of  propagaDon  

 

In  this  meeDng  we  look  forward  to  new  ideas  

to  match  our  latest  data  on  e

+

,  e

,  p/p,  He,  Li,  B/C,  …  

(32)

Dark  Ma`er  model  with  intermediate  state  

M.Cirelli, M.Kadastik, M.Raidal and A.Strumia, Nucl.Phys. B873 (2013) 530  

(33)

Dark  Ma`er  model  with  graviDno  

M. Ibe, S. Iwamoto, T. Moroi and N. Yokozaki, JHEP 1308 (2013) 029

(34)

AcceleraDon  in  SNRs  

P. Mertsch and S. Sarkar, Phys.Rev. D 90 (2014) 061301(R)  

S. Sarkar talk on April 16

(35)

ProducDon  in  Pulsars  

M. DiMauro, F. Donato, N. Fornengo, R. Lineros, A. Vittino, JCAP 1404 (2014) 006

(36)

PropagaDon  of  secondaries    

1)  R.Cowsik, B.Burch, and T.Madziwa-Nussinov, Ap.J. 786 (2014) 124

2)  K. Blum, B. Katz and E. Waxman, Phys.Rev.Lett. 111 (2013) 211101

 

(37)

PropagaDon  of  secondaries  

R. Cowsik, B. Burch, and T. Madziwa-Nussinov, Ap. J. 786 (2014) 124

Collision of ordinary CR (Moskalenko, Strong)

(38)

Kinetic Energy (GeV/n)

1 10 102 103

Boron-to-Carbon Ratio

0.02 0.03 0.04 0.05 0.1 0.2 0.3 0.4

AMS-02

PAMELA (2014) TRACER (2006) CREAM-I (2004) ATIC-02 (2003) AMS-01 (1998) Buckley et al. (1991) CRN-Spacelab2 (1985) Webber et al. (1981) HEAO3-C2 (1980) Simon et al. (1974-1976) Dwyer & Meyer (1973-1975) Orth et al. (1972)

PropagaDon  of  secondaries  

R. Cowsik, B. Burch, and T. Madziwa-Nussinov, Ap. J. 786 (2014) 124

A. Oliva talk on April 17

(39)

uncertainty

PropagaDon  of  secondaries  

K. Blum, B. Katz and E. Waxman, Phys. Rev. Lett. 111 (2013) 211101

K. Blum talk this afternoon

(40)

Positron  fracDon  –  modeling  of  the  cosmic  rays   ObservaDon:  

Models  based  on  very  different  assumpDons   describe  observed  trends  in  the  data  

Dream:    

Model  predicDon  accuracy  is  comparable     to  the  precision  of  the  experimental  data.  

  New  AMS  measurements:  

New  precision  measurements  of  CR  

(41)

New  results  on  the  p/p  raDo   Status  Report    

   

Rigidity range from 1 to 450 GV is studied using 290,000 antiprotons selected from the data

sample of 54 billion events.

(42)

Event selection.

-  DAQ:

-  livetime > 50% (no SAA) -  Geomagnetic cutoff:

|R| > 1.2·max cutoff -  TOF:

-  downgoing particle -  β>0.3

-  TRD:

at least 12 hits

-  TRACKER:

-  Track quality -  0.8 < |Q| < 1.2

-  ECAL:

-  Hadron shower shape

TRD

ECAL

RICH

MAGNET ACC

2

3-4 5-6 7-8

R = −363 GV antiproton

9

1

Tracker

(43)

p  idenDficaDon  below  10  GV  

Positive Rigidity (scaled 1/500) Negative Rigidity

(44)

Charge confusion estimator -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Probability

10

-3

10

-2

10

-1

BDT estimator:

10 variables based on

Track fit quality

Rigidity measurements Charge measurements

p

|R|  >  100  GV  

p

è

p

Charge  confusion  esDmator  at  high  rigidiDes  

(45)

TRD likelihood

0 0.5 1 1.5 2

Charge confusion estimator

-1 -0.5

0 0.5 1

1 10 102

103

104

R>0(Scaled by 1/500)

TRD likelihood

0 0.5 1 1.5 2

Charge confusion estimator

-1 -0.5

0 0.5 1

1 10 102

R<0

TRD estimator

TRD estimator

Charge confusion estimator

Positive Rigidity Negative Rigidity

Charge confusion estimator

p e

p

p  idenDficaDon  at  high  rigidiDes  

(46)

p p

è

p

AnD-­‐proton  idenDficaDon  

(47)

Major  systemaDc  errors   1. Acceptance  asymmetry  

and  bin-­‐to-­‐bin  migraDon   2. SelecDon  uncertainty  

  3. Uncertainty  in  the  

reference  spectra  and  

charge  confusion    

(48)

SystemaDc  errors:  

1.  Acceptance  asymmetry  and  bin-­‐to-­‐bin  migraDon  

(49)

SystemaDc  errors:  

1.  Acceptance  asymmetry  and  bin-­‐to-­‐bin  migraDon  

(50)

SystemaDc  errors:  

1.  Acceptance  asymmetry  and  bin-­‐to-­‐bin  migraDon  

Acceptance  asymmetry  is  due  to  pN  /  pN  crossecDon  difference   Bin-­‐to-­‐bin  migraDon  is  small  –  large  bin  width  and  good  resoluDon  

RaDo  of  the  cross-­‐secDons  

with  its  uncertainty  

(51)

Stability  of  the  

measurement  is  tested   over  wide  variaDons  of  

cuts    

 For  each  rigidity  bin,   over  1,000  sets  of  cuts  

were  analyzed.    

SystemaDc  errors:  

2.  SelecDon  uncertainty  

σ  =  4%  

100<|R|<125  GV  

(52)

SystemaDc  uncertainty  

3.  Shapes  of  the  reference  spectra  

p

p

è

p

(53)

StaDsDcal  and  systemaDc  uncertainDes     in  the  rigidity  bin  175-­‐259  GV  

p/p  raDo        2.00  (x10

-­‐4

)    

StaDsDcal  error    0.29    14.4%  

 

SystemaDc  error    0.15    7.3%  

 Acceptance                  0.03                  1.4%  

 SelecDon                  0.04                  2.1%  

 Ref.  spectra                  0.14                  6.9%  

 

Total  error      0.32    15.5%  

(54)

AMS  p/p  results  

(55)

AMS  p/p  results  

(56)

AMS  p/p  results  and  modeling  

Donato  et  al.,  PRL  102,  071301  (2009);    mχ = 1 TeV          

(57)

Conclusions

1.  Positron fraction is measured from 0.5 to 500 GeV:

–  Reaches  its  minimum  at  7.8  GeV;  

–  Steadily  increases  from  10  to   ∼ 250  GeV,  no  fine  structures;  

–  At  275±32  GeV  the  slope  crosses  zero,  i.e  the  fracKon  reaches   its  max;  

–  The  positron  to  electron  raKo  is  consistent  with  isotropy;                  

δ  ≤  0.03  at  the  95%  C.L

–  Exact  behavior  of  the  positron  fracKon  at  high  energies   requires  more  staKsKcs.    

2.  Antiprotons analysis status is presented:

–  Rigidity range explored: 1 − 450 GV

Riferimenti

Documenti correlati

Towards the end of the fifties, high energy particle beams that were becoming available or were being planned, raised a new interest in neutrino physics, to study high energy

GUIZZETTI DAVIDE 11 Non Ammesso IBRAHIMI DARDAN 15 Non Ammesso LAFFRANCHI CRISTINA 9 Non Ammesso LOMBARDI FRANCESCO 11 Non Ammesso LOSSI DANIELE 7 Non Ammesso MAIOLI LUCA 10 Non

Provando a schematizzare, potremmo dire che secondo Trevi la letteratura si sarebbe fatta carico di compiti “religiosi” soltanto con la modernità o, detto altrimenti, la

We add GRB 130925A as a direct comparison. The light- curve treatment is detailed in Sect. 10 , we show the light curves of GRBs 111209A and 130925A, corrected for Galactic

First, the one-shot game produces a unique Nash equilibrium which is also in dominant strategies, where the global power does not distribute the subsidies and the best reply of

2004 ; Pietrinferni et al.. Photometric properties of the WASP-45 and WASP-46 systems derived by fitting the light curves with JKTEBOP , and taking the weighted mean of the

In this paper we present two ICs fabricated in InP DHBT technology and devoted to 43 Gbit/s and over transmission systems: reshaping DFF for the transmitter and decision circuit

The fourth term is the so called production term because it describes the energy transfer rate from the mean flow. Hence, it doesn’t represent a net generation of turbulent