• Non ci sono risultati.

experiment information Referrals and flow in networks increase discrimination: Alaboratory Social Networks

N/A
N/A
Protected

Academic year: 2021

Condividi "experiment information Referrals and flow in networks increase discrimination: Alaboratory Social Networks"

Copied!
12
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Social

Networks

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s o c n e t

Referrals

and

information

flow

in

networks

increase

discrimination:

A

laboratory

experiment

Károly

Takács

a,∗

,

Giangiacomo

Bravo

b

,

Flaminio

Squazzoni

c

aMTATK“Lendület”ResearchCenterforEducationalandNetworkStudies(RECENS),CentreforSocialSciences,HungarianAcademyofSciences,Tóth

Kálmánu.4.,1097Budapest,Hungary

bDepartmentofSocialStudiesandCentreforDataIntensiveSciencesandApplications,LinnaeusUniversity,Universitetsplatsen1,35195Växjö,Sweden

cDepartmentofEconomicsandManagement,UniversityofBrescia,ViaSanFaustino74B,25122Brescia,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received8August2017

Receivedinrevisedform19March2018

Accepted22March2018 Keywords: Hiringdiscrimination Referrals Recommendations Informationnetworks Labormarket Laboratoryexperiment Qualitystandards

a

b

s

t

r

a

c

t

Referralsandinformationflowdistortmarketmechanismsofhiringinthelabormarket,buttheymight assistemployersunderasymmetricinformationinfindingbetteralternatives.Thispaperinvestigates whetheranimpartialinformationflowbetweenemployersinacyclicnetworkstructurecouldgenerate morediscriminationthanwhennoinformationisexchangedbetweenemployers.Wesetupanartificial labormarketinwhichtherewasnoaveragequalitydifferencebetweentwocategoriesofworkers.We askedparticipantstoplaytheroleofemployersandexaminedthepartialityoftheirhiringchoices.Results showedthatdiscriminationwasprevalentinallconditions.Higherstandardsbytheemployersforthe qualityofworkersincreaseddiscriminationasdidthepresenceofreferralsfromworkers.Unexpectedly, impartialinformationflowinacyclicnetworkofemployersdidnothelptodecreasediscrimination.We alsoshowedthatthesemechanismsinteractwithandsubdueeachotherincomplexways.

©2018TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Hiringdiscriminationmeansdifferentialtreatmentofacertain socialcategory,basedoncategorymembershipratherthan indi-vidualmerit.Differentialtreatmentisrecurrentinhiringchoices characterizedbyasymmetryofinformationbetweenthe organiza-tionandtheapplicant(PetersenandSaporta,2004;Rooth,2010). Giventhatthetrueworker’squalitycannotbeaccuratelypredicted duringhiringdecisions,organizationsmightuserecognizabletraits (e.g.,raceandgender)‘asinexpensivescreeningdeviceswhen hir-ingforjobs,particularlyskilledjobs,inthebelief(correctornot) thatraceandsexstatusare,onaverage,relatedtoproductivity’ (Kaufman2002,p.550).Whenthereisnoorlittlestatisticalbasis todistinguishthequalityofmembersofdifferentcategories, fol-lowingrecognizabletraitscannothelptoestimatetheapplicant’s quality.Inthesecases,understandingwhydiscriminationcould persistisofparamountimportance(Bertrandetal.,2005).

∗ Correspondingauthorat:MTATK“Lendület”ResearchCenterforEducational

andNetworkStudies(RECENS),CentreforSocialSciences,HungarianAcademyof

Sciences,TóthKálmánu.4.,1097,Budapest,Hungary.

E-mailaddresses:[email protected](K.Takács),

[email protected](G.Bravo),fl[email protected](F.Squazzoni).

Hiringdecisionsmightreflectsignalsandinformationthat chan-nelthrough social networks. The important role of referrals in particulariswelldocumentedforgettingajob(Granovetter,1973, 1974;Linetal.,1981;Wegener,1991;Elliott,2001;Mouw,2002; FernandezandFernandez-Mateo,2006;PonzoandScoppa,2010; FountainandStovel,2014).Manystudiesarguedthatgettingajob viareferralsmightdistorttheperfectmarketlogicandreplace mer-itocraticprocessesinhiring(IoannidesandLoury,2004;Petersen etal.,2000;TassierandMenczer,2008).Forinstance,theextended useofinformaljobsearchmethodsmayhaveanegativeeffecton therateofmobilityfromlowstatustohighstatusjobs(McBrier 2003;1212).Ifoneofthegroupshasabetteraccesstoinformal jobsearch,thisisdetrimentalfortheothergroup,asinthecaseof referralsfromthe“oldboys”networkinawiderangeofcontexts (Rogers,2000;McBrier,2003;McDonald,2011;Bianetal.,2015).

Research concerning referrals highlighted how the hiring mechanismcouldenhanceinequalityofemploymentandwages (Montgomery,1991;Krauth,2004;Fontaine,2008).Giventhat con-tactsmightbehomophilouswithregardtointernal quality,the extensiveuseofreferralsleadnecessarilytogrowinginequality (Montgomery,1991;Beamanand Magruder,2012).Considering that contactsare homophilous alsowithregard to social char-acteristics that are uncorrelated with ability, research showed that initial differences in the employment rate could result in greaterwage inequalitiesovertime (Montgomery,1991;Arrow https://doi.org/10.1016/j.socnet.2018.03.005

0378-8733/©2018TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.

(2)

and Borzekowski,2004).Exogenously provided job information thatispassedonvianetworktiesalsoenlargessmallinitial dif-ferences(Calvó-ArmengolandJackson,2004,2007).

Afewstudieslookedatreferrals(Engströmetal.,2012;Beaman andMagruder,2012;Beamanetal.,2013;CariaandHassen,2013; FernandezandGreenberg,2013)andotherstructuralmechanisms thataffectdiscrimination(seeOlianetal.,1988foranearlier meta-analysis).Ourpaperaimstostudystructuralmechanismsthatcan influencedifferentialhiringpracticesexperimentally.

Themainadvantagesoftheexperimentalmethodologyarethat: (a)thehypothesizedcorrelationscanbetestedunambiguouslyin afullycontrolledenvironmentthatexcludesconfoundingeffects (e.g.,Smith,1991;Roth,1993;WebsterandSell,2007);(b) genera-tiverelationscanbeidentified;(c)replicationoffindingsispossible (e.g.,Chapin,1932;FalkandFehr,2003;WillerandWalker,2007; Fehr and Gintis,2007;Bohnet,2009; Falk and Heckman,2009; Smith,2010).Itisworthnotingthatexperimentalstudiesmight helpustoidentifymechanismsthatcanbeempiricallyexamined indifferentcontexts(Camerer,2003;Ostrom,2010;Ariely,2008; FalkandHeckman,2009).

Classicaland recent small group experiments in social psy-chologytestifiedtothehumantendencytodiscriminateunknown partnersbasedoncategorymembership(e.g.,Brewer,1979,1996; Dovidioetal.,2002;Fiske,2009).Similarly,recentlaboratoryand fieldstudiesineconomicsandsociologyconfirmedtheexistenceof discriminativepractices(e.g.,SolnickandSchweitzer,1999;Pager etal.,2009;Jackson,2009;Midtbøen,2014;Agerström,2014;Lee etal.,2015).Somelaboratorystudieswereabletoisolateimportant behavioral effectsand interactionalinfluencesin discrimination (e.g.,Keuschniggand Wolbring,2015; Takácsetal.,2015; Lane, 2016).

Veryfewstudieshavetriedtoanalyzefactorsrelatedtosocial capital in hiring experimentally (Godechot, 2016). This can be explainedasitisverydifficulttodepictthecomplex characteris-ticsofsocialcapitalinthelaboratory,causingconcernsofexternal validity. But exactlydue to thecomplex nature of social capi-talrelatedprocesses,fieldresearchcannotfullydisentanglethe informationalaspectsofsocialcapitalfromothermechanismson discrimination.Bycontrast,carefullydesignedexperimentsusing simplenetworkstructurescanprovideusatrulycausalaccountby focusingonspecificmechanismsinherentintherelational struc-ture(Kosfeld,2004;WillerandWalker,2007;Gërxhanietal.,2013; BrashearsandQuintane,2015;BrashearsandGladstone,2016).In ourcase,theexperimentaldesigncanconcentrateandrelyonsome elementaryandempiricallyrelevantmechanismsthatpotentially determinediscriminationinhiring.Oneofthesemechanisms cov-ersreferralscomingfromworkers.Anotheronesummarizesthe informationflowcomingfromotheremployerswhoareverymuch inthesamesituationandhavesimilargoals.Acquiring,passingon, andexchanginginformation betweenemployersabout employ-eesisverydifficulttotraceinfieldstudies.Tagsandsignalsthat characterizeworkersarealsomulti-dimensional,somecorrelate withinternalqualitiesandskills,whileothersdonot.Asourstudy demonstrates,thesemechanismscanbeabstractedandusedin thelab.Inordertoallowforcausalinference,ourlaboratory exper-imentsexcludeconcernsaboutstrategicchoicesandendogeneity inrecommendationsandreferralsbydesign.

Itanalyzeshiringdecisionsinacontrolledsettingandisable toreducethehighdimensionalityofrealityintoastraightforward model.

Given thecomplexity of hiring choices in the labormarket, empiricalfieldresearchisunabletotestunivocallywhether refer-ralsincreasediscriminationcomparedtoabaselinecasewithout referrals or not. Furthermore, it cannot be explored whether referralsmakeadifferencealsowithoutanyinitialbiasesor alter-natively,observedinequalitiesaretherebecauseofhistoricalpath

dependence.Besides,inexistingfieldstudies,workerreferralsand informationflowamongemployersareconsideredjointlyandtheir impactsarehardlyseparated.

In order to overcome these empirical difficulties, following Takácsetal.(2015),wehavedesignedalabormarketexperiment whereparticipants(universitystudents)wereaskedtoplay the roleofemployersandselectfictiveworkersbelongingtotwo cate-gories.Inourexperiment,byexcludingcontextualeffectsandother importantaspectsofthehiringprocess,wetestedthenetandthe jointeffectsofreferrals,informationflowfromotheremployers,and qualitystandardsondiscrimination.

Referralshavebeendefinedasrecommendationsforhiringby workersin-house(Montgomery,1991;FountainandStovel,2014). Referralsarenaturallybiasedtowardsmembersofthein-group. Thischaracteristicfeaturehasbeendepictedinourexperimental design.Informationflowhasbeenconceptualizedasanautomated process in a simple directed network of employers. This con-ceptualizationcovers multiple mechanisms accordingto which employers gettoknow thetruequalitiesof workersemployed atconnectedfirms;suchasrecommendationletters,information exchange,andobservations thattakeplaceasa resultof estab-lishedcontactbetweentheorganizations.Qualitystandardswere evaluationthresholdssetupexogenouslytodeterminewhetherit iseconomicaltokeepworkersinhouseornot.

Inourexperiment,representinganidealisticworld,therewas nodifferenceinthemeananddistributionofqualityofworkersin thetwocategories;hencetheimpactofhistoricalpathdependence andinitialbiasescouldbeexcluded.Notethatsignificantelements ofeverydayinteractionswereneglectedinourlabormarket lab-oratory.Forinstance,therewasnorecruitmentprocedureinthe experimentaswewereinterestedindiscriminationwhenhiring decisionsaremade.Recruitmentitselfcanaddanextralayerof dis-criminationbyselectivelytargetingcertaingroupsorusingbiased information channels.Moreover, in reality,workers themselves couldapplyselectively byexpectingdiscrimination.These com-plicationsarepresentinthefieldandwoulddistorttheevaluation ofimpartialityofhiringdecisionsinthelab.

Ourresearchquestionswereasfollows.

1.Doesdiscriminationoccurinanartificiallabormarketwith bal-ancedandfairconditions?

2.Dohigherqualitystandardscreatemorediscrimination?Orin otherwords,ifemployersarerewarded onlyforhighquality workers,willdiscriminationincrease?

3.Doworkerreferralsincreasediscrimination?

4.Doesflowofaccurateinformation inanetworkofemployers decreasediscrimination?

Thesequestionsconcernprimarilythebehavior ofindividual employers.Inaddition,wewerealsoabletoanalyzewhether occa-sionalindividualbiasesbalanceeachotheroutortheyaddupto inequalityofemploymentbetweengroupsinourartificiallabor marketwithbalancedandfairconditions.

Hypotheses

Aninclinationtowardsdiscrimination

AssuggestedbyTakácsandSquazzoni(2015),whobuiltasimple modelofanidealizedlabormarketinwhichtherewasnoobjective differenceinaveragequalitybetweengroupsandhiringdecisions werenotbiased,acertainlevelofdiscriminationcouldbeexpected alsoinanidealworldwithimpartialemployers.Judgmenterrorsof thiskindcouldbetheconsequenceof“rational”adaptivesampling ofavailableinformation(cf.Simon,1955;Denrell,2005;Fiedler

(3)

andJuslin,2006;LeMensandDenrell,2011;DenrellandLeMens, 2011).Thatis,peoplemakesystematic judgmenterrors asthey naïvelyextrapolate fromlimited information availabletothem. Moreover,psychologicalstudiesindicatedthatindividualsareto largeextentalsoprocessinformationinaccuratelyortheyrelyon biasedheuristics.Theyareconstrainedbyselectiveattentionand tendtoretaininformationconfirmingtheirbeliefs, while ignor-inginformationthatcontradictstheirexpectations(e.g.,Hamilton, 1981).Aninitialbiaswithsequential,path-dependenthiring deci-sionsmayresultinpersistentandself-reinforcingdiscriminative choices(e.g.,Hoefferetal.,2006).Theseexpectancyconfirmation sequenceshavebeenfoundinexperimentalresearch(Bergeretal., 1980;DarleyandFazio,1980)andareexpectedtoinfluencealso employerdecisionsinhiringprocesses.Theseconsiderationsledus toformulatethefollowinghypothesis:

Hypothesis1. Anon-zerolevelofdiscriminationisexpectedalso inthebaselineconditionofnoreferralsintheidealistic experimen-tallabormarket.

Higherstandardsanddiscrimination

Higherqualitystandardsforapplicant qualitiescanoriginate inhigherneedforthebestqualitylaborforce,inmore demand-ingtasks,inintensemarketcompetition,andinsimplegreediness. Employerswhohavehighstandardsforapplicantssortout can-didateswhowould otherwisebe abletoconductthejob.After employment,employerswithhigherstandardsarenoteasily satis-fiedandexperimentmorewithnewhires.Thatis,higherstandards areusedforselectionand alsofor keepingthelaborforce(e.g., TakácsandSquazzoni,2015).Higherstandardsaretypicalforhigh statusjobsandforjobswherespecializedknowledgeoradvanced skillsarerequired.Advancedskillscouldbelearntafter employ-mentwithinhouse,butthatrequiresexpensiveinvestmentsfrom theemployer.Theseinvestmentsareeasilylostiftheemployee quitsthejob.Turnovercoststhereforearemuchhigherinjobsthat requireadvancedskillsthaninjobsthatdonot.

Greedysearch(“over-searching”)thattriestoseekbetter alter-nativesthananemployeewiththequalitystandardoftheoptimal reservationlevelconveysaloss(e.g.,McCall,1970;Stigler,1961, 1962;Mortensen,1986).Asearchthatisextendedbeyondthe alter-nativethatisatleastasgoodasthereservationlevelresultsin anexpectedrelativelossnotjustbecauseofsearchcosts,butalso becausetheaverageexpectedqualityofnewworkersissmaller thanthatofthecurrentalternative.Extendedsearchandrepeated failuresimplythatthehigherqualitystandardsalsoresultinlower employerprofits.

Forthesakeofsimplicity,inourexperiment,weassumedthat employershavenoopportunitytotraintheirworkersandtheydo notfacedifferentialturnovercosts.Wewereprimarilyinterestedin theconsequencesofsettingahigherqualitystandardexogenously forworkerselectionforlabormarketinequality.

Ahigherqualitystandardimpliesmoreexperimentationwith new workers.Information cues therefore could have a greater importanceforemployerdecisions.Inourexperiment,theonly availableinformationcue wascategorymembership.Its impor-tance,therefore,is expectedtoincreasefor employerswho are motivatedtohirenewworkerswithhighquality.Hence,weexpect thatemployerslookingforhighqualityworkersconsidergroup markersmore closely and, dependingonavailable information, areinclinedtodevelopbiasedgroupreputations.Thefewhighly skilledworkerswhomtheyaresatisfiedwitharekeptinhouseand continuetobiastheemployer’sjudgmentaboutavailableskillsin thegroups.Becauseofthelargerperceivedroleofsupplementary informationandtheover-representationofskilledworkerskeptin houseforgroupreputationformation,higherdiscriminationrates

couldoccurforemployerswithhigherqualitystandards.Thisled ustooursecondhypothesis.

Hypothesis2. Higherqualitystandardsleadtohigher discrimi-nationrates.

Referralsanddiscrimination

Socialnetworkscanbeusedinjobhiringfortworeasons.First, duetoitsaffectivecontent,asocialtiecreatesanobligationforthe workerin-houseononeendandanopportunityforthejob-seeker attheotherendoftheconnection.Second,networktiesare chan-nelsofgathering,conveying,andsignalinginformationonhidden individualqualities.Dependingonwhichaspectismoreprevalent, referralsmighthavedifferentconsequencesfordiscrimination(cf. RubineauandFernandez,2015).

Workerreferralsbetweencurrentand prospectiveemployees buildontheaffectivecontentofrelationshipsandaremore con-cerned with the welfare of the applicant, less with employer benefits.Thismeansthatworkerreferralsdonotnecessarilyreflect informationonqualityanddonotallowtheemployertofind opti-malmatchesinhiring.Consequently,ifconsideredatall,worker referralsarenottakenintoaccountbecauseofdirectprofit-seeking motives.

Workerreferralsarebasedonsocialtiesthatarehomophilous toalargeextentintheethnicand otherimportantdimensions (McPhersonetal.,2001; RubineauandFernandez,2013).When referralnetworksare usedin whichties are typicallybased on homophily, theycause labormarket segregation(Model, 1993; Tilly,1998;Elliott1999,2001;Kugler,2003;StovelandFountain, 2009). With homophilous referrals, labor market segregation develops endogenouslyeven withnon-prejudicedagents (Barr, 2009).

Empiricalworkshowedthat membersof a particularethnic grouptendtorecommendotherswiththesameethnicbackground forajob(Elliott,2001;FernandezandFernandez-Mateo,2006).This canreinforcetheirdisadvantagedpositionandexcludethemfrom betterjobs(Wilson,1987).Therefore,thedeficitofdisadvantaged groupsdoesnotdependonthefactthattheywouldrelylessor moreonnetworksinfindingajob.Rather,itdependsonthefact thattheyextensivelyrelyon“wrongnetworks”thatcannotoffer themgoodjobs(FernandezandFernandez-Mateo,2006;Petersen etal.,2000).

Thecharacteristicfeatureofworkerreferralsthatweenteredin thelaboratoryistheirhomophilouscharacterwithregardto cat-egorymembership.Weassumethattheirpresencereinforcesthe initialrandomdelusionsofemployersaboutgroupdifferences(cf. FernandezandGreenberg,2013).Consequently,wecan hypoth-esizethatdiscriminationisstrongerwithworkerreferralsthanin caseofisolated,unconnectedemployers.Asweareinterestedinthe discriminationtendenciesofemployers,referralsbyfictiveworkers inourexperimentconsideredtobearandomwithin-groupprocess. Hypothesis3. Homophilousworkerreferralsincrease discrimi-nationrates.

Anetworkofinformationflowanddiscrimination

In contrasttoaffectivecontent ofworker referrals, theflow ofaccurateand relevant information betweenemployersabout workers coulddecrease information asymmetry in hiring deci-sions(Fernandezetal.,2000;Elliott,2001).Witha correctview onindividualqualitiesinalargerpoolofworkers,employerscould arriveatbetterinformeddecisions.Thisisinlinewiththeempirical factthatrecommendationsfrombusinesspartnersandrespected employersareconsideredseriouslyatjobinterviews.Surveysof personnelofficersfoundthatrecommendationsfromamanager

(4)

weremoreimportantforhiringthanobjectivesignals,suchashigh schoolgrades(Rosenbaumetal.,1990;Spoonley2008:27).

Whenemployersareisolatedandbasedecisionsonlyontheir ownexperience,decisionscouldbebiasedinfavorofonegroupor another.Ifadditionalinformationisreceivedaboutthequalitiesof individualworkersandgroups,thentheincreasedamountof infor-mationisexpectedtodecreasethestatisticalbiasfromindividual sampling.Inordertoprovidestandardizedconditionsforhiring decisions,informationflowisconsideredasanautomatedprocess inourexperiment.Pleasenotethatwedesignedourexperimentto guaranteethattheinformationexchangedisaccurate.Hence,we avoidedthestrategiccomplexityofrecommendationsinbusiness lifeforthesakeofsimplicity.

Employerswerearrangedinasimplecircularnetwork.Related experimentalresearchoncoordination incircular networkshas foundmixedevidenceaboutconvergencetowardsasingle con-sensus(Keseretal.,1998;Berninghausetal.,2002).

Biasesofindividualemployersfavoringonegrouporanotherare expectedtobalanceeachotheroutattheaggregatedlevelofthe fairlabormarket.Informationflowbetweenemployers,however, createsnetworkexternalitiesasemployersmightbepronetosocial influence.Inaperfectlybalancedidealisticworldasrepresentedin ourexperiment,socialinfluence(Takácsetal.,2016;Flacheetal., 2017)andthe“wisdomofthecrowd”(Galton,1907;Surowiecki, 2005;Lorenzetal.,2011)areexpectedtodrivethegrouptowards consensus.Flowoftrustedinformationbetweenemployerscould beviewedasaninsurancedevice(cf.GemkowandNeugart,2011) thatbringmarketsclosertoperfection,therebydecreasing inequal-ityinemployment.Experimentsshow,however,thatanaverage initialbiasandevenmildsocialinfluencecouldunderminethe wis-domofthecrowd(Lorenzetal.,2011),implyingthatinourcase socialinfluencecouldenlargeratherthandiminishinequalityin employment.

Thisledustoformulatethefollowinghypothesisatthelevelof individualemployersthatcould,butnotnecessarilytranslatedto morebalancedemploymentchancesattheaggregatedlevel. Hypothesis4. Accesstoreliableinformationinthenetworkof employersaboutindividualworkerqualitiesdecreases discrimi-nationrates.

Interactioneffects

Higherqualitystandardsareexpectedtoincrease discrimina-tionwhenthereisasymmetryofinformation,becauseemployers aremoredisappointedwithnewlaborforceandrelyextensively onfewhighqualityworkerskeptinhouse(TakácsandSquazzoni, 2015).Atthesametime,additionalandtrustedinformationfrom otheremployerscouldreducethisbiasandevenimprovethe situ-ation.Thisisbecauseemployersaremoremotivatedtohirequality workersandcouldovercometheirintrinsicpartialityforoneofthe groupsassoonasadequateinformationbecomesavailable.

Fortheemployers,workerreferralsenlargethepoolofworkers fromthecategorythatisalreadyoverrepresented.Ashigh stan-dardsincreasetheturnoverrateandemployerscontinuetofollow theirworkers’advices,thiscouldpotentiallyresultina positive interactioneffect(e.g.,Takácsetal.,2015).Wehaveexaminedthese potentialinteractioneffectsinourexperimentbytheinclusionof treatmentsinwhichamixtureofourmanipulationswaspresent. Method

Experimentaldesign

We designed an experiment where participants played the roleofemployersandaskedtohireworkersfortheirfirm.

Par-ticipantsplayed anonymouslyingroupsofsix,withtwogroups playingsimultaneouslyinthesamelaboratorytoavoid identifica-tionofothergroupmembers.Theyinteractedthroughacomputer networkrunningtheexperimentalsoftwarez-Tree(Fischbacher, 2007).Participantswereaskedtoimaginethattheywere employ-ers and were invited to hire 10 workers per period, which representedonecontractyear.

WorkerswerevirtualagentsandhadIDnumbersfrom1to200. Eachworkerhadafixedqualitydrawnfromauniforminteger dis-tributioninthe[0,19]intervalatthebeginningofthegame.Halfof theworkerswerelabeledas‘blues’,halfas‘greens’.Colorswerenot relatedtothequalityofworkers:thedistributionofqualitywas, onaverage,thesameforbluesandgreens.Subjectswerenotaware oftheexactdistributionofqualities.Theirinstructions,however, containedthat“ThereareplentyofBLUEandGREENworkersinthe marketwithamaximumqualityvalue”(Supp.Mat.).Inshort, sub-jectswerenotawareofanyinitialdifferencebetweentheworkers’ groupsthatcouldberesponsibleforindividualdiscriminationand suchdifferenceinfactdidnotexist.

Inallexperimentalconditions,participantscouldselecteach worker using one of thefollowing options: (i) hiring a worker randomly;(ii)hiringablueworkerrandomly;(iii)hiringagreen workerrandomly;(iv)hiringoneoftheworkerstheyhiredinthe previousperiod.Toallowparticipantstouse(iv),thelistofworkers hiredinthepreviousperiod,includingtheirqualityandcolor,was displayedontheirscreen(Supp.Mat.).Theseoptionswere supple-mentedintherespectiveexperimentalconditionswith(v)hiring workersthatwerehiredbytheconnectedemployerinthe previ-ousperiod(informationflow)and(vi)hiringworkersreferredby workersin-house.

Afterthehiringstage(i.e.,attheendofeachperiod),participants wereaskedtoprovideanestimationoftheaveragequalityofboth bluesandgreensintheentirepool,whichservedtomeasuretheir actualbeliefsandprejudice.Wesimulatedturnover(random fluc-tuation)byexcluding10percentofworkersfromthelistdisplayed tosubjectsineachround.Excludedworkerswereunavailablefor hiringwithprocedure(iv).

Eachexperimentincluded25periods.Theprofitofemployers dependedonthequalityofhiredworkers,whichwasunknown beforehiringexceptthatofworkershiredinthepreviousperiod. Lowandhighqualitystandardswereimplementedwiththe fol-lowingexogenousthresholdrule.Thethresholdwas=12inthe caseoflowqualitystandards(−S)and=17inthecaseofhigh qualitystandards(+S).Thresholdswereimperativeforindividual payoffs.Specifically,profitwascalculatedbysummingthequality ofworkerswithqi≥,anddividingtheresultbyten(thenumberof

jobsatthefirm).Therefore,qualitystandardsweresetupbydesign intheexperiment.

Attheendofeachperiod,theaveragequalityofblueandgreen workershiredbytheparticipantwascalculatedanddisplayedwith thenumberofpointsearned.Attheendoftheexperiment, partic-ipantswereaskedtocompletea shortquestionnaire.Individual profitswereaveragedacrossall25periods,witheachpointbeing exchangedwithoneEuro.Earningswerecashedimmediatelyafter theendoftheexperiment.

Wefollowedabetween-subjects2×2×2fullfactorialdesign. We manipulated:a)highorlow qualityemployerstandards,b) thepresenceofinformationflowbetweenemployers,andc)the presenceofworkerreferrals(Table1).Therefore,weincludedeight treatments,i.e.,fourtestingforeffectsofthesemanipulationsalone andfourexaminingtheirinteractions.

Incaseofinformationflowbetweenemployers(+E),each par-ticipantwaslinkedtoanotheremployerinadirectedcirclenetwork withsixnodes(Fig.1).Instructionsreferredtoemployernetwork tiesas“friends”(Supp.Mat.).Thisreferencehasbeenmadeinorder toincreasethecredibilityofinformationconveyedandtomakethe

(5)

Table1 Treatmentoverview. Treatment High standards Information flow Worker referrals Pureeffects −S−E−W

+S−E−W 䊏 −S+E−W 䊏 −S−E+W 䊏 Interaction effects +S+E−W 䊏 䊏 −S+E+W 䊏 䊏 +S−E+W 䊏 䊏 +S+E+W 䊏 䊏 䊏

experimentalsituationmorerealistic.Intheinformationflow

con-dition(+E),ownworkershiredinthepreviousperiod,andthose

hiredinthepreviousperiodbythefriendweredisplayed

automat-ically,includingcolorandqualityofworkerswithoutanyerror.

Theaveragequalityofblueandgreenworkershiredbythefriend

wasalsodisplayed.Toenhanceinformationflowfurther,subjects

receivedtheirfriends’estimatesabouttheaveragequalityofblues

andgreens.Intheinformationflowcondition(+E),subjectscould

alsoselectaworkerwhowashiredbythebusinessfriendinthe

previousperiod(selectionprocedurev).Notethatthismeantthat

thesameworkercouldbehiredbytwoormoreparticipantsinthe

sameperiodandbestworkerswerenotsubjecttocompetitionby

businessfriends.Thisexcludedthepossibilitythatdecisionspeed

woulddeterminewhichemployerhiresaworkerwithsuperb

qual-ity.Participantsdidnotknowtheentirenetworkstructure;hence

strategicconsiderationswereunimportantforwhocouldhirethe

bestworkers. In case of noinformation flow (−E),no network

existedandnoneofthesubjectsknewtheworkershiredbyother

subjectsorothers’estimationsofworkers’quality.

Intheworker referralscondition(+W),eachworker hiredin

thepreviousperiod ‘recommended’a friend of the samecolor,

randomlyselected,withoutrevealing itsquality.The suggested

workerswereshowninaspecificlistontheparticipants’screen.

Incaseof workerreferrals(+W),subjectscouldselecta worker

fromthislist(selectionprocedurevi).Incaseofnoworker

refer-rals(−W),participantsdidnothavealistofrecommendedworkers.

Participantswerefullyawarethatworkerswillgiveahomophilous

referral(seefullinstructionsinSupp.Mat.).

Subjects

Atotalof144subjects(56percentfemales)forming24groups

participatedintheexperiment,whichwasheldintheGECS

com-puterlaboftheDepartmentofEconomicsandManagementofthe

UniversityofBrescia,Italy.Subjectswereuniversitystudent

vol-unteersrecruitedacrossalluniversityfacultiesusingtheonline

platformORSEE(Greiner,2004).Theygaveinformedconsent.

Par-ticipantearningsaveragedtoD12.49(std.dev.D3.65),plusafixed show-upfee ofD5.Theexperiment, includinginstruction read-inganda finalquestionnaire,tookapproximatelyonehour.The fullinstructionsforparticipantsareincludedintheSupplementary Material.

Discriminationindexes

Wedefinedmicroleveldiscriminationastheaverageextentto whichindividualparticipantshiredworkersfromasinglegroupas ourmaindependentvariable.Themicroleveldiscriminationindex ıittakesanindividualvalueforeachparticipanti{1,...,144}in eachperiodt∈{1,...,25}.Itwasdefinedasoneminustheratioof thenumberofworkersofthemorediscriminatedgrouphiredbyi

Fig.1. Theinformationflownetworkintheexperiment.

Note:Nonetworkinformationwasgiventothesubjects.Subjectshavereceived

thefollowinginstructionintreatment(+E):“Duringtheexperiment,someofthe

otheremployerswillbeconsideredas‘yourfriends’.Asfriendscommunicatewith

eachother,yourfriendemployerswillshareinformationabouttheworkersthey

employ.Hence,inthesesituations,youwillgettoknowthequalityoftheworkers

employedbyyourfriendsandyoucanalsoselectaworkerfromthislist,whichwill

bedisplayedinthemiddleofyourscreen.Inthiscase,youwillbeabletoselect

workerswhomyourfriendsemployedinthepreviousyear...”

inperiodttothenumberofhiredworkersofthelessdiscriminated group.Formally: ıit={ 1−H g it Hb it if Hitg≤Hb it 1−H b it Hitg if H g it>Hitb (1)

whereHitbwasthenumberofhiredbluesandHitgwasthenumber

ofhiredgreensbyparticipantiinperiodt.Eq.(1)showsthatıitwas

0incaseofnodiscriminationand1ifallworkerswereofthesame color,withintermediatecasesofdiscriminationfallinginbetween. Toanalyzewhetheronegroupisfavoredoveranotheroneand discriminationtendenciesspreadorbalanceeachother,wealso definedmacroleveldiscriminationastheobjectiveextenttowhich groupsweredisproportionally hiredinthegivenperiod.Thisis importantbecause,althoughindividualemployersmightbe per-fectdiscriminators,thismaynotgenerateemploymentinequality ifmutualdiscriminationtendenciesacrossdifferentfirmsare bal-anced.

Themacro-leveldiscriminationindextissimilartothe

micro-levelindexbutisdefinedatthegrouplevel.Morespecifically,itwas calculatedasoneminustheratioofthenumberofworkersofthe morediscriminatedgrouphiredbyallthesixemployerstothe work-ersofthelessdiscriminatedgrouphired.Thismeansthatttook

asinglevalueineachperiodtanditsmathematicalformulation wasequivalenttoEq.(1)butHtbandHtg werecomputedasthe

sumofallbluesandgreenhiredinperiodt.Asforthemicro-level index,t was0fornoinequalityinemploymentandincreased

withincreasingdiscriminationupto1. Results

Testingforpureeffects

Wewillpresentourresultsinthreesteps.First,wewill dis-cussresultsfromtheno-interactiontreatments,inwhichonlyone manipulationwasintroducedatonce.Thiswillhelptohighlight thepureeffectof highquality standards,informationflow, and workerreferralsondiscrimination.Second,wewilldiscussresults ondiscriminationfromalltreatmentsthatincludedalso interac-tions.Third,wewillanalyzeemployerearnings.Althoughpayoffs werenotessentialtoourmainresearchquestions,theiranalysis hasimportanteconomicimplications.

(6)

Table2

Thenumberofworkershiredthroughdifferentoptions.

Treatment Newworkersrandomly(i-iii) Re-hiringworkers(iv) Hiringfromemployercontact(v) Hiringviaworkerreferrals(vi) Total(i-vi) no-interactiontreatments −S−E−W 1827 2651 4478 +S−E−W 3093 1405 4498 −S+E−W 782 2542 1155 4479 −S−E+W 1212 2493 792 4497 interactiontreatments +S+E−W 820 2708 951 4479 −S+E+W 719 2136 1280 351 4486 +S−E+W 1439 2043 985 4467 +S+E+W 745 2005 1209 510 4469 Total 10,637 17,983 4595 2638 35,853

Note:N=3600hiringdecisionswithamaximumof10workersperdecision.

Table3

Meansandstandarddeviationsofdiscriminationindexesinno-interactiontreatments.

Treatment micro–leveldiscriminationindex discriminationindexinrehiring macro-leveldiscriminationindex

N Mean SD SE N Mean SD SE N Mean SD SE

−S−E−W 450 0.283 0.275 0.013 400 0.367 0.275 0.014 75 0.173 0.060 0.034

+S−E−W 450 0.426 0.301 0.014 361 0.514 0.500 0.017 75 0.238 0.015 0.009

−S+E−W 450 0.366 0.227 0.011 402 0.466 0.293 0.015 75 0.322 0.116 0.067

−S−E+W 450 0.438 0.313 0.015 402 0.516 0.325 0.016 75 0.204 0.031 0.018

Note:Themacro-leveldiscriminationindexcouldonlybeaffectedlogicallyinthe−S+E-Wtreatment.

Table4

Mixed-effectsregressiononthemicro-leveldiscriminationindexinno-interactiontreatments(N=1800),withrandomeffectsforindividualsandgroups.Thedegreesof freedomwerecomputedusingSatterthwaite’sapproximation.

(Intercept) Estimate SE t p Estimate SE t p

0.283 0.042 6.736 0.000 0.239 0.083 2.892 0.006 treatmenteffects +S 0.143 0.060 2.406 0.043 0.150 0.063 2.392 0.045 +E 0.082 0.060 1.384 0.204 0.090 0.064 1.406 0.196 +W 0.154 0.060 2.595 0.032 0.161 0.063 2.552 0.035 subjectcharacteristics male 0.018 0.036 0.499 0.619 religious 0.006 0.038 0.166 0.868 economics 0.006 0.043 0.140 0.889 studyyear 0.011 0.013 0.859 0.394 part2 −0.016 0.012 −1.385 0.166 F 35.507 0.000 8.479 0.001

Note:Thedummyvariable“economics”hadavalueofoneiftheparticipantwasstudyingeconomicsormanagement.

Theupper four rows in Table2 show thatall available

hir-ingmethods(i–vi)wereselectedfrequentlybyparticipantsinthe no-interactiontreatments.Re-hiringofworkers(iv)wasfavored tohiring workersfromemployercontacts(v) andto hiringvia workerreferrals(vi).Re-hiringwasmorecommoninthelow qual-itystandardscondition.Higherqualitystandardsresultedinmore churnandexperimentationwithnewworkers.Table3 displays anoverviewofmeanıit valuesinno-interactiontreatments.All

factormanipulationsproducedsignificantlyhigherdiscrimination thanthebaseline(Wilcoxonranksumtestsonindividualaverages: W=83,p=0.006for+S;W=110,p=0.052for+E;W=89,p=0.010 for+W;allpvaluesareonetailed).

Notethatdiscriminationindexvaluescannotbefullyattributed toonemethodofhiringoranotherasparticipantscouldre-hire workers or select other hiring methods in every round. They typicallyused combinedstrategies and mighthave individually compensatedfortheirownbiasin onetype ofhiringby favor-inganothergroupwhenchoosinganotherhiringmethod.Still,in ordertoseetheextentofdiscriminationthatcouldpotentiallybe linkedtokeepingworkersinhouseselectively,wecalculatedıit

valuesforre-hiresonly.Table3showsthesemeanvalues(see mid-dlecolumns).Itisremarkablethatparticipantsweremorebiased

infavorofonegroupwhenre-hiringworkers.Thediscrimination indexforre-hireswashigherineveryexperimentalconditionthan themeandiscriminationvalueforotherhiringmethods.Although thesefactorsareintertwined,itisprobablethatdiscriminationby groupmembershipwasmoreinfluentialinkeepingworkersthan hiringnewones.

Asourdataincludedrepeatedobservationsofthesame indi-vidual,weestimatedamixed-effectsmodelwithrandomeffectsat theindividualandgrouplevel(hereafterMEmodel).Therecould befurtherdependenciesinourdataascurrentchoicesmighthave beeninfluencedbyearlierexperiencesindifferentways(cf.e.g., Ule,2008; Corten,2009).Asweare notinterestedin theexact nature of these dependencies,they are covered by individual-leveleffects,theexperimentalpartdummyandtheothercontrols includedinthemodel.Table4showstheresultsofthemodel.The positiveinterceptindicatesthatasignificantlevelofdiscrimination occurredinalltreatments.Resultssupportedourfirsthypothesis.

Results confirmedalsoHypothesis 2,as higher quality stan-dards resultedin higherdiscrimination rates. Asformulated in Hypothesis3,workerreferrals(+W)increaseddiscriminationrates. Meanwhile,Hypothesis4wasnotsupportedastheinformation flow(+E)coefficientwasnotsignificantand,ifanything,thisfactor

(7)

Fig.2.Socialinfluenceondiscriminationintheinformationflow(+E)treatment.

Notes:N=1800decisions.Positivevaluesindicatebiastowardsgreensandnegativevaluesindicatebiastowardsblues.Casesatthezeropointareimpartialjudgments.Fitted

smoothregressionlineisindicated.

Fig.3.Confirmationbiasintheinformationflow(+E)treatment.

Notes:N=1800decisions.Positivevaluesindicatebiastowardsgreensandnegativevaluesindicatebiastowardsblues.Casesatthezeropointareimpartialjudgments.

tendedtoincreaseratherthandecreasediscrimination.Itis impor-tanttonotethatcontrolvariablesincludedinthemodel,i.e.,gender, religion,facultystudyyearhadnosignificanteffect.Wealso con-trolledforapossibleexperimentallearning(orfatigue)effectby includingadummyandfoundnosignificantdifferencesbetween thefirstandsecondhalfoftheexperiment.

Regardingmacro-leveldiscrimination,indexvaluesshowthat individualtendenciestodiscriminatehavebeenbalancedouttoa largeextentatthemacrolevel(Table3).Thetvalueof0.173inthe

−S−E−Wbaselineconditioncorrespondstoanimbalanceofhiring atotalof32.84workersfromonegroupand27.16workersfrom theothergrouponaverage(outof60).Theinformationflow treat-ment(+E),however,ledtohigherdiscriminationthanthebaseline (Table 3).This was themanipulation under which participants couldhavebeenaffectedbytheselectionofanotheremployer.The highertvalueimpliesthatindividualdiscriminationtendencies

ruledeachotherouttoalesserextent.Thesomewhathigher macro-leveldiscriminationindexintheinformationflow(+E)condition

impliesthatsomeemployershaveadoptedthebiasesoforhave beeninfluencedbytheircontacts.Fig.2displaysthatwhilethe mostdecisionswerefreeofbias,participantsslightlyincreasedthe partialityoftheirdecisionfavoringthegroupofworkersthathad ahigheraveragequalityattheconnectedemployer.Hence, par-ticipantspartlyadaptedtheirsamplingrationallygiventhenew availableinformation(cf.LeMensandDenrell,2011).Fig.3 high-lightsmoreevidentlythatdiscriminationwascontagiousinthe informationflowtreatment(+E).Alargerbiasbytheconnected employerresultedinlargerdiscriminationinfavor ofthesame groupofworkers,andthereforediscriminationwassubjecttosocial influenceintheexperiment.

Interactioneffects

The lowerfour rows in Table 2 showthat all available hir-ingmethods(i-vi)wereselectedfrequentlybyparticipantsinthe interactiontreatments.Re-hiringofworkers(iv)wasalwaysthe

(8)

Table5

Meansandstandarddeviationsofdiscriminationindexesininteractiontreatments.

Treatment micro–leveldiscriminationindex discriminationindexinrehiring macro-leveldiscriminationindex

N Mean SD SE N Mean SD SE N Mean SD SE

+S+E−W 450 0.224 0.206 0.010 421 0.356 0.300 0.015 75 0.146 0.110 0.013

−S+E+W 450 0.413 0.284 0.013 403 0.553 0.336 0.017 75 0.264 0.202 0.023

+S−E+W 450 0.477 0.334 0.016 403 0.633 0.336 0.017 75 0.198 0.132 0.015

+S+E+W 450 0.483 0.292 0.014 370 0.592 0.328 0.017 75 0.385 0.178 0.021

Note:Themacro-leveldiscriminationindexcouldonlybeaffectedlogicallyinthe+Etreatments.

Table6

Mixed-effectsregressiononthemicro-leveldiscriminationindexincludinginteractioneffects(N=3600),withrandomeffectsforindividualsandgroups.Thedegreesof freedomwerecomputedusingSatterthwaite’sapproximation.

(Intercept) Estimate SE t p Estimate SE t p

0.283 0.040 7.064 0.000 0.229 0.062 3.662 0.001 treatmenteffects +S 0.143 0.057 2.523 0.023 0.150 0.060 2.484 0.025 +E 0.082 0.057 1.451 0.166 0.084 0.061 1.379 0.186 +W 0.154 0.057 2.721 0.015 0.163 0.061 2.699 0.016 +S*+E −0.284 0.080 −3.546 0.003 −0.292 0.086 −3.396 0.004 +S*+W −0.104 0.080 −1.292 0.215 −0.117 0.086 −1.354 0.195 +E*+W −0.107 0.080 −1.329 0.203 −0.118 0.086 −1.376 0.188 +S*+E*+W 0.314 0.113 2.769 0.014 0.335 0.123 2.732 0.015 subjectcharacteristics male 0.008 0.024 0.349 0.728 religious 0.019 0.026 0.716 0.475 economics 0.027 0.028 0.950 0.344 studyyear 0.006 0.009 0.599 0.550 part2 −0.000 0.008 −0.056 0.956 F 144.831 0.000 105.864 0.000

mostfavoredoption.Table5showsthatdiscriminationinre-hiring

washigherineveryinteractiontreatmentthan micro-level dis-crimination in general.Hiring workersfrom employercontacts (v) and new hires altogether (i-iii) weremore frequentlyused thanworkerreferrals(vi)whentheywereavailable.Treatments includinginteractionbetweenthemanipulatedfactorsgenerally ledtohighermicro-leveldiscriminationthanthebaseline,except when employers with high standards benefited from informa-tionfromotheremployersandworkerreferralswerenotpresent (Table5).Alldifferenceswiththebaseline(−S−E−W)were signif-icant:−S+E+W,+S−E+Wand+S+E+Wledtohigherdiscrimination (W=82, p=0.005,W=70,p=0.002and W=43,p<0.001 respec-tively,allpvalueswereonetailed),while+S+E−Wledtolower discrimination(W=226,p=0.022,onetailed).

We examinedinteraction effectsby estimatinga furtherME model.Notethat,unlikethepreviousmodels,alltreatmentswere includedintheanalysistocontrolforpureeffects.Severalpure andinteractioneffectsweresignificantinthenewmodel(Table6). Thesignsofallpurefactorcoefficientswerepositive,whichisin linewiththeresultspresentedintheprevioussection.Allbinary interactionsledtonegativecoefficientsbutonlytheinteractionof highqualitystandardsandinformationflow(+S*+E)was signifi-cant.ConsistentlywithHypotheses2and3,highqualitystandards (+S)and workerreferrals (+W)increaseddiscrimination.In line withHypothesis4,informationflow(+E)decreaseddiscrimination, althoughthathappenedonlyinconjunctionwithhighstandards.

Thecoefficientfortheinteractionofhighqualitystandardsand informationflow (+S*+E)wassufficientlylargetoovercomethe pureeffectsofthefactorsinvolved.Thismeansthatinthespecific caseofhighqualitystandards,informationflowactuallydecreased discrimination,despitetheoppositepureeffectsofthetwofactors. Thiscouldbeexplainedasfollows.Ontheonehand,incaseof lowqualitystandards,informationflowincreaseddiscrimination viaselectiveattentionorconfirmationbias.Ontheotherhand,in caseofhighqualitystandards,whenavailableinformationreally

mattered, information flow decreased employer partiality. This impliesthatwhentherewasashortageofworkerswith accept-ablequality,participantshaverealizedthebenefitsofadditional informationandacteduponaccordinglytoavoidprofitloss.

Theinteractionofhighqualitystandardsandworkerreferrals had a similareffect,although weaker.Given that there wasno informationbenefitinthecaseofworkerreferrals,anincreased alertness of employers withhigh quality standards couldhave reduced thepartiality of their judgment. Our results also sug-gestthateventhemutualpresenceofinformationflowbetween employersandworkerreferralscouldhavemadeemployersmore alertaboutpartiality.

Analternativeexplanationofpairwiseinteractioneffectsisthat informationflowandworkerreferralsoffseteachother.Thiscould haveoccurredwhenindividualdiscriminationdidnothavea coun-terpartintermsofmacroinequalityandneighboringemployers favoreddifferentgroups.Asthethree-wayinteractiontermshows, this balancingtendencyoccurredlesslikely foremployers with highstandards,whowerepickierintheirchoicesandtrappedmore likelybyconfirmationbias.

Exceptofthe+S+E−Wtreatmentthatshowedlower macro-leveldiscriminationthanthebaseline,informationflow(+E)ledtoa highervalueoft(Table5).Thisimpliesthatalsointheinteraction

treatments,individualbiasesdidnotruleeachotheroutcompletely inthepresenceofinformationflowbetweenemployers.This con-firmssomespread,butnotaninevitabledisseminationofbiased evaluationsinthenetworkofemployers.

Effectsonparticipants’earnings

Participants’payoffscouldbeseenasaproxyforthegeneral efficiencyintheallocationofworkerquality.Table7showsanME modelwherethedependentvariablewasthepayoffearnedineach periodofthegame.Followingtheobservationthathigher qual-itystandardsresultedinmoreexperimentationwithnewworkers

(9)

Table7

Mixed-effectsregressiononparticipant’speriodearnings(N=600),with randomeffectsforgroups.ThedegreesoffreedomwerecomputedusingSatterthwaite’s

approximation.

(Intercept) Estimate SE t p Estimate SE t p

12.388 0.639 19.375 0.000 10.415 0.941 11.074 0.000 treatmenteffects +S −5.659 0.904 −6.259 0.000 −5.609 0.915 −6.129 0.000 +E 3.497 0.904 3.868 0.001 3.671 0.926 3.964 0.001 +W −0.337 0.904 −0.373 0.714 −0.321 0.916 −0.351 0.730 +S*+E 4.603 1.279 3.600 0.002 4.361 1.303 3.346 0.004 +S*+W 2.654 1.279 2.075 0.054 2.549 1.303 1.956 0.068 +E*+W −0.447 1.279 −0.349 0.731 −0.603 1.302 −0.463 0.649 +S*+E*+W −2.820 1.808 −1.559 0.138 −2.461 1.854 −1.327 0.202 subjectcharacteristics male 0.123 0.360 0.341 0.734 religious −0.042 0.393 −0.108 0.914 economics −0.278 0.422 −0.660 0.511 studyyear 0.150 0.140 1.074 0.285 part2 3.218 0.105 30.521 0.000 F 472.233 0.000 440.719 0.000

1Itisworthoutliningthatmixedeffectsmodelswithindividualand/orgroup-levelrandomeffects,althoughtheyarenotalwaysstandardforexperimentaldataanalysis, representanefficientmethodthatcanbeprofitablyusedtoanalyzetheoutcomeofrepeatedgamespresentinginteractionsamongparticipants(e.g.,BarreraandBuskens, 2009;Boeroetal.2009a,b;Bravoetal.,2015).

(Table2),qualitystandardshadadirectimpactonpayoffs. Coher-entlywiththerulesofthegame,higherqualitystandardsledto lowerprofits.Incontrast,theinformationflow(+E)treatmentled tohigherearningsthatdemonstratesthedirectpayoffbenefitsof additionalavailableinformation.

Amongtheinteractioneffects,onlytheonebetween+Sand+E onewaspositiveandhighlysignificant,whiletheonebetween+S and+W,alsopositive,wasonlysignificantatthe10%level.None oftheindividualvariableswassignificant,whileearningsclearly increasedduringthegame.Thiswasexpectedasparticipantscould relyonalargersampleofworkerswhosequalityhasalreadybeen discoveredovertime.

Discussionandconclusions

Duetothecomplexityofmechanismsandproblemsoftheir identificationinthefield,wehavedesignedalaboratory experi-mentthatismeanttotesttheexistenceofabaselinetendencyfor impartiality,theimpactofahighernecessityofhighquality work-ers,theinfluenceofinformationflowinemployernetworks,and theroleofreferralsnetworksondiscriminationinhiringchoices. Intheexperiment,subjectsplayedtheroleofemployers. Repre-sentingasymmetricinformationintherealworld,subjectswere notawareofworkerqualitiesinadvanceandhadnoprior knowl-edgeaboutthedistributionofqualityforthetwocategories. In fact,workerqualitiesforthetwocategoriesweredrawnfromthe samedistributionandhencetherewasnoreasonforany impartial-ityinemployerdecisions.Thisneutralsituationprovidedthebest contrasttodemonstratetheinevitabilityofdiscrimination.

Wefoundthata substantiallevelof discriminationoccurred acrossalltreatments,confirmingthepresenceofabaseline incli-nationfordiscriminationalsoinanimpartialidealworld(Takács andSquazzoni,2015;Takácsetal.,2015).Thisisagainsttypical predictionsbymainstreameconomists,accordingtowhich belief-relateddiscriminationisnotviableasemployersnotsharingfalse beliefswouldgainacompetitiveadvantage(Arrow,1973;Aigner andCain, 1977).Accordingly,discriminationis costly:themost beneficialemployment strategyinourexperiment wasto com-pletelyneglectcolormarkers.Thereislittleevidence,however,that employerpracticesreflectefficientandrationalresponsesto dif-ferencesinskillsandturnovercostsinreality(BielbyandBaron, 1986;Kaufmannetal.,2015).Thisisconfirmedbythepersistence ofdiscriminationinallconditionsofourexperiment.

Wehypothesizedthatmorediscriminationcouldbeinduced byhigherstandardstowardsworkers(Hypothesis2).When stan-dardsare sethighexogenously,lower qualityworkers arealso employedbymereexperimentation,and hencepayoffsarealso lower.Ourfindingssuggestthathigherstandardsgeneratealarger biasandinequalityinhiring,confirmingprevioussimulation find-ings(TakácsandSquazzoni,2015).Subjectsactingasemployers withhighstandards reliedmoreonsupplementaryinformation ofgroupmembershipofworkersalreadyinhouseratherthanon theabundanceofinformationonthequalitiesofworkersscreened before.Inourexperiment,employerswithhighstandardskepta fewhighlyskilledworkersinhouseandthisbiasedtheirjudgment aboutthemeanqualityofsocialcategories.

Wedo notwant toconveythemessagethat thereis a gen-eralcognitivebiasofhumandecisionmakers,whichiscorrelated withhigherdesires andmore selectivepreferences.Our results rathersuggestthatanunintentionaladaptivesamplingbiasexists thatoriginatesfromtheover-generalizationofthequalityofthe smallsampleofemployeesinhouse(Denrell,2005;LeMensand Denrell,2011).Thisadaptive samplingbias wasmore probable whenemployerswithhighstandardswereinterestedinthemost qualifiedworkersonly(cf.Polman,2010;TakácsandSquazzoni, 2015).

Consideringcomplexcognitivemechanismsisnotrequiredto accountfor theemergence ofdiscrimination,althoughcomplex cognitivemechanismscouldin fact make thingsworse(Takács etal.,2015).Theeffectofhighstandardsondiscriminationcouldbe enlargedbyjudgmentbias,inparticularbyself-perceived objectiv-ity(UhlmannandCohen,2007),cherrypicking,andconfirmation bias(e.g.,Simon,1955,1956).Anotherpotentiallyrelevant mech-anismconcernsexpectancyconfirmationsequences.Inthiscase, individuals wouldbeconditionedbyselectiveattentionleading themtoconsideronlyinformationthatconfirmstheirbeliefs,while ignoringinformationthatcontradictstheirexpectations(Hamilton, 1981;Bergeretal.,1980;DarleyandFazio,1980).

Previousstudiesemphasizedtherelevanceofsocialnetworks forinequalitiesofemployment(e.g.,Montgomery,1991;Stoveland Fountain,2009; Beamanand Magruder,2012).Wages,job posi-tions, or workconditions coulddepend onsocial networks (cf. Montgomery,1991,1992;TianandLiu,2018).Weemphasizedthat socialnetworkeffectsinhiringcannotbeconsideredasasingle mechanism.Atleasttwoverydifferentmechanismsareatplay(cf. Gërxhanietal.,2013).Oneisworkerreferralthatfacilitateslabor

(10)

marketsegregationgiventheirhomophilouscharacter.Anotheris informationflowaboutworkersvianetworktiesofemployers,for instance,intheformofrecommendationsoractivesearchsuchas man-hunting.Accordingtothefirstnetworkmechanism,the affec-tivecontentof socialrelationshipscouldcreate obligationsthat makerecommendingandhiringfriendsmorelikely.Thisdisrupts thebasiclogicofa‘perfect’marketandresultsinsuboptimal allo-cationoflaborforce(e.g.,IoannidesandLoury,2004;Tassierand Menczer,2008).

Ourresultsconfirmedthatworkerreferralsincrease discrimina-tion(Hypothesis3).Wefoundincreaseddiscriminationwithworker referralsinourexperiment, althoughwe assumednoclustering ofworkerrelationsbyquality.Inamorerealisticscenario,where workersaremorelikelytogivereferralstoworkersofthesame groupandofsimilarquality,onecouldprobablyobserveaneven strongerbiasfavoringonegroupovertheother(cf.Montgomery, 1991). When contacts are homophilous, referral networks can reduceinequalityviaaninvertedadvantagemechanismonlyif ini-tialadvantageisnegativelycorrelatedwiththenewstatusvalue (DiMaggioandGarip,2012).

Contrarytoourexpectations(Hypothesis4),informationflow between employers increased discrimination. Previous studies showedthatbusinesscontactsareimportanttoreducetheeffectof informationasymmetryandhelpemployerstoevaluateproperly thelabormarketpotentialofanemployee(e.g.,Rosenbaumetal., 1990;Uzzi,1996).Ontheotherhand,incaseofdifficultevaluation ofquality,networkscanenlargefalsegeneralizationsandmight magnifytherandominitialbias.Evenunprejudicedemployersseek and rely on evaluationsof others. In case of racial discrimina-tion,thisleadstowhatisknownasracialprofiling(Groggerand Ridgeway,2006;FernandezandGreenberg,2013).

Thereisempiricalevidencethatpeoplearelargelyinfluenced bytheirsocialnetwork(e.g.,MarsdenandFriedkin,1993)and fol-lowadvicesometimesevenwhentheyhavedirectobservations (Sommerfeldetal.,2007;Gilbertetal.,2009).Weobtainedsome evidencethatintheinformationflowcondition(+E)ofour experi-ment,subjectsplayingemployerswereinfluencedtosomeextent byinformation they received. Adifferencein themean quality valuesofworkershiredbytheconnectedemployermadehiring fromthebettergroupmore likely. Participants,therefore, have learntfromtheexperiencesintheirnetwork,whichisconsistent withearlierresearchonlearninginnetworks(e.g.,Barreraandvan deBunt,2009;Hofstraetal.,2015;MasonandWatts,2012).At thesametime,discriminationwasprobablynotfullyconscious andwasnotonlyduetorationalsociallearning,asimpartiality inhiringwasoftencopiedfromtheconnectedemployer. Follow-ingthepreferencesofothersisindicativeofsocialinfluencethat resultedinsomebiascontagioninthenetwork.Furthermore, sub-jectscouldhavedevotedselectiveattentiontothegroupreputation estimatesoftheircontacts.Theypotentiallyconfirmedtheirbelief thathadfavoredoneofthegroupsifthiswasinaccordancewith theestimateoftheotheremployer.Otherwise,iftheestimateof theotheremployerwasnotinlinewiththeirs,theyprobably han-dledthisinformationwithlessattention.Thesefactorsaltogether haveresultedinsomespreadofdiscriminationinthenetwork. Indi-vidualbiasesdidnotbalanceeachotheroutcompletely,causinga certainextentofinequalityintheinformationflowcondition.

Furthermore, our resultsshowed that these factors interact witheach otherin complex ways. It is important tonote that thecombinedeffectofthesefactorswasnotastatisticalillusion duetotheparticularmethodused.Wefoundthatemployerswith highstandardshavemadeuseofinformationflowinawaythat decreaseddiscrimination.Theinteractionofhighqualitystandards andworkerreferralshadasimilardiminishingimpact.

Itseemsthatnetworkscontributedtomorepartialdecisionsof employerswithhighstandards,whohadtobemorecarefulabout

whomtheyemploy(TakácsandSquazzoni,2015).Moreover,the jointpresenceofinformationflowbetweenemployersandworker referralsdecreaseddiscrimination,probablybecausegroupquality informationoriginatingfromthesesourcesoffseteachother.We alsofoundathree-wayinteractioneffectofhighqualitystandards, informationflow,andworkerreferrals.Thisinteractioncouldhave occurredbecauseemployerswithhighstandardsweremorelikely tofallintoconfirmationbiasandneglectedthemorebalancedjoint perspectiveofinformationflowandworkerreferrals.

Obviously,ourresultsneedtobeinterpretedcautiouslygiven the high level of abstraction of the study from the real labor market.Severalimportantfeaturesofhiring processeswerenot coveredinourexperimentaldesign.Therewasnoapplication pro-cedureandhiringbydifferentemployerstookplacesimultaneously andwasrepeatedinthesamefashionseveraltimes.Participants werearrangedaccordingtoadirectedcirclenetworkandnoother informationflowstructureswereinvestigated.Workerswerenot decisionmakers,theyinfactdidnotwork,andtheircharacteristics didnotchangeovertime.Therewerenodifferencesinwagesand everyjobwasacceptabletoworkers.Theseandotherempirically relevantcharacteristicfeaturesofthehiringprocesswereexcluded onpurposeinordertoilluminatetheimpactofqualitystandards, informationflowinemployernetworks,andhomophilousworker referralsonhiringdiscrimination.

Participants themselvesplayingtherole of employersmight havediscountedtheadequatenessofthelabormarketframingfor thedecisionsituation.Theymighthaveperceivedthedecisiontask asanoptimizationproblemthatcanbeapproachedusingacertain hiringstrategy.Infact,thisisnotunrealisticatall,asmany employ-eesarestrategic intheirhumanrelations policyandlearn from theexperienceofothers.Conclusionsfromourexperiment, more-over,couldberelevanttocontextsotherthanthelabormarket. Qualitystandards,recommendations,andinformationfloware rel-evantfactorsinanyrepeatedselectiontask.Thesamemechanisms potentiallycontribute,forinstance,toconsumerdiscrimination.

Theidealisticconditionsinthelabwereaimedtohighlightsome fundamentaltendenciesofdiscriminationthatcouldbe strength-ened,altered,orevencuredinacomplexinstitutionalizedsetting. Inordertounderstandtheseaspectsbetter,furtherempiricaland fieldanalysisisneeded.Here,forinstance,empiricalstudiesthat lookatcross-culturalcomparisonscouldenrichour understand-ing of social and institutional embeddedness of discriminative outcomes(e.g.,Zschirntand Ruedin, 2016; Tianand Liu,2018). Providinga‘clean’testofcertainsimplehypotheseswhileleaving contextualeffectsinthebackgroundisanimportantstepto under-standemployerdiscriminationandexplorecountermeasuresthat couldhelpusreducethesedistortions.

Funding

Financial support for the conduct of the research has been providedbytheIntra-EuropeanFellowshipProgramofthe Euro-peanUnion(“0Discrimination”,GA-2009-236953).Thefirstauthor acknowledgessupportfromtheEuropeanResearchCouncil(ERC) undertheEuropeanUnion’sHorizon2020researchand innova-tionprogramme(GrantagreementNo648693).WethankMarco CastellaniandNiccolòCasnicifortheirpracticalhelp.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttps://doi.org/10.1016/j.socnet.2018.03. 005.

(11)

References

Agerström,J.,2014.Whydoesheightmatterinhiring?J.Behav.Exp.Econ.52,

35–38,http://dx.doi.org/10.1016/j.socec.2014.06.002.

Aigner,D.J.,Cain,G.G.,1977.Statisticaltheoriesofdiscriminationinlabormarkets.

Ind.LaborRelat.Rev.30,175–187.

Ariely,D.,2008.PredictablyIrrational.TheHiddenForcesThatShapeOur

Decisions.HarperCollins,NewYork.

Arrow,K.J.andBorzekowski,R.2004LimitedNetworkconnectionsandthe

DistributionofWages.SSRNWorkingPaper.https://www.researchgate.net/

profile/KennethArrow/publication/5034990Limitednetworkconnections andthedistributionofwages/links/00463523741cbc1421000000.pdf.

Arrow,K.J.1973TheTheoryofDiscriminationinAshenfelter,OrleyandAlbert

Rees(ed.)DiscriminationinLaborMarkets,PrincetonUniversityPress.3–33.

Barr,T.,2009.Withfriendslikethese:endogenouslabormarketsegregationwith

homogeneous,nonprejudicedagents.Am.J.Econ.Sociol.68(3),703–746.

Barrera,D.,Buskens,V.,2009.Third-partyeffectsontrustinanembedded

investmentgame.In:Cook,K.,Snijders,C.,Buskens,V.,Cheshire,C.(Eds.), eTrust:FormingRelationshipsintheOnlineWorld.RussellSage,NewYork.

Barrera,D.,vandeBunt,G.G.,2009.Learningtotrust:networkseffectsthrough

time.Eur.Sociol.Rev.25(6),709–721,http://dx.doi.org/10.1093/esr/jcn078.

Beaman,L.,Magruder,J.,2012.Whogetsthejobreferral?evidencefromasocial

networksexperiment.Am.Econ.Rev.,3574–3593.

Beaman,L.,Keleher,N.,Magruder,J.,2013.DoJobNetworksDisadvantage

Women?EvidencefromaRecruitmentExperimentinMalawi.Departmentof Economics,NorthwesternUniversity(WorkingPaper).

Berger,J.,Rosenholtz,S.J.,Zelditch,M.,1980.Statusorganizingprocesses.Ann.Rev.

Sociol.6,479–508.

Berninghaus,S.,Erhart,K.M.,Keser,C.,2002.Conventionsandlocalinteraction

structures:experimentalevidence.GamesEcon.Behav.39(1),177–205.

Bertrand,M.,Chugh,D.,Mullainathan,S.,2005.Implicitdiscrimination.Am.Econ.

Rev.95(2),103–110.

Bian,Y.,Huang,X.,Zhang,L.,2015.Informationandfavoritism:thenetworkeffect

onwageincomeinChina.SocialNetworks40,129–138.

Bielby,W.T.,Baron,J.N.,1986.Menandwomenatwork:sexsegregationand

statisticaldiscrimination.Am.J.Sociol.91(4),759–799.

Boero,R.,Bravo,G.,Castellani,M.,Laganà,F.,Squazzoni,F.,2009a.Pillarsoftrust:

anexperimentalstudyonreputationanditseffects.Sociol.Res.Online14(5) (URL<http://www.socresonline.org.uk/14/5/5.html>).

Boero,R.,Bravo,G.,Castellani,M.,Squazzoni,F.,2009b.Reputationalcuesin

repeatedtrustgames.J.Socio-Econ.38,871–877.

Bohnet,I.,2009.Experiments.In:Hedström,P.,Bearman,P.(Eds.),TheOxford

HandbookofAnalyticalSociology.OxfordUniversityPress,pp.639–665.

Brashears,M.E.,Gladstone,E.,2016.Errorcorrectionmechanismsinsocial

networkscanreduceaccuracyandencourageinnovation.SocialNetworks44, 22–35.

Brashears,M.E.,Quintane,E.,2015.Themicrostructuresofnetworkrecall:how

socialnetworksareencodedandrepresentedinhumanmemory.Social Networks41,113–126.

Bravo,G.,Squazzoni,F.,Takács,K.,2015.Intermediariesintrust:indirect

reciprocity,incentives,andnorms.J.Appl.Math.2015(234528)(URL <http://www.hindawi.com/journals/jam/aa/234528/>).

Brewer,M.B.,1979.In-Groupbiasintheminimalintergroupsituation:a

cognitive-Motivationalanalysis.Psychol.Bull.86,307–324.

Brewer,M.B.,1996.In-Groupfavoritism:thesubtlesideofintergroup

discrimination.In:Messick,D.M.,Tenbrunsel,A.E.(Eds.),CodesofConduct. BehavioralResearchintoBusinessEthics.RussellSageFoundation.

Calvó-Armengol,A.,Jackson,M.O.,2004.Theeffectsofsocialnetworkson

employmentandinequality.Am.Econ.Rev.94(3),426–454.

Calvó-Armengol,A.,Jackson,M.O.,2007.Networksinlabormarkets:wageand

employmentdynamicsandinequality.J.Econ.Theory132,27–46.

Camerer,C.F.,2003.BehavioralGameTheory.PrincetonUniversityPress,Princeton.

Caria,A.S.andHassen,I.W.2013TheFormationofJobReferralNetworks.Evidence

fromaLab-in-the-FieldExperimentinUrbanEthiopia.InternationalFood

PolicyResearchInstitute(IFPRI)DiscussionPaper,No.1282.

Chapin,F.S.,1932.TheexperimentalapproachI.theadvantagesofexperimental

sociologyinthestudyoffamilygrouppatterns.Soc.Forces11,200–207.

Corten,R.,2009.Co-evolutionofSocialNetworksandBehaviorinSocialDilemmas

TheoreticalandEmpiricalPerspectives.ICSDissertationSeries,Utrecht.

Darley,J.M.,Fazio,R.H.,1980.Expectancyconfirmationsequences.Am.Psychol.35,

867–881.

Denrell,J.,LeMens,G.,2011.Seekingpositiveexperiencescanproduceillusory

correlations.Cognition119(3),313–324.

Denrell,J.,2005.Whymostpeopledisapproveofme:experiencesamplingin

impressionformation.Psychol.Rev.112,951–978.

DiMaggio,P.,Garip,F.,2012.Networkeffectsandsocialinequality.Ann.Rev.

Sociol.38,93–118.

Dovidio,J.F.,Kawakami,K.,Gaertner,S.L.,2002.Implicitandexplicitprejudiceand

interracialinteraction.J.Pers.Soc.Psychol.82,62–68.

Elliott,J.R.,1999.Socialisolationandlabormarketinsulation:networkand

neighborhoodeffectsonless-Educatedurbanworkers.Sociol.Quarterly40(2), 199–216.

Elliott,J.R.,2001.Referralhiringandethnicallyhomogeneousjobs:howprevalent

istheconnectionandforwhom?Soc.Sci.Res.30,401–425.

Engström,P.,Hesselius,P.,Holmlund,B.,2012.Vacancyreferrals,jobsearch,and

thedurationofunemployment:arandomizedexperiment.Labour26(4), 419–435.

Falk,A.,Fehr,E.,2003.‘Whylabormarketexperiments?LaborEcon.10,399–406.

Falk,A.,Heckman,J.J.,2009.Labexperimentsareamajorsourceofknowledgein

thesocialsciences.Science326,535–538.

Fehr,E.,Gintis,H.,2007.Humanmotivationandsocialcooperation:experimental

andanalyticalfoundations.Ann.Rev.Sociol.33,43–64.

Fernandez,R.M.,Fernandez-Mateo,I.,2006.Networks,race,andhiring.Am.Sociol.

Rev.71,42–71.

Fernandez,R.M.,Greenberg,J.,2013.Race,networkhiring,andstatistical

discrimination.Res.Sociol.Work24(2013),81–102.

Fernandez,R.M.,Castilla,E.J.,Moore,P.,2000.Socialcapitalatwork:networksand

employmentataphonecenter.Am.J.Sociol.105(5),1288–1356.

Fiedler,K.,Juslin,P.,2006.Takingtheinterfacebetweenmindandenvironment

seriously.In:Fiedler,K.,Juslin,P.(Eds.),InformationSamplingandAdaptive Cognition.Cambridge,UniversityPress.

Fischbacher,U.,2007.Z-Tree:zurichtoolboxforready-madeeconomic

experiments.Exp.Econ.10,171–178.

Fiske,S.T.,2009.SocialBeings:CoreMotivesinSocialPsychology.Wiley,NewYork.

Flache,A.,Mäs,M.,Feliciani,T.,Chattoe-Brown,E.,Deffuant,G.,Huet,S.,Lorenz,J.,

2017.Modelsofsocialinfluence:towardsthenextfrontiers.J.ArtificialSoc.

SocialSimulation20(4),2http://jasss.soc.surrey.ac.uk/20/4/2.html.

Fontaine,F.,2008.Whyaresimilarworkerspaiddifferently?theroleofsocial

networks.J.Econ.Dyn.Control32(12),3960–3977.

Fountain,C.,Stovel,K.,2014.Turbulentcareers:socialnetworks,employerhiring

preferences,andjobinstability.In:Manzo,G.(Ed.),AnalyticalSociology.,pp. 339–370.

Gërxhani,K.,Brandts,J.,Schram,A.,2013.Theemergenceofemployerinformation

networksinanexperimentallabormarket.SocialNetworks35,541–560.

Galton,F.,1907.Voxpopuli(Thewisdomofcrowds).Nature75(7),450–451.

Gemkow,S.,Neugart,M.,2011.Referralhiring,endogenoussocialnetworks,and

inequality:anagent-Basedanalysis.J.Evol.Econ.21,703–719.

Gilbert,D.T.,Killingsworth,M.,Eyre,R.N.,Wilson,T.D.,2009.Thesurprisingpower

ofneighborlyadvice.Science323(5921),1617–1619.

Godechot,O.,2016.Thechanceofinfluence:anaturalexperimentontheroleof

socialcapitalinfacultyrecruitment.SocialNetworks46,60–75.

Granovetter,M.,1973.Thestrengthofweakties.Am.J.Sociol.78,1360–1380.

Granovetter,M.,1974.GettingaJob:AStudyofContactsandCareers.Universityof

ChicagoPress,Chicago.

Greiner,B.,2004.Anonlinerecruitmentsystemforeconomicexperiments.In:

Kremer,K.,Macho,V.(Eds.),ForschungUndWissenschaftlichesRechnen2003. Ges.fürWiss.Datenverarbeitung,Göttingen,pp.79–93.

Grogger,J.,Ridgeway,G.,2006.Testingforracialprofilingintrafficstopsfrom

behindaveilofdarkness.J.Am.Stat.Assoc.101(475),878–887.

Hamilton,D.L.(Ed.),1981.Erlbaum,Hillsdale,N.J.

Hoeffer,S.,Ariely,D.,West,P.,2006.Pathdependentpreferences:theroleofearly

experienceandbiasedsearchinpreferencedevelopment.Organ.Behav.Hum. Decis.Process.101,215–229.

Hofstra,B.,Corten,R.,Buskens,V.,2015.Learninginsocialnetworks:selecting

profitablechoicesamongalternativesofuncertainprofitabilityinvarious networks.SocialNetworks43,100–112.

Ioannides,Y.M.,Loury,L.D.,2004.Jobinformationnetworks,neighborhoodeffects,

andinequality.J.Econ.Lit.42,1056–1093.

Jackson,M.,2009.Disadvantagedthroughdiscrimination?theroleofemployersin

socialstratification.Br.J.Sociol.60(4),669–692.

Kaufman,R.L.,2002.Assessingalternativeperspectivesonraceandsex

employmentsegregation.Am.Sociol.Rev.67(4),547–572.

Kaufmann,M.C.,Krings,F.,Sczesny,S.,2015.Lookingtooold?howanolderage

appearancereduceschancesofbeinghired.Br.J.Manage.27(4),727–739.

Keser,C.,Ehrhart,K.M.,Berninghaus,S.K.,1998.Coordinationandlocalinteraction:

experimentalevidence.Econ.Lett.58,269–275.

Keuschnigg,M.,Wolbring,T.,2015.Theuseoffieldexperimentstostudy

mechanismsofdiscrimination.Anal.Kritik38(1),179–202.

Kosfeld,M.,2004.Economicnetworksinthelaboratory:asurvey.Rev.Network

Econ.3(1).

Krauth,B.V.,2004.Adynamicmodelofjobnetworkingandsocialinfluenceson

employment.J.Econ.Dyn.Control28(6),1185–1204.

Kugler,A.D.,2003.Employeereferralsandefficiencywages.LabourEcon.10(5),

531–556.

Lane,T.,2016.Discriminationinthelaboratory:ameta-Analysisofeconomics

experiments.Eur.Econ.Rev.90,375–402.

LeMens,G.,Denrell,J.,2011.Rationallearningandinformationsampling:onthe

‘Naivety’assumptioninsamplingexplanationsofjudgmentbiases.Psychol. Rev.118(2),379–392.

Lee,S.,Pitesa,M.,Pillutla,M.,Thau,S.,2015.Whenbeautyhelpsandwhenithurts:

anorganizationalcontextmodelofattractivenessdiscriminationinselection decisions.Organ.Behav.Hum.Decis.Process.128(May),15–28.

Lin,N.,Ensel,W.M.,Vaughn,J.C.,1981.Socialresourcesandstrengthofties:

structuralfactorsinoccupationalstatusattainment.Am.Sociol.Rev.46, 393–405.

Lorenz,J.,Rauhut,H.,Schweitzer,F.,Helbing,D.,2011.Howsocialinfluencecan

underminethewisdomofcrowdeffect.Proc.Natl.Acad.Sci.108(22), 9020–9025.

Marsden,P.V.,Friedkin,N.E.,1993.Networkstudiesofsocialinfluence.Sociol.

(12)

Mason,W.,Watts,D.J.,2012.Collaborativelearninginnetworks.Proc.Natl.Acad. Sci.109(3),764–769.

McBrier,D.B.,2003.Genderandcareerdynamicswithinasegmentedprofessional

labormarket:thecaseoflawacademia.Soc.Forces81(4),120–1266.

McCall,J.J.,1970.Economicsofinformationandjobsearch.Q.J.Econ.84(1),

113–126.

McDonald,S.,2011.What’sintheoldboysnetwork?Accessingsocialcapitalin

genderedandracializednetworks.SocialNetworks33(4),317–330.

McPherson,M.,Smith-Lovin,L.,Cook,J.M.,2001.Birdsofafeather:homophilyin

socialnetworks.Ann.Rev.Sociol.27,415–444.

Midtbøen,A.H.,2014.Thecontextofemploymentdiscrimination:interpretingthe

findingsofafieldexperiment.Br.J.Sociol.,193–214,http://dx.doi.org/10.

1111/1468-4446.12098.

Model,S.,1993.Theethnicnicheandthestructureofopportunity:Immigrantsand

minoritiesinNewYorkCity.In:Katz,M.(Ed.),TheUnderclassDebate:Views fromHistory.PrincetonUniversityPress,Princeton,pp.161–193.

Montgomery,J.,1991.Socialnetworksandlabor-marketoutcomes:towardan

economicanalysis.Am.Econ.Rev.81,1408–1418.

Montgomery,J.,1992.Jobsearchandnetworkcomposition:implicationsofthe

strengthofweaktieshypothesis.Am.Sociol.Rev.57,586–596.

Mortensen,D.,1986.Jobsearchandlabormarketanalysis.In:Ashenfelter,O.,Card,

D.(Eds.),TheHandbookofLaborEconomics2.(Amsterdam:North-Holland).

Mouw,T.,2002.Racialdifferencesintheeffectsofjobcontacts:conflicting

evidencefromcross-sectionalandlongitudinaldata.Soc.Sci.Res.31(4), 511–538.

Olian,J.D.,Schwab,D.P.,Haberfeld,Y.,1988.Theimpactofapplicantgender

comparedtoqualificationsonhiringrecommendations:ameta-analysisof experimentalstudies.Organ.Behav.Hum.Decis.Process.41(2),180–195.

Ostrom,E.,2010.Revisingtheoryinlightofexperimentalfindings.J.Econ.Behav.

Organ.73(1),68–72.

Pager,D.,Bruce,W.,Bonikowski,B.,2009.Discriminationinalow-Wagelabor

market:afieldexperiment.Am.Sociol.Rev.74,777–799.

Petersen,T.,Saporta,I.,2004.Theopportunitystructurefordiscrimination.Am.J.

Sociol.109,852–901.

Petersen,T.,Saporta,I.,Seidel,M.-D.L.,2000.Offeringajob:meritocracyandsocial

networks.Am.J.Sociol.106,763–816.

Polman,E.,2010.Whyaremaximizerslesshappythansatisficers?becausethey

maximizepositiveandnegativeoutcomes.J.Behav.Decis.Making23,179–190.

Ponzo,M.,Scoppa,V.,2010.TheuseofinformalnetworksinItaly:efficiencyor

favoritism?J.Socio-Econ.39(1),89–99.

Rogers,J.K.,2000.Temps:TheManyFacesoftheChangingWorkplace.ILRPress.

Rooth,D.O.,2010.‘Automaticassociationsanddiscriminationinhiring:realworld

evidence.LabourEcon.17(3),523–534.

Rosenbaum,J.E.,Kariya,T.,Settersten,R.,Maier,T.,1990.Marketandnetwork

theoriesofthetransitionfromhighschooltowork:theirapplicationto industrializedsocieties.Ann.Rev.Sociol.16,263–299.

Roth,A.E.,1993.Theearlyhistoryofexperimentaleconomics.J.Hist.Econ.

Thought15,184–209.

Rubineau,B.,Fernandez,R.M.,2013.Missinglinks:referrerbehaviorandjob

segregation.Manage.Sci.59(11),2470–2489.

Rubineau,B.,Fernandez,R.M.,2015.Howdolabormarketnetworkswork?In:

RobertScott,A.,StephenKosslyn,M.(Eds.),EmergingTrendsintheSocialand

BehavioralSciences:AnInterdisciplinary,Searchable,andLinkableResource.,

pp.1–15,http://dx.doi.org/10.1002/9781118900772.etrds0168.

Simon,H.,1955.Abehavioralmodelofrationalchoice.Q.J.Econ.69,99–118.

Simon,H.,1956.Rationalchoiceandthestructureoftheenvironment.Psychol.

Rev.63(2),129.

Smith,V.L.,1991.PapersinExperimentalEconomics.CambridgeUniversityPress.

Smith,V.L.,2010.Theoryandexperiment:whatarethequestions?J.Econ.Behav.

Organ.73(1),3–15.

Solnick,S.J.,Schweitzer,M.E.,1999.Theinfluenceofphysicalattractivenessand

genderonultimatumgamedecisions.Organ.Behav.Hum.Decis.Process.79 (3),199–215.

Sommerfeld,R.D.,Krambeck,H.-J.,Semman,D.,Milinski,M.,2007.Gossipasan

alternativefordirectobservationingamesofindirectreciprocity.Proc.Natl. Acad.Sci.104,17435–17440.

Spoonley,P.,2008.Utilisingademand-ledapproachinalocallabormarket.Local

Econ.:J.LocalEcon.PolicyUnit23(1),19–30.

Stigler,G.J.,1961.Theeconomicsofinformation.J.PoliticalEcon.69(3),213–225.

Stigler,G.J.,1962.Informationinthelabormarket.J.PoliticalEcon.70(5),94–105.

Stovel,K.,Fountain,C.,2009.Matching.In:Hedström,P.,Bearman,P.(Eds.),The

OxfordHandbookofAnalyticalSociology.OxfordUniversityPress.

Surowiecki,J.,2005.TheWisdomofCrowds.Anchor.

Takács,K.,Squazzoni,F.,2015.Highstandardsenhanceinequalityinidealized

labormarkets.J.Artif.Soc.SocialSimul.18(4),2http://jasss.soc.surrey.ac.uk/

18/4/2.html.

Takács,K.,Squazzoni,F.,Bravo,G.,Castellani,M.,2015.Employernetworks,

priming,anddiscriminationinhiring:anexperiment.In:Manzo,G.(Ed.), AnalyticalSociology.WileyandSons,Chichester.

Takács,K.,Flache,A.,Mäs,M.,2016.Discrepancyanddislikingdonotinduce

negativeopinionshifts.PLoSOne11(6),e0157948.

Tassier,T.,Menczer,F.,2008.Socialnetworkstructure,segregation,andequalityin

alabormarketwithreferralhiring.J.Econ.Behav.Organ.66,514–528.

Tian,F.F.,Liu,H.,2018.Gendereddoubleembeddedness:findingjobsthrough

networksinthechineselabormarket.SocialNetworks52,28–36.

Tilly,C.,1998.DurableInequality.UniversityofCaliforniaPress,Berkeley.

Uhlmann,E.L.,Cohen,G.L.,2007.Ithinkit,thereforeit’strue:effectsof

self-Perceivedobjectivityonhiringdiscrimination.Organ.Behav.Hum.Decis. Process.104(2),207–223.

Ule,A.,2008.Partnerchoiceandcooperationinnetworks.theoryand

experimentalevidence.LectureNotesinEconomicsandMathematical Systems,vol.598.Springer.

Uzzi,B.,1996.Thesourcesandconsequencesofembeddednessfortheeconomic

performanceoforganizations:thenetworkeffect.Am.Sociol.Rev.61(4), 674–698.

Webster,M.,Sell,J.,2007.LaboratoryExperimentsintheSocialSciences.Academic

Press.

Wegener,B.,1991.Jobmobilityandsocialties:socialresources,priorjob,and

statusattainment.Am.Sociol.Rev.56,60–71.

Willer,D.,Walker,H.,2007.BuildingExperiments:TestingSocialTheory.Stanford

UniversityPress,Stanford.

Wilson,W.J.,1987.TheTrulyDisadvantaged.UniversityofChicagoPress,Chicago,

IL.

Zschirnt,E.,Ruedin,D.,2016.Ethnicdiscriminationinhiringdecisions:a

meta-analysisofcorrespondencetests.J.EthnicMigrationStud.42(7), 1115–1134.

Figura

Table 1 Treatment overview. Treatment High standards Informationflow Worker referrals Pure effects −S −E −W
Fig. 2. Social influence on discrimination in the information flow (+E) treatment.

Riferimenti

Documenti correlati