• Non ci sono risultati.

PAOLA LORETI

N/A
N/A
Protected

Academic year: 2021

Condividi "PAOLA LORETI"

Copied!
4
0
0

Testo completo

(1)

THE NUMBER e

PAOLA LORETI

Consider the set of real numbers A = {x n =

n

X

k=0

1

k! : n ∈ N}.

The set A is bounded. Indeed, we have clearly

n

X

k=0

1 k! ≥ 2 for all n. On the other hand, since

k! ≥ 2 k−1 for all k ∈ N by induction, we have

n

X

k=0

1 k! ≤ 1 +

n

X

k=1

1

2 k−1 <= 1 + 2 = 3 for all n. Hence

2 < sup

n

A ≤ 3.

By definition, we set

e = sup

n

A.

Now we consider

A 0 = {x n =

 1 + 1

n

 n

: n ∈ N}, By Bernoulli inequality

2 < sup

n

A 0 and, applying the inequality

n+2

a 1 . . . a n+2 ≤ a 1 + · · · + a n+2

n + 2 with

a 1 = · · · = a n = 1 + 1

n and a n+1 = a n+2 = 1 2 since

n+2

r

 1 + 1

n

 n

· 1 2 · 1

2 ≤ n + 2 n + 2 = 1.

We obtain x n ≤ 4. Hence (x n ) is bounded from above by 4. Then, we set e 0 = sup

n

A 0 .

Date: June 26, 2007.

1

(2)

2 PAOLA LORETI

In order to give another useful definition of e, consider the binomial expansion,

 1 + 1

n

 n

=

n

X

k=0

n(n − 1)(n − 2) . . . (n − k + 1) n k

1 k! . But

n(n − 1)(n − 2) . . . (n − k + 1)

n k = n

n · n − 1

n · · · n − k + 1 n

= 1  1 − 1

n



1 − 2 n

 . . . 

1 − k − 1 n



≤ 1.

Hence

 1 + 1

n

 n

n

X

k=0

1 k!

for all n. Taking the supremum over n of A 0 = {x n =

 1 + 1

n

 n

: n ∈ N}, we conclude that

sup

n

A 0 ≤ sup

n

A.

We have just shown that

e 0 ≤ e.

We are going to show that in fact e 0 = e. We take m < n. Then

 1 + 1

n

 n

=

n

X

k=0

n(n − 1)(n − 2) . . . (n − k + 1) n k

1 k!

m

X

k=0

n(n − 1)(n − 2) . . . (n − k + 1) n k

1 k! . By the definition of e 0 , it follws that

e 0

m

X

k=0

n(n − 1)(n − 2) . . . (n − k + 1) n k

1 k!

=

m

X

k=0

 1 − 1

n



1 − 2 n

 . . . 

1 − k − 1 n

 · 1 k! . Taking the suprumum over n we conclude that

e 0

m

X

k=0

1 k!

for all m. Now taking the supremum over m, the reverse inequality e 0 ≥ e

and thus the equality

e 0 = e

follows.

(3)

THE NUMBER e 3

Let us investigate more closely the sequence x n =

 1 + 1

n

 n

.

We are going to show that this sequence is increasing, so that the Neper number is the limit of this sequence, as n tends to ∞, as a consequence of the fondamental theorem of monotone sequences.

We prove the monotonicity of the sequence x n is two different ways.

First we consider the ratio

x 2 x 1

> 1, and

x n+1

x n

=

 1 + n+1 1

 n+1

 1 + n 1

 n

=  n + 2 n + 1

 n+1  n n + 1

 n

=  n + 2 n + 1

 n+1  n n + 1

 n+1  n + 1 n



=

 n + 2 (n + 1)

n (n + 1)

 n+1  n + 1 n



=

 n 2 + 2n (n 2 + 2n + 1)

 n+1  n + 1 n



=  n 2 + 2n + 1 − 1 (n 2 + 2n + 1)

 n+1  n + 1 n



=  n 2 + 2n + 1

n 2 + 2n + 1 − 1 n 2 + 2n + 1

 n+1  n + 1 n

 . We recall the Bernoulli inequality

(1 + h) n > 1 + nh h ≥ −1, h 6= 0, ∀n ∈ N, such that n ≥ 2.

We have

h = − 1

n 2 + 2n + 1 > −1, ∀n since

1

n 2 + 2n + 1 < 1, ∀n.

Hence,

(4)

4 PAOLA LORETI

x n+1

x n

=



1 + n+1 1

 n+1

 1 + n 1

 n >

 1 − 1

n + 1

 n + 1 n



= 1.

This ends the first proof. Next, we give another proof based on geometrical and arithmetic media of positive real numbers.

The sequence (x n ) defined by x n = 

1 + 1 n

 n

, n = 1, 2, . . . . is bounded and increasing. Indeed, applying the inequality

n+1

a 1 . . . a n+1 ≤ a 1 + · · · + a n+1

n + 1 with

a 1 = · · · = a n = 1 + 1

n and a n+1 = 1, we obtain

n+1

r  1 + 1

n

 n

≤ n + 2

n + 1 = 1 + 1 n + 1 . This is equivalent to x n ≤ x n+1 . Hence (x n ) is increasing.

References

[1] E. Giusti, Analisi Matematica I, Boringhieri Ed, 1988.

Dipartimento di Metodi e Modelli, Matematici per le Scienze Applicate, Universit` a di Roma “La Sapienza”, Via A. Scarpa, 16, 00161 Roma, Italy

E-mail address: loreti@dmmm.uniroma1.it

Riferimenti

Documenti correlati

Lo spazio di Banach `e uno spazio normato com- pleto (ogni successione di Cauchy `e convergente a un elemento dello spazio) rispetto alla metrica indotta dalla norma....

Lo spazio di Banach `e uno spazio normato com- pleto (ogni successione di Cauchy `e convergente a un elemento dello spazio) rispetto alla metrica indotta dalla norma....

Lo spazio di Banach `e uno spazio normato com- pleto (ogni successione di Cauchy `e convergente a un elemento dello spazio) rispetto alla metrica indotta dalla norma....

Una matrice simmetrica `e definita positiva (negativa) () tutti gli autovalori della matrice sono positivi(negativi).Una matrice sim- metrica `e definita positiva (negativa) ()

Una matrice simmetrica `e definita positiva (negativa) () tutti gli autovalori della matrice sono positivi(negativi).Una matrice sim- metrica `e definita positiva (negativa) ()

Una matrice simmetrica `e definita positiva (negativa) () tutti gli autovalori della matrice sono positivi(negativi).Una matrice sim- metrica `e definita positiva (negativa) ()

Una matrice simmetrica `e definita positiva (negativa) () tutti gli autovalori della matrice sono positivi(negativi).Una matrice sim- metrica `e definita positiva (negativa) ()

Una matrice simmetrica `e definita positiva (negativa) () tutti gli autovalori della matrice sono positivi(negativi).Una matrice sim- metrica `e definita positiva (negativa) ()