• Non ci sono risultati.

Bibliografia capitolo 1

N/A
N/A
Protected

Academic year: 2021

Condividi "Bibliografia capitolo 1"

Copied!
11
0
0

Testo completo

(1)

Bibliografia capitolo 1

[1]Bodor, M.; Kelly, E. J.; Ho, R.J. Characterization of the human MDR1 gene. AAPSJ., 2005, 7, EI-5. [2] Loo, T.W.; barlett, M.C.; Clarke, D.M. The dileucine motif at the COOH terminus of human multidrug resistance P-glycopretein is important for folding but not activity. J.Biol. Chem. 2005, 280, 2522-8.

[3] Gottesmann, M.M. Multidrug resistance during chemical carcioge- nesis: a mechanism revealed? J. Natl. Cancer Inst., 1988, 80 1352-3.

[4] Ambudkar, S.V.; Dey. S.;Hryeyna, C.A.; Ramachandra, M.; Pastan, I.; Gottesmann, M.M: Biochemical, Cellular, and pharmacological aspects of the multidrug transporter. Annu. Rev.Pharmacol.Toxicol.,1999, 39,361-98.

[5] Germann, U.A. P-glycoprotein-a mediator of multidrug resistance in tumour cells, Eur.J Cancer, 1996, 32A 927-44.

[6] Loo, T.W.; Clarke, D.M. Do drug substrates enter to common drug-binding pocket of P-glycoprotein through gates”? Biochem. Biophys. Res. Commun., 2005, 329, 419-22.

[7] Loo, T.W.; Clarke, D.M. Merck Frosst Award Lecture 1998, Molecular dissection of the human multidrug reistance P-glycoprotein. Biochem. Cell. Biol., 1999, 77,11-23.

[8] Rothnie, A.; Storm, J.; MacMahon, R.; Taylor, A.; Kerr, I.D.; Callaghan,R. The coupling mechanism of P-glycoprotein inolves residue L339 in the sixth membrane spanning segment. FEBS Lett.; 2005, 579, 3984-90.

[9] Wan, C.K. .; Zhu, G.Y.; Shen, XL.; Chattopadhyay, A.; DeY, S.; Fong, W.F. Gomisin A alters substrate interaction and revers P-glycoprotein-mediated multidrug resistance in HepG2 DR cells. Biochem. Pharmacol.,2006,72,824-37.

[10] Cianchetta, G.; Singleton R.W.; Zhang, M.; Wildgoose, M.; giesing, D.; Fravolini, A.; Cruciani, G.; Vaz, R.J. A pharmacophore HypotHesis for P-glicoprotein substrte recognition using GRIND-based 3D-QSAR. j.Med.Chem.; 2005,48,2927-35.

[11] Frelet, A.; Klein, M. Insight in eukariotic ABC transporter function by mutation analysis. FEBS lett. 2006,580,1064-84.

[12] Vigano, C.; Julien, M.; Carrier, I.; Gros, P.; Ruysschaert, J.M. structural and funciontional asymmetry of the nucleotide-binding domains of P-glycoprotein investigated by attenuated total reflection Fourier transform infrared spectroscopy. J.Bol.Chem., 2002, 277, 5008-16

[13] Loo, T.W.; barlett, M.C.; Clarke, D.M. ATP hydrolysis promotes interactions between the extracellular ends of transmembrane segments 1 and 11 of human multidrug resistance P-glycoprotein. Byochemistriy

[14] Loo, T.W.;Clarke, D.M. Determining the dimensions of the drug-binding domain of human P-glycoprotein using thiol cross-linking compound ss molecular rules. J.Biol. Chem., 2001,276,36877-80. Loo, T.W.; barlett, M.C.; Clarke, D.M. Vall33 and Cysl 37 in transmembrane segment 2 are close to Arg935 and Gly939 in transmembrane segment 11 of human P-glycoprotein. J. Biol Chem, 2004, 279,8232-8.

[15] Loo, T.W.; Barlett M.C. Clarke, D.M. Transmembrane segment 1 of human P-glycoprotein conrtributes to the drug-binding pocket. Biochem.J., 2006,396,537-45

(2)

[16] Loo, T.W.;Clarke, D.M. Defining the drug-binding site in the human multidrug resistance

P-glycoprotein using a methane thiosulfonate analog of verapamil, MTS-verapamil.

J.Biol.Chem.,2001,276,14972-9

[17] Loo, T.W.; Barlett, M.C.; Clarke, D.M.Transembrane segment 7 of humanP-glycoprotein forms part of the drug-binding pocket. Biochem. J.2006,399,351-9.

[18] Loo, T.W.; Barlett, M.C.; Clarke, D.M. Substrate-induced conformational changes in the transmembrane segments of human P-glicoprotein. Direct evidence for the substrates-induced fit mechanism for drug binding.J. Biol. Chem., 2003,278,4433213603-6.

[19] Loo, T.W.;Clarke, D.M. Location of the rhodamine-binding site in the human multidrug resistance P-glycoprotein. J.biol.Chem., 2002,277,44332-8.

[20] Lugo, M.R.; Sharom, F.J. Interaction of LDS-751 with P-glycoprotein and mapping of the location of the R. drug binding site. Biochemistry, 2005,44,643-55.

[21] Loo, T.W.; Barlett, M.C.; Clarke, D.M. Disulfide cross-linking analyss shows that transmembrane segments 5 and 8 of human P-glycoprotein are close togheter on the cytoplastic side of the membrane. J. Biol. Chem., 2004,279, 7692-7.

[22] Seigneuret, M., Garnier-Suillerot, A. A structural model for the open conformation of the MDR1 P-glycoprotein based on the MsbA crystal structure. J. Biol. Chem., 2003, 278, 30115-24.

[23] Stenham, D.R.; Campbell, J.D., Samson, M.S.; Higgins, C.F.;Ker I.D.; Linton, K.J. An atomic detail model for the human ATP binding cassette transporter P- glycoprotein derived from disulfide cross-linking and homology modeling. FASEB J., 2003, 17,2287,-9

[24] Pajeva, I.K.; Globisch,; C.; Wiese, M Structure-function relationships of multirug resistance P-glycoprotein. J.Med. Chem. 2004, 47,2523-33.

[25] Rosenberg, M.F.; Callaghan, R.; Ford, R.C.; Higgings, C.F. Structure of the multidrug resistance P-glycoprotein to 2,5 nm resolution determined by electron microscopy and image analysis. J. Biol. Chem.,1977,272, 10685-94.

[26] Rosenberg, M.F.; Kamis, Callaghan, R. Higgins,; C.F.Ford, R.C.; Three-dimensional Structures of the mammalian multidrug resistance P-glycoprotein demostrate major conformational changes in the transmembrane domains upon nucleotide binding. J.Biol.Chem., 2003, 278,8294-9.

[27]Pajeva, I.K.; Wiese, M. Pharmacophore model of drugs involved in P-glycoprotein multidrug resistance explanation of structural variety (Hypotesis). J.Med, Chem., 2002, 45, 5671-86.

[28] Vandevuer, S.; Van Bambeke, F.; Tulkens, P.M.; Prévost, M. Predicting the Three dimensional stucture of human P-glycoprotein in absence of ATP by computational techiniques embodyng cross-linking data:insight into the mechanism of ligand migration and binding sites, Proteins, 2006,63,446-78. [29] Al-Shawi, M.K.; Omote, H. The remarkable tranport mechanism of P-glicoprotein:a multidrug transporter. J. Bioenergy, Biomembr.; 2005, 37, 89-96.

[30] Murakami, s.; Nakashima, R.,Yamashita, E.; Matsumoto, T.; Yamaguchi, A. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature, 2006,443, 173-9.

[31]Varma, M.V.; Ashokraj, Y., Dey. C.S.; Pachagnula, R. P-glycoprotein inhibitor and their sceening: a perspective from bioavailability enhancement, Pharmacol. Res., 2003, 48,347-59.

[32] Ito , S.; Wooland, C. Sarkadi, B.; Hockmann, G.; Walker, S.E.; Koren, G. Modeling of P- Glicoprotein-involved epithelial drug transport in MDCK cells, Am.J. Phsiol., 1999,46 F84-96.

(3)

[33] Tran, T.T.; Mittal, A.; Aldinger, T.; Polli, J.W.; Ayrton, A.; Ellens, H.; Bents, J. The elementary mass actionrate constants of P-gp transport for a confluent monolayer of MDCKII-hMDR1 cells. Biophys. J., 2005,88,715-38.

[34] Homolya, L.; Hollo, Z.; German, U.A.; Pastan, I.; Gottesman, M.M.; Sarkadi, B. Fluorescent cellular indicators are extruded by the multidrug resistance protein. J.Biol. Chem., 1993, 268, 21493-6. [35] Raviv, Y.; H.B.; Bruggemann, E.P.; Pastan, I.; Gottesmann, M.M. Photosensitized labeling of a functional multidrag tranporter in living drug-resistant tumor cells. J.Biol. Chem., 1990, 265,3975-80. [36] Loo, T.W.; Barlett, M.C.; Clarke, D.M. Drug binding in Human P- Glycoprotein causes conformational chenges in both nucleotide-binding domains. J.Biol. Chem.,2003, 278,1575-8.

[37] Loo, T.W.;Clarke, D.M. Identification of residues in the drug-binding domain of human P-Glycoprotein. Analysis of transmembrane segment 11 by cysteine-scanning mutagenesis and inhibition by dibromobimane. J.Biol. Chem.,1999, 274,35388-92.

Bibliografia capitolo 2:

[1] Kim, W. S.; Weickert, C. S.; Garner, B. Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J. Neurochem. 2008, 104, 1145-1166.

[2] Löscher, W.; Potschka, H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog. Neurobiol. 2005, 76, 22-76.

[3] Cordon-Cardo, C.; O’Brien, J. P.; Casals, D.; Rittman-Grauer, L.;Biedler, J. L.; Melamed, M. R.; Bertino, J. R. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at bloodbrain barrier sites. Proc. Natl. Acad. Sci. USA 1989, 86, 695-698.

[4] Tatsuta, T.; Naito, M.; Oh-hara, T.; Sugawara, I.; Tsuruo, T. Functional involvement of P-glycoprotein in blood-brain barrier. J. Biol. Chem. 1992, 267, 20383-20391.

[5] Tishler, D. M.; Weinberg, K. I.; Hinton, D. R.; Barbaro, N.; Annett, G. M.; Raffel, C. MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia 1995, 36, 1-6.

[6] Seetharaman, S.; Barrand, M. A.; Maskell, L.; Scheper, R. J. Multidrug resistance-related transport proteins in isolated human brain microvessels and in cells cultured from these isolates. J. Neurochem. 1998, 70, 1151-1159.

[7] Bartels, A. L.; Willemsen, A. T. M.; Kortekaas, R.; de Jong, B. M.; de Vries, R.; de Klerk, O.; van Oostrom, J. C. H.; Portman, A.; Leenders, K. L. Decreased blood-brain barrier P-glycoprotein function in the progression of Parkinson’s disease, PSP and MSA J. Neural. Transm. 2008, 115, 1001-1009. [8] Vogelgesang, S.; Cascorbi, I.; Kroemer, H. K.; Schroeder, E.; Pahnke, J.; Siegmund, W.; Keil, C.; Warzok, R. W.; Walker, L. C. Deposition of amyloid is inversely correlated with the expression of P-glycoprotein-implications on the possibility of prevention of Alzheimer’s disease. Acta Neuropathol. 2001, 102, 545.

[9] Fernandez, C.; Buyse, M.; German-Fattal, M.; Gimenez, F. Influence of the pro-inflammatory cytokines on P-glycoprotein expression and functionality. J. Pharm. Pharm. Sci. 2004, 7, 359- 371.

[10] Mcrae, M. P.; Brouwer, K. L. R.; Kashuba, A. D. M. Cytokine regulation of P-glycoprotein. Drug Metab. Rev. 2003, 35, 19-33.

(4)

[11] Alafuzoff, I.; Iqbal, K.; Friden, H.; Adolfsson, R.; Winblad, B. Histopathological criteria for progressive dementia disorders: clinical-pathological correlation and classification by multivariate data analysis. Acta Neuropathol. 1987, 74, 209-225.

[12] Arriagada, P.V.; Marzloff, K.; Hyman, B.T. Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer's disease. Neurology 1992, 42, 1681- 1688. [13] Hussain, I.; Hawkins, J.; Harrison, D.; Hille, C.; Wayne,G.; Cutler, L.; Buck, T.; Walter, D.; [12]

[13] Demont, E.; Howes, C.; Naylor, A.; Jeffrey, P.; Gonzalez, M. I.; Dingwall, C.; Redshaw, A. M. S.;Davis, J. B. Oral administration of a potent and selective nonpeptidic BACE-1 inhibitor decreases �-cleavage of amyloid precursor protein and amyloid-� production in vivo. J. Neurochem. 2007, 100, 802-809.

[14] Meredith, Jr. J. E.; Thompson, L. A.; Toyn, J. H.; Marcin, L.; Barten, D. M.; Marcinkeviciene, J.; Kopcho, L.; Kim, Y.; Lin, A.; Guss, V.; Burton, C.; Iben, L.; Polson, C.; Cantone, J.; Ford, M.; Drexler, D.; Fiedler, T.; Lentz, K. A.; Grace, Jr. J. E.; Kolb, J.; Corsa, J.; Pierdomenico, M.; Jones, K.; Olson, R. E.; Macor, J. E.; Albright, C. F. P-glycoprotein efflux and other factors limit brain amyloid reduction by � -site amyloid precursor protein-cleaving enzyme 1 inhibitors in mice. J. Pharmacol. Exp. Ther. 2008, 326, 502-513.

[15] Vogelgesang, S.; Cascorbi, I.; Schroeder, E.; Pahnke, J.; Kroemer, H. K.; Siegmund, W.; Kunert-Keil, C.; Walker, L. C.; Warzok, R. W. Deposition of Alzheimer’s �-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly nondemented humans. Pharmacogenetics 2002, 12, 535-541.

[16] Vogelgesang, S.; Kuhnke, D.; Jedlitschky, G.; Jucker, M.; Mosyagin, I.; Pahnke, J.; Cascorbi, I.; Kroemer, H. K.; Walker, L. C.; Warzok, R. W. P-glycoprotein (ABCB1) mediates transport of Alzheimer’s beta-amyloid peptides. Acta Neuropathol. 2006, 112, 365-367.

[17] Lam, F. C.; Liu, R.; Lu, P.; Shapiro, A. B.; Renoir, J. M.; Sharom, F. J.; Reiner, P. B. Beta-Amyloid efflux mediated by pglycoprotein. J. Neurochem. 2001, 76, 1121-1128.

[18] Cirrito, J. R.; Deane, R.; Fagan, A. M.; Spinner, M. L.; Parsadanian, M.; Finn, M. B.; Jiang, H.; Prior, L.; Sagare, A.; Bales, K. R.; Paul, S.M.; Zlokovic, B. V.; Piwnica-Worms, D.; Holtzman, D. M. P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J. Clin. Invest. 2005, 115, 3285-3290.

[19] Fassbender, K.; Simons, M.; Bergmann, C.; Stroick, M.; Lutjohann, D.; Keller, P.; Runz, H.; Kuhl, S.; Bertsch, T.; von Bergmann, K.; Hennerici, M.; Beyreuther, K.; Hartmann, T. Simvastatin strongly reduces levels of Alzheimer’s disease �- amyloid peptides A�42 and A�40 in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2001, 98, 5856-5861.

[20] Bogman, K.; Peyer, A.-K.; Torok, M.; Kusters, E.; Drewe, J. HMG-CoA reductase inhibitors and P-glycoprotein modulation. Br. J. Pharmacol. 2001, 132, 1183-1192.

[21] Talaga, P. �-amyloid aggregation inhibitors for the treatment of Alzheimer’s disease: dream or reality? Mini Rev. Med. Chem. 2001, 1, 175-186. [22]

[22]Castro, A.; Martinez, A. Peripheral and dual binding site acetylcholinesterase inhibitors: implications in treatment of Alzheimer’s disease. Mini Rev. Med. Chem. 2001, 1, 267-272.

[23] Hernández, F.; Lim, F.; Lucas, J. J.; Pérez-Martín, C.; Moreno, F.; Avila, J. Transgenic mouse models with Tau pathology to test therapeutic agents for Alzheimer’s disease. Mini Rev. Med. Chem. 2002, 2, 51-58.

[24] Asai, M.; Hattori, C.; Iwata, N.; Saido, T.C.; Sasagawa, N.; Szabo, B.; Hashimoto, Y.; Maruyama, K.; Tanuma, S.; Kiso, Y. The novel beta-secretase inhibitor KMI-429 reduces amyloid beta peptide production in amyloid precursor protein transgenic and wild-type mice. J. Neurochem. 2006, 96, 533-540.

(5)

[25] Stachel, S. J.; Coburn, C. A.; Sankaranarayanan, S.; Price, E. A.; Wu, G.; Crouthamel, M.; Pietrak, B. L.; Huang, Q.; Lineberger, J.; Espeseth, A. S.; Jin, L.; Ellis, J.; Holloway, M. K.; Munshi, S.; Allison, T.; Hazuda, D.; Simon, A. J.; Graham, S. L.; Vacca, J. P. Macrocyclic inhibitors of beta-secretase: functional activity in an animal model. J. Med. Chem. 2006, 49, 6147-6150.

[26] Schapira, A. H. Etiology of Parkinson’s disease. Neurobiology 2006, 66, S10-23.

[27] Wood-Kaczmar, A.; Gandhi, S.; Wood, N. W. Understanding the molecular causes of Parkinson’s disease. Trends Mol. Med. 2006, 12, 521-528.

[28] Bain, L. J.; LeBlanc, G. A. Interaction of structurally diverse pesticides with the human MDR1 gene product P-glycoprotein. Toxicol. Appl. Pharmacol. 1996, 141, 288-298.

[29] Rajput, A.H. Environmental toxins accelerate Parkinson’s disease onset. Neurology 2001, 56, 4-5. [30] Martel, F.; Calhau, C.; Soares-da-Silva, P.; Azevedo, I. Transport of [H-3]MPP+ in an immortalized rat brain microvessel endothelial cell line (RBE 4). NaunynSchmiedebergs Arch. Pharmacol. 2001, 363, 1-10.

[31] Uversky, V. N.; Li, J.; Fink, A. L. Metal-triggered structural transformations, aggregation, and fiblillation of human �- synuclein. J. Biol. Chem. 2001, 276, 44284-44296.

[32] Di Monte, D. A. The environment and Parkinson's disease: is the nigrostriatal system preferentially targeted by neurotoxins? Lancet Neurol. 2003, 2, 531-538.

[33] Drozdzik, M.; Bialecka, M.; Mysliwiec, K.; Honczarenko, K.; Stankiewicz, J.; Sych, Z. Polymorphism in the P-glycoprotein drug transporter MDR1 gene: a possible link between environmental and genetic factors in Parkinson’s disease. Pharmacogenetics 2003, 13, 259-263.

[34] Kortekaas, R.; Leenders, K. L.; van Oostrom, J. C. H.; Vaalburg, W.; Bart, J.; Willemsen, A. T. M.; Hendrikse, N. H. Blood-brain barrier dysfunction in Parkinsonian midbrain in vivo. Ann. Neurol. 2005, 57, 176-179.

[35] Tan, E. K.; Khajavi, M.; Thornby, J. I.; Nagamitsu, S.; Jankovic, J.; Ashizawa, T. Variability and validity of polymorphism association studies in Parkinson’s disease. Neurology 2000, 55, 533-538. [36] Lee, G.; Bendayan, R. Functional expression and localization of Pglycoprotein in the central nervous system: relevance to the pathogenesis and treatment of neurological disorders. Pharm. Res. 2004, 21, 1313-1330.

[37] Bartels, A. L.; Kortekaas, R.; Bart, J.; Willemsen, A. T. M.; de Klerk, O. L.; de Vries, J. J.; van Oostrom, J. C. H.; Leenders, K. L. Neurobiol. Aging. 2008, doi:10.1016/j.neurobiolaging. 2008.02.002. [38] Yokel, R. A. Blood-brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration, J. Alzheimers Dis. 2006, 10, 223-253.

[39] Graff, C. L.; Pollack, G. M. Functional evidence for P-glycoprotein at the nose-brain barrier. Pharm. Res. 2005, 22, 86-93.

[40] Kandimalla, K. K.; Donovan, M. D. Localization and differential activity of P-glycoprotein in the bovine olfactory and nasal respiratory mucosae. Pharm. Res. 2005, 22, 1121-1128.

[41] Uhr, M.; Ebinger, M.; Rosenhagen, M. C.; Grauer, M. T. The antiparkinson drug budipine is exported actively out of the brain by P-glycoprotein in mice. Neurosci. Lett. 2005, 383, 73-76.

[42] Fisher, A.; Starr, M. S. Opposite effects of glutamate antagonists and antiparkinsonian drugs on the activities of DOPA decarboxylase and 5-HTP decarboxylase in the rat brain. Brain

(6)

[43] Klockgether, T.; Jacobsen, P.; Loschmann, P. A.; Turski, L. The antiparkinsonian agent budipine is an N-methyl-d-aspartate antagonist J. Neural. Transm. Park. Dis. Dement. 1993, 5, 101-106.

[44] Soares-da-Silva, P.; Serrão, M. P.; Vieira-Coelho, M. A.; Pestana, M. Evidence for the involvement of P-glycoprotein on the extrusion of taken up L-DOPA in cyclosporine A treated LLC-PK1 cells. Br. J. Pharmacol. 1998, 123, 13-22.

[45] Soares-Da-Silva, P.; Serrão, M. P. Outward transfer of dopamine precursor L-3,4-dihydroxyphenylalanine (L-dopa) by native and human P-glycoprotein in LLC-PK(1) and LLC-GA5 col300 renal cells. J. Pharmacol. Exp. Ther. 2000, 293, 697-704.

[46] Vautier, S.; Lacomblez, L.; Chacun, H.; Picard, V.; Gimenez, F.; Farinotti, R.; Fernandez, C. Interactions between the dopamine agonist, bromocriptine and the efflux protein, P-glycoprotein at the blood-brain barrier in the mouse. Eur. J. Pharm. Sci. 2006, 27, 167- 74.

[47] van Dellen, A.; Grote, H. E.; Hannan, A. J. Gene-environment interactions, neuronal dysfunction and pathological plasticity in Huntington's disease. Clin. Exp. Pharmacol. Physiol. 2005, 32, 1007-1019. [48] Arrasate, M.; Mitra, S.; Schweitzer, E. S.; Segal, M. R.; Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 2004, 14, 805-810.

[49] Patassini, S.; Giampà, C.; Martorana, A.; Bernardi, G.; Fusco, F. R. Effects of simvastatin on neuroprotection and modulation of Bcl-2 and BAX in the rat quinolinic acid model of Huntington's disease. Neurosci. Lett. 2008, 448, 166-169.

[50] Cova, E.; Cereda, C.; Galli, A.; Curti, D.; Finotti, C.; Di Poto, C.; Corato, M.; Mazzini, G.; Ceroni, M. Modified expression of Bcl-2 and SOD1 proteins in lymphocytes from sporadic ALS patients. Neurosci. Lett. 2006, 399, 186-190.

[51] Vogelgesang, S.; Glatzel, M.; Walker, L. C.; Kroemer, H. K.; Aguzzi, A.; Warzok, R. W. Cerebrovascular P-glycoprotein expression is decreased in Creutzfeldt-Jakob disease. Acta Neuropathol. 2006, 111, 436-443.

[52] Armstrong, R. A.; Lantos, P. L.; Cairns, N. J. The spatial patterns of prion protein deposits in Creutzfeldt-Jakob disease: comparison with beta-amyloid deposits in Alzheimer’s disease. Neurosci. Lett. 2001, 298, 53-56.

[53] Vogelgesang, S.; Warzok, R. W.; Cascorbi, I.; Kunert-Keil, C.; Schroeder, E.; Kroemer, H. K.; Siegmund, W.; Walker, L. C.; Pahnke, J. The role of P-glycoprotein in cerebral amyloid angiopathy; implications for the early pathogenesis of Alzheimer’s disease. Curr. Alzheimer Res. 2004, 1, 121-125. [54] Mulder, D. W. Clinical limits of amyotrophic lateral sclerosis Adv. Neurol. 1982, 36, 15-22.

[55] Deng, H. X.; Shi, Y.; Furukawa, Y.; Zhai, H.; Fu, R.; Liu, E.; Gorrie, G. H.; Khan, M. S.; Hung, W. Y.; Bigio, E. H.; Lukas, T.; Dal Canto, M. C.; O’Halloran, T. V.; Siddique, T. Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondria. Proc. Natl. Acad. Sci. USA 2006, 103, 7142-7147.

[56] Cleveland, D. W.; Rothstein, J. D. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat. Rev. Neurosci. 2001, 2, 806-819.

[57] Okado-Matsumoto, A.; Fridovich, I. Amyotrophic lateral sclerosis: a proposed mechanism. Proc. Natl. Acad. Sci USA 2002, 99, 9010- 9014.

[58] Rothstein, J. D.; Tsai, G.; Kuncl, R. W.; Clawson, L.: Cornblath, D. R.; Drachman, D. B.; Pestronk, A.; Stauch, B. L.; Coyle, J. T. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann. Neurol. 1990, 28, 18-25.

(7)

[59] Rothstein, J. D.; Martin, L. J.; Kuncl, R. W. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N. Engl. J. Med. 1992, 326, 1464-1468.

[60] Bruijn, L. I.; Cudkowicz, M. Therapeutic targets for amyotrophic lateral sclerosis: current treatments and prospects for more effective therapies. Expert. Rev. Neurother. 2006, 6, 417-428.

[61] Bensimon, G.; Lacomblez, L.; Meininger, V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N. Engl. J. Med. 1994, 330, 585-591.

[62] Kriz, J.; Gowing, G.; Julien, J. P. Efficient three-drug cocktail for disease induced by mutant superoxide dismutase. Ann. Neurol. 2003, 53, 429-436.

[63] Chu, L. S.; Fang, S. H.; Zhou, Y.; Yu, G. L.; Wang, M. L.; Zhang, W. P.; Wei, E. Q. Minocycline inhibits 5-lipoxygenase activation and brain inflammation after focal cerebral ischemia in rats, Acta Pharmacol. Sin. 2007, 28, 763-772.

[64] Song, Y.; Wei, E. Q.; Zhang, W. P.; Zhang, L.; Liu, J. R.; Chen, Z. Minocycline protects PC12 cells from ischemic-like injury and inhibits 5-lipoxygenase activation, Neuroreport 2004, 15, 2181-2184.

[65] Song, Y.; Wei, E. Q.; Zhang, W. P.; Ge, Q. F.; Liu, J. R.; Wang, M. L.; Huang, X. J.; Hu, X.; Chen, Z. Minocycline protects PC12 cells against NMDA-induced injury via inhibiting 5-lipoxygenase activation. Brain Res. 2006, 1085, 57-67.

[66] Milane, A.; Fernandez, C.; Vautier, S.; Bensimon, G.; Meininger, V.; Farinotti, R. Minocycline and riluzole brain disposition: interactions with p-glycoprotein at the blood-brain barrier. J. Neurochem. 2007, 103, 164-173.

[67] Kirkinezos, I. G.; Hernandez, D.; Bradley, W. G.; Moraes, C. T. An ALS mouse model with a permeable blood-brain barrier benefits from systemic cyclosporine A treatment. J. Neurochem. 2004, 88,

821-826.

[68] Sander, J. W. Some aspects of prognosis in the epilepsies: a review. Epilepsia 1993, 34, 1007-1016. [69] Regesta, G.; Tanganelli, P. Clinical aspects and biological bases of drug-resistant epilepsies. Epilepsy Res. 1999, 34, 109-122.

[70] Yang, Z. H.; Liu, X. D. P-glycoprotein-mediated efflux of phenobarbital at the blood-brain barrier evidence from transport experiments in vitro. Epilepsy Res. 2008, 78, 40-49.

[71] Lazarowski, A.; Riveros, D.; Sevlever, G.; Massaro, M.; Rabinowicz, A. L. 1-17-22 High expression of multidrug resistance gene (MDR-1) and persistant low levels of phenytoin (PHT) on apatient with refractory epilepsy due to tuberous sclerosis (TS). J. Neurol. Sci. 1997, 150 (suppl 1), S28. [72] Sisodiya, S. M.; Heffernan, J.; Squier, M. V. Over-expression of Pglycoprotein in malformations of cortical development. Neuroreport 1999, 10, 3437-3441.

[73] Dombrowski, S. M.; Desai, S. Y.; Marroni, M.; Cucullo, L.; Goodrich, K.; Bingaman, W.; Mayberg, M. R.; Bengez, L.; Janigro, D. Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy. Epilepsia 2001, 42, 1501-1506.

[74] Sisodiya, S. M.; Lin, W. R.; Harding, B. N.; Squier, M. V.; Thom, M. Drug resistance in epilepsy: expression of drug resistance proteins in common causes of refractory epilepsy. Brain 2002, 125, 22-31. [75] Luna-Tortós, C.; Fedrowitz, M.; Löscher, W. Several major antiepileptic drugs are substrates for human P-glycoprotein Neuropharmacology 2008, 55, 81364-1375.

(8)

[76] Baltes, S.; Gastens, A. M.; Fedrowitz, M.; Potschka, H.; Kaever, V.; Löscher, W. Differences in the transport of the antiepileptic drugs phenytoin, levetiracetam and carbamazepine by human and mouse P-glycoprotein. Neuropharmacol. 2007, 52, 333-346.

[77] Brandt, C.; Bethmann, K.; Gastens, A. M.; Löscher, W. The multidrug transporter hypothesis of drug resistance in epilepsy: proof-of-principle in a rat model of temporal lobe epilepsy, Neurobiol. Dis. 2006, 24, 202-211.

[78] Potschka, H.; Löscher, W. In vivo evidence for P-glycoproteinmediated transport of phenytoin at the blood-brain barrier of rats. Epilepsia 2001, 42, 1231-1240.

[79] Potschka, H.; Löscher, W. Multidrug resistance-associated protein is involved in the regulation of extracellular levels of phenytoin in the brain. Neuroreport 2001, 12, 2387-2389.

[80] Weiss, J.; Kerpen, C. J.; Lindenmaier, H.; Dormann, S. M.; Haefeli, W. E. Interaction of antiepileptic drugs with human Pglycoprotein in vitro, J. Pharmacol. Exp. Ther. 2003, 307, 262-267. [81] Benedetti, M.; Strolin, P.; Whomsley, R.; Espie, P.; Baltes, E. The role of the efflux transporter P-glycoprotein (P-GP) on the disposition of antiepileptic drugs: implications for drug interactions. Focus on Epilepsy Research; Shawn, B.M.; Eds.; UCB Pharma, Nanterre (Fr), 200 4, pp.199-220.

Bibliografia capitolo 4:

Aller SG, Yu J, Ward A, et al. (2009). Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323: 1718–22.

Benet LZ. (2009). The drug transporter-metabolism alliance: uncovering and defining the interplay. Mol Pharm 6:1631–43.

Chang C, Bahadduri PM, Polli JE, et al. (2006). Rapid identification of P-glycoprotein substrates and inhibitors. Drug Metab Dispos 34: 1976–84.

Chen L, Li Y, Yu H, et al. (2012). Computational models for predicting substrates or inhibitors of P-glycoprotein. Drug Discov Today 17: 343–51.

Chiba P, Ecker G, Schmid D, et al. (1996). Structural requirements for activity of propafenone-type modulators in P-glycoprotein-mediated multidrug resistance. Mol Pharmacol 49:1122–30.

Chiba P, Hitzler M, Richter E, et al. (1997). Studies on propafenone-type modulators of multidrug resistance III: variations on the nitrogen. Quant Struct-Act Relat 16:361–6.

Colabufo NA, Berardi F, Cantore M, et al. (2008). Small P-gp modulating molecules: SAR studies on tetrahydroisoquinoline derivatives. Bioorg Med Chem 16:362–73.

Dantzig AH, Shepard RL, Cao J, et al. (1996). Reversal of P-glycoprotein-mediated multidrug resistance by a potent cyclopropyldibenzosuberane modulator, LY335979. Cancer Res 56:4171–9. Dolghih E, Bryant C, Renslo AR, Jacobson MP (2011). Predicting binding to p-glycoprotein by flexible receptor docking. PLoS Comput Biol 7:e1002083.

Ekins S, Kim RB, Leake BF, et al. (2002). Three-dimensional quantitative structure–activity relationships of inhibitors of P-glycoprotein. Mol Pharmacol 61:964–73.

Ford JM, Bruggemann EP, Pastan I, et al. (1990). Cellular and biochemical characterization of thioxanthenes for reversal of multidrug resistance in human and murine cell lines. Cancer Res 50:1748– 56.

(9)

Ford JM, Prozialeck WC, Hait WN. (1989). Structural features determining activity of phenothiazines and related drugs for inhibition of cell growth and reversal of multidrug resistance. Mol Pharmacol 35:105–15.

Fromm MF. (2000). P-glycoprotein: a defense mechanism limiting oral bioavailability and CNS accumulation of drugs. Int J Clin Pharmacol Ther 38:69–74.

Gatlik-Landwojtowicz E, Aa¨nismaa P, Seelig A. (2006). Quantification and characterization of P-glycoprotein–substrate interactions. Biochemistry 45:3020–32.

Globisch C, Pajeva IK, Wiese M. (2006). Structure–activity relationships of a series of tariquidar analogs as multidrug resistance modulators. Bioorg Med Chem 14:1588–98.

Hochman J, Mei Q, Yamazaki M, et al. (2006). Role of mechanistic transport studies in lead optimization. In: Borchardt RT, Kerns EH, Hageman MJ, et al., eds. Optimizing the ‘‘drug-like’’ properties of leads in drug discovery. New York: Springer, 25–48.

Jabeen I, Pleban K, Rinner U, et al. (2012). Structure–activity relationships, ligand efficiency, and lipophilic efficiency profiles of benzophenone-type inhibitors of the multidrug transporter P-glycoprotein. J Med Chem 55:3261–73.

Kim KH. (2001). 3D-QSAR analysis of 2,4,5- and 2,3,4,5-substituted imidazoles as potent and nontoxic modulators of P-glycoprotein mediated MDR. Bioorg Med Chem 9:1517–23.

Kim RB, Fromm MF, Wandel C, et al. (1998). The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 101:289–94.

Klepsch F, Chiba P, Ecker GF. (2011). Exhaustive sampling of docking poses reveals binding hypotheses for propafenone type inhibitors of P-glycoprotein. PLoS Comput Biol 7:e1002036.

Lagunin A, Gloriozova T, Dmitriev A, et al. (2013). Computer evaluation of drug interactions with P-glycoprotein. Bull Exp Biol Med 154:521–4.

Lam FC, Liu R, Lu P, et al. (2001). Beta-Amyloid efflux mediated by p-glycoprotein. J Neurochem 76:1121–8.

Langer T, Eder M, Hoffmann RD, et al. (2004). Lead identification for modulators of multidrug resistance based on in silico screening with a pharmacophoric feature model. Arch Pharm (Weinheim) 337:317–27.

Lee JY, Urbatsch IL, Senior AE, Wilkens S. (2008). Nucleotide-induced structural changes in P-glycoprotein observed by electron microscopy. J Biol Chem 283:5769–79.

Leong MK, Chen HB, Shih YH. (2012). Prediction of promiscuous p-glycoprotein inhibition using a novel machine learning scheme. PLoS One 7:e33829.

Ling V, Kartner N, Sudo T, et al. (1983). Multidrug-resistance phenotype in Chinese hamster ovary cells. Cancer Treat Rep 67:869–74.

Locher KP. (2009). Structure and mechanism of ATP-binding cassette transporters. Philos Trans R Soc Lond B Biol Sci 364:239–45.

Longley DB, Johnston PG. (2005). Molecular mechanisms of drug resistance. J Pathol 205:275–92. Loo TW, Bartlett MC, Clarke DM. (2003). Simultaneous binding of two different drugs in the binding pocket of the human multidrug resistance P-glycoprotein. J Biol Chem 278:39706–10.

Martin C, Berridge G, Higgins CF, et al. (2000). Communication between multiple drug binding sites on P-glycoprotein. Mol Pharmacol 58:624–32.

(10)

Mu¨ller H, Pajeva IK, Globisch C, Wiese M. (2008). Functional assay and structure–activity relationships of new third-generation P-glycoprotein inhibitors. Bioorg Med Chem 16:2448–62.

Oldham ML, Davidson AL, Chen J. (2008). Structural insights into ABC transporter mechanism. Curr Opin Struct Biol 18:726–33.

Pajeva I, Wiese M. (1998). Molecular modeling of phenothiazines and related drugs as multidrug resistance modifiers: a comparative molecular field analysis study. J Med Chem 41:1815–26.

Pajeva IK, Globisch C, Wiese M. (2004). Structure–function relationships of multidrug resistance P-glycoprotein. J Med Chem 47:2523–33.

Pajeva IK, Globisch C, Wiese M. (2009). Combined pharmacophore modeling, docking, and 3D QSAR studies of ABCB1 and ABCC1 transporter inhibitors. ChemMedChem 4:1883–96.

Pajeva IK, Wiese M. (2009). Structure–activity relationships of tariquidar analogs as multidrug resistance modulators. AAPS J 11: 435–44.

Palmeira A, Sousa E, Vasconcelos MH, et al. (2012a). Structure and ligand-based design of P-glycoprotein inhibitors: a historical perspective. Curr Pharm Des 18:4197–214.

Palmeira A, Sousa E, Vasconce os MH, Pinto MM. (2012b). Three decades of P-gp inhibitors: skimming through several generations and scaffolds. Curr Med Chem 19:1946–2025.

Pearce HL, Safa AR, Bach NJ, et al. (1989). Essential features of theP-glycoprotein pharmacophore as defined by a series of reserpineanalogs that modulate multidrug resistance. Proc Natl Acad Sci U S A86:5128–32.

Ramachandra M, Ambudkar SV, Chen D, et al. (1998). Human P-glycoprotein exhibits reduced affinity for substrates during a catalytic transition state. Biochemistry 37:5010–19.

Ramu A, Ramu N. (1992). Reversal of multidrug resistance by phenothiazines and structurally related compounds. Cancer Chemother Pharmacol 30:165–73.

Raviv Y, Pollard HB, Bruggemann EP, et al. (1990). Photosensitized labeling of a functional multidrug transporter in living drug-resistant tumor cells. J Biol Chem 265:3975–80.

Roe M, Folkes A, Ashworth P, et al. (1999). Reversal of P-glycoprotein mediated multidrug resistance by novel anthranilamide derivatives. Bioorg Med Chem Lett 9:595–600.

Rosenberg MF, Kamis AB, Callaghan R, et al. (2003). Threedimensional structures of the mammalian multidrug resistance P-glycoprotein demonstrate major conformational changes in the transmembrane domains upon nucleotide binding. J Biol Chem 278: 8294–9.

Rosenberg MF, Velarde G, Ford RC, et al. (2001). Repacking of the transmembrane domains of P-glycoprotein during the transport ATPase cycle. EMBO J 20:5615–25.

Salphati L. (2009). Transport-metabolism interplay. Mol Pharm 6: 1629–30.

Sarshar S, Zhang C, Moran EJ, et al. (2000). 2,4,5-Trisubstituted imidazoles: novel nontoxic modulators of P-glycoprotein mediated multidrug resistance. Part 1. Bioorg Med Chem Lett 10:2599–601.

Sauna ZE, Ambudkar SV. (2007). About a switch: how P-glycoprotein (ABCB1) harnesses the energy of ATP binding and hydrolysis to do mechanical work. Mol Cancer Ther 6:13–23.

Schinkel AH. (1999). P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev 36:179–94.

(11)

Schmid D, Ecker G, Kopp S, et al. (1999). Structure–activity relationship studies of propafenone analogs based on P-glycoprotein ATPase activity measurements. Biochem Pharmacol 58:1447–56. Seelig A, Landwojtowicz E. (2000). Structure–activity relationship of P-glycoprotein substrates and modifiers. Eur J Pharm Sci 12:31–40.

Sharom FJ. (2008). ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 9:105–27.

Sharom FJ. (2011). The P-glycoprotein multidrug transporter. Essays Biochem 50:161–78.

Ste˛pien´ KM, Tomaszewski M, Tomaszewska J, Czuczwar SJ. (2012). The multidrug transporter P-glycoprotein in pharmacoresistance to antiepileptic drugs. Pharmacol Rep 64:1011–19.

Tombline G, Muharemagic´ A, White LB, Senior AE. (2005). Involvement of the ‘‘occluded nucleotide conformation’’ of P-glycoprotein in the catalytic pathway. Biochemistry 44:12879–86.

Tsakovska IM. (2003). QSAR and 3D-QSAR of phenothiazine type multidrug resistance modulators in P388/ADR cells. Bioorg Med Chem 11:2889–99.

Wang S, Ryder H, Pretswell I, et al. (2002). Studies on quinazolinones as dual inhibitors of P-gp and MRP1 in multidrug resistance. Bioorg Med Chem Lett 12:571–4.

Weiss J, Dormann SM, Martin-Facklam M, et al. (2003). Inhibition of P-glycoprotein by newer antidepressants. J Pharmacol Exp Ther 305: 197–204.

Zamora JM, Pearce HL, Beck WT. (1988). Physical–chemical properties shared by compounds that modulate multidrug resistance in human leukemic cells. Mol Pharmacol 33:454–62.

Zhang C, Sarshar S, Moran EJ, et al. (2000). 2,4,5-Trisubstituted imidazoles: novel nontoxic modulators of P-glycoprotein mediated multidrug resistance. Part 2. Bioorg Med Chem Lett 10:2603–5.

Riferimenti

Documenti correlati

The present study faced a rather unexplored domain, namely the explicit syntactic teaching of the mechanisms involved in the acquisition of two complex

Ismail Elezi, Sebastiano Vascon, Alessandro Torcinovich, Marcello Pelillo and Laura Leal-Taix´e; The Group Loss for Deep Metric Learning [35] ; submitted to European Conference

Quattro delle dieci fotografie da me scelte non sono state scattate da fotoreporter e, curiosamente, si tratta della prima e delle ultime tre nell’arco temporale considerato e a

At the risk of oversimplifying, one can say that a paradox lies at the heart of modern European history: attempts to create a multipolar balance of power, in order to avoid

Infine, la questione della vertenza italo - jugoslava sul confine nella Venezia Giulia andrebbe trattata non solo nei termini in cui essa si è sviluppata a partire

Le vicende delle "antenate" della Banca Italiana di Sconto (la Banca di Busto Arsizio, poi Società Italiana di Credito Provinciale, e la Società

Nel primo capitolo (§1.2) mi soffermerò dunque sull’idea di linguaggio figurato che si può ricostruire leggendo la Vita nova, e in particolare la celebre digressione di poetica