• Non ci sono risultati.

• Structure of the Standard Model

N/A
N/A
Protected

Academic year: 2022

Condividi "• Structure of the Standard Model"

Copied!
54
0
0

Testo completo

(1)

Electroweak physics (II)

(The SM: structure and phenomenology) Andrea Romanino

SISSA/ISAS

(2)

Plan (II)

• Structure of the Standard Model

• The Higgs sector

• The gauge sector

• The flavour sector

• Tests

• The neutrino sector

• Beyond the Standard Model

(3)

The Standard Model (SM) of particle physics

(in compact notation) i=1,2,3: family index

masses neutrino

Λ

) )(

(

flavour Ψ

Ψ

breaking symmetry

) (

|

|

gauge 4

Ψ 1 Ψ ˆ

2

H L H η L

H H V H

D

F F D

i

L

j ij i

i j ij µ

µν a µνa i

i

SM

+ λ

− +

=

(4)

The SM as a renormalizable theory

A precise definition requires specifying:

• The fermion content: Ψ

• The gauge group G and its action on Ψ

• The symmetry breaking (scalar) sector: H

• The globally symmetric lagrangian L ( Ψ , H )

(5)

( ) ( ) ψ ψ ψ ( ) ψ ( ) ψ ψ ψ

ψ ψ

ψ , , , ,

½,0) (

0,½) (

+

→ +

+        

The fermion content

spinors Dirac

) , , , , , , , ,

, , , (

Ψ = e µ τ ν

e

ν

µ

ν

τ

d s b u c t

) , , ,

, ,

, ,

,

:

(notation ei ↔ e µ τ νi ↔νe νµ ντ ui ↔ u c t di ↔ d s b

A 4-component Dirac spinor ψ has two 2-

components with definite chirality ( ): γ

5

ψ

L R

ψ 2

1

,

∓ γ

5

=

A gauge symmetry can mix fields with same Lorentz quantum numbers ⇒ can act independently on ,

(chiral symmetry)

L

ψ ψ

R

SO(3,1)=SU(2)xSU(2) →

(6)

(or)

 

 

= 

 

 

= 

, 0

0

c

R

L

ψ ε

ψ ψ ψ

( ) ( )

L R R

c c

L

ψ ψ ψ

ψ , ψ ψ , ψ ψ

½,0) 0,½) (

(

 



  





(7)

GeV 300

~ Λ Λ ,

1

2 / )

1 ( 2

/ ) 1

( 2

2 weak

=

+

=

− +

=

=

F

µ L L µ L

µ L µ

†µ µ c

F c

G

d u

e ν

d u

e ν

j

j G j

L

γ γ

γ γ

γ

γ

5 5

The gauge group G

Works well at E « Λ

However, it must fail at E » Λ:

) (unitarity /

1

~ vs

~ G

2

E

2

σ E

2

σ

(1 family only)

(8)

M E E

g

~ E σ

A~ g

M M E

g E

~ M σ

A~ g

» 1 @

«

@

2 4

2 2

4 4 2

2 2

νe νe

e e

At E > Λ it should be possible to account for the 4-fermion operator in terms of renormalizable operators

νe νe

e e

νe νe

e e

2 h.c.

weakren

= g j

cµ

W

µ+

+ L

symmetry gauge

of SSB vector

massive ⇒

µ+

W

2 2

2 8

W

F

M G = g

ψ W

T ψ

W

j

cµ µ+

→ γ

µ a µa

(9)

) prediction (NC

2

, ]

,

[ 1 2 3 3 σ3

T iT

T

T = =

• , are mixed by the generators → define

• Denote also

• then

• : G ⊇ SU(2),

• Q (charge/e) must also be a generator; Q = diag(0,1) on L (independent of T’s)

• Define ; is also a generator and commutes with the T’s:

From the lepton charged current to G



 

= 

L L

e L ν

νL eL

2

2

1 µ

µ µ

iW W ± =W

L W

T W

T L

g

Lweakren = γµ ( 1 µ1 + 2 µ2)

, 2 2

2 2

1 1 σ

σ T

T = =



singlet

~

doublet

~ eR

L

T3

Q Y = −

(10)

Action of G on the quarks

• L doublet, singlets of SU(2)

• On Q: ok

• triplets of SU(3)



 

= 

L L

d

Q u uR ,dR



 

= 





− −





= −

= 0 1

0 1

6 1 2

/ 1 0

0 2

/ 1 3

/ 1 0

0 3

/ 2 T3

Q Y

; 3 on

; 1 3 on

2 uR Y dR

Y = = −

L R

L

R u d d u , , ,

(11)

Left-handed fermions quantum numbers (summary)

3 / 2 1

3

3 / 1 1

3

6 / 1 2

3

1 1

1

2 / 1 2

1

U(1) SU(2)

SU(3)

R i R i i R i

i

u d

Q e

L

U(1) x

SU(2) x

SU(3)

G =

(12)

0 )

3 3

6 2

( 3 anomaly

Grav.

0 )

3 3

6 2

( 6 U(1)

0 )

Tr(

SU(2)) SU(2)x(not

) 3

( 2 / 3

xU(1) SU(2)

0 )

Tr(

xSU(3) SU(2)

2 ,

) 2 ( SU

0 )

Tr(

SU(3)) SU(3)x(not

0 )

2 ( 2 / 3

xU(1) SU(3)

0 )

Tr(

xSU(2) SU(3)

vectorlike )

3 ( SU

) ) (

) ( (

3) 3 (

) 3 (

) 3 (

3

3 2 a

2 C

2 a b

3 2 a

) ) (

2 a (

2 3

= +

+ +

+

= +

+ +

+

=

+

=

=

=

= +

+

=

R R R

R R R

R R

d e Q u

L

d e Q u

L

Q ab L

ab

u d Q

AB

Y Y

Y Y

Y

Y Y

Y Y

Y σ

Y Y

δ λ

δ }

σ σ

{

λ

Y Y

Y δ

σ

1

Anomaly cancellation

Y T

t τ

} τ τ { τ Tr

T

ijk ( i j , k ) =? 0, i = A, a ,

(nice, but why?)

(13)

• G must be broken, or else

– All vector bosons would be massless – All fermions would be massless:

• A G-symmetric mass term combines left-handed fermions with conjugated quantum numbers under G:

• The representation of G on the SM fermions is chiral (= no such term is allowed)

• Note: the electroweak symmetry protects the fermion protects masses

(is that the reason why the SM fermions are chiral?)

( )

h.c.) (

) h.c.

( + = +

=

m ψ

R

ψ

L

m ψ

L

ψ

L

ψ

ψ m

Spontaneous symmetry breaking

(14)

Fermion masses and Higgs quantum numbers

• Electron mass term:

• = a doublet with Y=½ under SU(2)xU(1)

• The only possible renormalizable gauge invariant coupling of is (Yukawa interaction), where H is a scalar doublet with Y=½ under SU(2)xU(1) (Higgs doublet)

• One Higgs doublet is sufficient to embed all mass terms in gauge-invariant interactions

• The most general gauge invariant Yukawa lagrangian is then , where SU(2) and

SU(3) contractions have been understood ( ) )

h.c.

(

e

R

e

L +

m

L e e

e

R LR

R

LH

e

λ

L e

R

Li Ri Li

Ri Li

Ri

e d d u u

e

, ,

H Q u

H Q d

H L

e

Ri j Dij Ri j Uij Ri j

Eij λ λ

λ + +

pq q p

ε H Q

QH

=

(15)

The Higgs sector

Most general gauge invariant ren. lagrangian for H :

2

2 ( )

) 2 (

) (

) (

H H

H H

µ H

H V

H H

V H

D H

D L

H

µ

µ H

+ λ

=

=

breaking symmetry

k Electrowea 0

2 < 0 ⇒

H

≠ ⇒

µ

)

~ scale a

at but breaking,

symmetry k

Electrowea 0

0

(

µ

2 > ⇒

H

m

π

> 0 λH

(16)

breaking symmetry

) (

|

|

flavour Ψ

Ψ

gauge 4

Ψ 1 Ψ ˆ

2

V H H

D

H F F

D i L

µ

j i ij

µν a µνa

i i

SM

− +

+

= λ

The renormalizable part of the SM

is now fully specified

(17)

The Higgs sector (II)

• Unbroken generators

• 3 broken generators ↔ 3 massive vectors ↔ 3

unphysical Goldstone bosons ↔ 1 real physical Higgs

2 2

2 | | (174GeV) ,

0 0 ,

=

=

 >

 

= 

H

v µ v v

H

λ

Q b T

a

ib v b

H

T

 ⇒ ∝



= −

=

3 2 1

0 2

, 2 real, 2

,

, = = 1

+

=

σ Y

T b

a T

b aY

T

a a a a a

(18)

Goldstone bosons and Higgs

• To identify the Goldstone bosons:

– Write down the 4x4 Higgs mass matrix and find the massless eigenstates or

– Perform infinitesimal SU(2) x U(1) rotations of the vacuum

– CP: ; H has CP = +1, has CP = -1

 ⇒



= +

=

3 2 1

2

iG

G v iG

ε H

T G ε i H

δ

a a





 + +

=

+

2

iG

0

v h H G

0 3 2

1 ,

2

G G G

G

+ =

iG

+ =

G

0

H

H

(19)

Higgs mass and self-coupling

• Higgs potential in unitary gauge:

• The Higgs self-coupling is proportional to its mass (non decoupling effects)

2 2

2

2 | µ | 2 v

m

h

= = λ

H

const.

8 2

) 2 (

)

(

2 3 4

2

0

= + + +

=

=

m h v h h

H V

h

V

G h

λ

H

λ

H

(20)

Theoretical constraints on the Higgs mass

• Assume that the SM holds up to the scale Λ:

finite (perturbative) ⇒ upper limit on

> 0 ⇒ lower limit on

(if < 0, the absolute

minimum of the effective potential resides at or above Λ)

) Λ

H ( λ

) Λ

H ( λ

) Λ

H ( λ

m

h

m

h

) Λ

H ( λ

[Gino’s courtesy]

h V(h)

Λ 2 2 4

8 ) ( 2

) ) (

( h h

h h h µ

V + λH

(21)

• The lower limit can be relaxed if we live in a metastable vacuum

[Hambye, Riesselmann]

(22)

Experimental constraints on the Higgs mass

• Direct experimental limit:

> 114 GeV

• Indirect upper limit from EW precision tests (see below):

< 280 GeV @ 95% CL

(assumes no new physics contributions to the EW precision tests)

m

h

m

h

[LEP EW WG]

(23)

W, Z, and γ

• The vector boson masses arise from

• depend on the multiplet on which they act

• can be different because the corresponding generators cannot be linked by a gauge transformation

Y B ig T

igW t

G ig

Dµ = ∂µ + s µA A + µa a + ' µ

' , , g g gs

Y T

t A, a ,

H D

H

D

µ ) µ (

' 2

2 )

(

2 3 2 2

2 1





+

 =





− ′

=

+

µ µ µ

µ

µ µ

µ

Z g

g iv gW

B g gW

iW W

iv g H

D

µ µ

µ µ

µ Wµ iW Z c W s B

W − ≡ −

+1 2 3

,

2

2 '

/

cosθ g g g

cWW = +

(24)

• Therefore,

• A is indeed the photon field

• Z couples to the neutral current (vector and axial couplings)

– Not guaranteed by gauge invariance nor by the breaking pattern – Peculiar of EW breaking by a doublet (triplets ruled out)

where 2 ,

) (

2 2 µ

Z µ µ µ

µ W

µ M Z Z

W W

M H

D H

D = + +

2 1 iT T

T ± = ±

2

2 '

' '

g g

c gg g gs

e W W

= +

=

=

W µ µ W

µ µ

µ

µ T s Q Z

c i g ieQA

T g W

i T

g W i

D ( )

2 2

2 3 − +

+ +

+

= + + +igsGµAt A

level) (tree

cos2 1

2

2 =

W Z

W

θ M

ρ M

W µ W µ

µ s W c B

A = 3 +

2 2 2 2

2 2 2

2 , '

2 g g v

M g v

MW = Z = +

2 = 0 MA

Also,

4 2

1

2 v

GF

=

(25)

(Custodial symmetry)

• In general, ρ = 1 can be traced back to a symmetry of the Higgs potential (custodial symmetry)

• ⇒ V(H) is symmetric under O(4) ~ , broken to the diagonal (custodial) SU(2)

• The whole lagrangian is symmetric for vanishing g’ and L-R

symmetric Yukawas. In particular, the W-H couplings are invariant under SU(2) ~ O(3), hence ρ = 1

• ρ = 1 can be reproduced if the symmetry breaking mechanism has a custodial SU(2) symmetry under which both the W’s and the G’s

22 22

12 12

|2

|H = h r +h i +h r +h r xSU(2)R

SU(2)L

2 / ) Φ Φ ( ,

Φ Φ

, Φ

2 1 2

1

L UR H H Tr h U

h h

ε h  → =











= 

(26)

Gauge interactions

• Fermion gauge interactions:

• Gauge boson self-interactions: from

in terms of mass eigenstates:

µA A sµ s µ µ

em µ µ

W n µ µ

c

j Z ej A g j G

c W g

g j Ψ

i Ψ Ψ

D i

Ψ

 − − −

 

 +

= + h.c.

ˆ 2 ˆ

W χ µ

R L

χ e u d ν

f χ

nµ µ iL

iL µ iL

µ iL

c

ν e u d j f T s Q f

j

i i i i

) (

, 3 2

, , , ,

= +

=

= = γ

γ γ

µ ν ν

µ µν

νc µb a abc

µ a ν

ν a µ

µν

B B

B

W W

ε g W

W W

=

=

µ+

W

ν

W

Z , γ

µ+

W

ν

W

µ µ µ

µ Z Z

W +, , ,γ

ν ν ν ν Z

W , ,γ , γ a

µν µνa

W

4

W

− 1

(27)

W +

W

e+

e

γ

W

e+

W +

W

e+

e

νe

(a)

e (b)

(a) (a+b)

(a+b+c)

(28)

• Higgs gauge interactions

gauge unitarity

2 1

2 2 22 2 2

 

 +





 +

M

W

W

µ+

W

µ

M

Z

Z

µ

Z

µ

v

h v

h

(29)

The flavour sector

• The Higgs coupling to fermions is proportional to their masses

– The coupling to light (« 174 GeV) fermions is small

– The coupling to the top leads to non-decoupling effects – The Higgs is mainly produced by gauge interactions

• Despite the rich flavour structure:

– No flavour or CP violation with leptons (neglecting neutrino masses)

v m

ijE ,D,U = λEij,D,U

H Q u

H Q d

H L e

L

f = λEij Ri j + λDij Ri j + λUij Ri j

2 h.c.

2

2 + + +

+

+ +

=

h u

v u h m

d v d

h m e

v e m

u u m

d d m

e e m

Lj Ri ijU

Lj Ri

ijD Lj

Ri ijE

Lj U Ri

Lj ij D Ri

Lj ij E Ri

ij

unitarity gauge

(30)

The lepton flavour sector (neglecting ν masses)

• Mass eigestates:

Then

• Extend to gauge multiplets (commutes with G):

• Then

No LFV nor CPV,

R E EL

diag

E

U

E

m U

m

= , unitary, = diag( i ) ≥ 0

L

R E e

E diag

E

U m m

U

i e i

Li e Ri

Lj E Ri

ij

e e m e e m e e

m

+ h.c. = i ′ ′ + h.c. = i





′ =

′ =

Lj E ij

Li

ij Rj Ri E

e U

e

e U

e

L R ) (

) (

Ri i Ri

Ri i i Ri

i

i D L e i D e L i D L e i D e L

ˆ + ˆ = ˆ + ˆ





′ =

′ =

j E ij

i

Rj E ij

Ri

L U

L

e U

e

L R ) (

) (

i e Ri

j E Ri

ij

e L H

= λ i

e

L

H

λ

10 11

2 . 1 )

(

µ

e γ

< ×

BR

,

(31)

• Mass eigestates:

Then

• Cannot extend both to gauge multiplets

H Q d V H

Q u

H Q d H

Q d

Q U

Q

d U

d

u U

u

i j u ij

Ri j Uij

i d i

j D Ri

ij ij j

i D

Rj ij

D Ri

Rj ij

U Ri

i i

L R R

= ′

= ′

 →



′ =

′ =

′ =

λ λ

λ

λ but

) (

) (

) (

e.g.





′ =

′ =





′ =

′ =

ij Lj U

Li

ij Rj U

Ri ij Lj

D Li

Rj D ij

Ri

u U

u

u U

u d

U d

d U

d

L R L

R ( )

) , (

) (

)

( d i i d i i

Li d Ri

Li d Ri

Lj U Ri

ij Lj

D Ri ij

u u m d

d m

u u m d

d m u

u m

d d

m

i i

i i

′ + ′

= ′

′ + + ′

= ′ +

+ h.c. h.c.

R L

R L U U

diag U U

D D

diag

D

U

D

m U m U m U

m

= , =

The quark flavour sector

) ,

(both

u

Lj

d

Lj

Q

(32)

• In terms of mass eigenstates:

• All flavour and CP violation effects originate from the quark charged current → calculable FCNC and CPV processes

(CP: g → g* in an arbitrary phase convention for the mass

eigenstate fields ⇒ CP is conserved iff all the couplings are real for at least one phase choice)

µ jL ij iL

µ iL µ iL

had

c u d V u d

j , = γ = γ )

( ,

, = nµhad

µhad

n

j

j

) ( ,

, = emµ had

µ had

em

j

j

(33)

Parameters: summary (no ν masses)

) CC (

18 : Tot 3

(l) sector Flavour

10 ,

, ,

(q) sector

Flavour

2 ,

sector Higgs

3 sector

Gauge

3 , 2 , 1

+ +

QCD

e u d

h s

θ

m

δ θ

m m

m v

g,g',g

i i i

(34)

Tests of the electroweak sector

• The electroweak sector (fermions + gauge interactions + masses from the Higgs sector) is the best tested

part of the SM

– Wide range of predictions:

g, g’, v ↔ ↔ QED, W&Z masses, their

self-interactions and all fermion gauge interactions (tree level)

– Measurements at the ‰ level

• Excellent agreement with the experiment (even too good)

v s

W

, ),

(35)

Low energy tests

• β, lepton and pion decays (CC): GF, universality

• Atomic parity violation:

• Parity violation in Møller scattering

• (Parity violation in ep scattering)

• Neutrino-nucleous DIS:

θ

W

sin

2

θ

W

sin

2

θ

W

sin

2

θ

W

sin

2

(NC)

(36)

An example: Atomic Parity Violation

e e

Z

(Z,A) (Z,A)

A Z

s Q

r δ σ

m Q

H G

W W W

e

PV = F ⋅∇ ( ), = (2 − 4 ) −

∆ 2 2

55133

Ce in crossing -

level p

- s

) 3 ( 19 . 73

|

| ), 48 ( 69 . 72

|

|

Q

W exp=

Q

W th=

(37)

[E158]

(The 3σ NuTeV anomaly has probably more to do with QCD (parton distributions) than

(38)

High energy tests

• At LEP II, LEP I, SLC, Tevatron

• M

Z

Z

Z resonance in e

+

e

-

→ff

N

v

=2.9841±0.0083: 3 light neutrinos + anomaly cancellation = 3 families

• M

W

W

e

+

e

-

→W

+

W

-

at LEP II

• A

FB

...

l

σ

h,

gc

W

e WWZ

WW γ , couplings ∝ ,

) (

Γ )

( Γ

) (

Γ )

( Γ

L R R

L

L R R

f L

LR

Z f f Z f f

f f Z

f f A Z

→ +

= →

(39)

• Accuracy in most cases is at the ‰ level → sensitivity to 1-loop

corrections, which involve

– g, g’, v

– mt, αs(MZ), ∆αhad(MZ) – mh

and bring together

– the gauge sector:

– the flavour sector:

– the EW-breaking sector:

) 4

2 /( π λt

) 4 /(

), 4

/( 2

2 π g π

g

) /

log(

) 4

2 /(

h MW

m π

g

(40)
(41)

Bounds on NP



>

<

=

+ +

=

<

1

~ loop, one

ve, perturbati is

NP if TeV 0.5

1

~ level, tree

ve, perturbati is

NP if TeV 5

g interactin strongly

is NP if TeV 50

~ TeV 5

Λ

TeV) 5

(

1 : Λ

EWPT

16

) Λ Λ

(

2 2

2 2 2

2

λ λ c

c π λ λ

c

c O L

E L

i SM

SM i

n i

i i

SM SM i

eff SM

(42)

Accidental symmetries

• Global symmetries of :

– Must commute with the gauge symmetry

– Must be U(1) symmetry (non degenerate fermion spectrum)

• 5 (independent) global U(1) symmetries of :

• Symmetries of could be violated by (accidental symmetries)

GeV j

i L H L

L H

L

GeV L B

Q Q Q

k L j

i

B B k l j i

15 15

10

~ Λ masses

neutrino )

( and

violates )

)(

(

10 4

Λ decay

proton violates

Λ

≠ ⇒

>

⇒ ) 2 / 1 1

2 / 1 3

/ 1 3

/ 2 6

/ 1 (

0 0

0 0

0 0

0 3

/ 1 3

/ 1 3

/ 1

− Y

δ δ

L B

H e

L u

d Q

ik ik

k

R i i i

i R i R

SMren

L

SMren

L

SMren

L L

SMeff

(43)

Smallness of neutrino masses

Natural scale of fermion masses:

v = 174 GeV

Why

(must have a different origin than

? 10

/v < 12 mν

) 10 3 . 0

/v ≈ 5 me

(44)

GeV) 10

2 (

eV 05

. GeV 0

10 5

. 0

~ Λ

Λ

) )(

Λ (

GUT 16 15 SMren SMeff

 

 

⋅ 

=

+ +

=

M

h m hv v

m

L H L

h H L

L

ν ν

1 family

The SM as an effective theory

Majorana

In neutrino physics we are still (and we will remain…) at the level of the Fermi theory

(45)

c c

c c

e e

d d

ν ν

u u

Right-handed neutrinos



 

Y c xSU(2)LxU(1) SU(3)



 

(46)



 

c c

c c

e e

d d

ν ν

u u

Right-handed neutrinos



 

B-L R

c xSU(2)LxSU(2) xU(1) SU(3)



 

 

 

(47)

c c

c c

e e

d d

ν ν

u u

Right-handed neutrinos



 

 SO(10)

(48)



 

c c

c c

e e

d d

ν ν

u u

Right-handed neutrinos



 

Y c xSU(2)LxU(1) SU(3)

heavy be

therefore can

and singlet

SM a

c

is v

v λ m

LH v

λ

c

ν

=

(as for the other fermions)

(unlike the other fermions) c

c

v M v

L

HE

⊃ − 2

(49)

T D ν D

T

M m m

m

M λ h λ

L H L

h H

1 1 Λ

) )(

Λ (

=

X

H

L

H

L νc νc

M

See-saw

: out

Integrate ν

c

Majorana

(50)

Beyond the Standard Model

• Experimental “problems” of the SM:

– Gravity

– Dark matter

– Baryon asymmetry

• Experimental hints of physics beyond the SM

– Neutrino masses

– Quantum number unification

• Theoretical problems of the SM:

– Naturalness problem

– Cosmological constant problem – Strong CP problem

• Theoretical puzzles of the SM:

– Hierarchy

– Family replication

– Small Yukawa couplings, pattern of masses and mixings

– Gauge group, anomaly cancellation, charge quantization, quantum numbers

(51)

E

ΛSM

MPl

SM NP

The SM is an effective theory valid below ΛSM

• Where is ?

• What type of physics above ? ΛSM

ΛSM

The naturalness problem as a guideline for NP

GeV H =174

(52)

2 2

2 2

2 2

2

2 (4 2 ) Λ

2 4 ) 3 Λ

( SM F t W Z h SM

h

h m M M m

π m G

m = + − − −

Where is ? Q

SM

The main upper limit follows from solving the hierarchy problem





 =

 + 

 =

 + 

=

GeV 250

if TeV

2 ) Λ

Λ (

GeV 115

TeV if 5

. 0 ) Λ

Λ (

2 2 2

2 2 2

SM h SM h

h

SM h SM h

h

m m

m

m m

m

is the scale of the degrees of freedom cutting off the Higgs mass quadratic divergence

barring accidental cancellations ΛSM

TeV ΛSM <~

(53)

Unification

3 / 2 1

3

3 / 1 1

3

6 / 1 2

3

1 1

1

2 / 1 2

1

U(1) SU(2)

SU(3)

R i R i i R i

i

u d

Q e

L

10 ,

,

5 ,

SU(5)

R i i i

R

R i i

u Q e

d L

16 ,

, , ,

,

SO(10)

R i R i

i i i R

R

i ν e Q u d

L

(SU(5))

heavy

5V τ = ig G t +igW T +ig'B Y + ig µα α s µA A µa a µ

s g g g MU

g ' @

3

5 = 5

=

=

(54)

With supersymmetry

Riferimenti

Documenti correlati

Di Bartolo and colleagues found that TRAIL deficiency promoted diabetes development in ApoE/TRAIL-knockout mice put on a high-fat diet [ 53 ], which is commonly used to induce

Now we’re actually seeing a second thing happening to women that’s not unusual—we’re starting to see the layoff of those state and local government workers, and

Il mastro cartaio doveva porre la massima cura nella distribuzione della pasta sulla forma: un buon operaio, come spiegato in alcuni manuali per la fabbricazione della

Vinicius Monteiro de Lira, Craig Macdonald, Iadh Ounis, Raffaele Perego, Chiara Renso, Valéria Cesário Times.. Information Processing &amp; Management Journal,

Anzi, come ha affermato la Corte, “qualora una persona i cui dati personali sono stati o potrebbero essere trasferiti verso un paese terzo che è stato oggetto

● We say that a strongly connected component (SCC) in a directed graph is a subset of the nodes such that:. – (i) every node in the subset has a path to every

s = 13 TeV, place significant constraints on SUSY parameter space. Today, inclusive searches probe production of gluinos at about 2 TeV, first and second generation squarks in the

zione operata mediante l’inserimento del principio del contraddittorio nella formazione della prova il quadro di riferimento costituzionale è profondamente mutato rispetto alla fase