• Non ci sono risultati.

[5] T.S.J. Lammerink, F. Dijkstra, Z. Houkes, and J. van Kuijk, Intelligent gas- mixture flow sensor, Sensors and Actuators A, 46/47, 380-384, 1995.

N/A
N/A
Protected

Academic year: 2021

Condividi "[5] T.S.J. Lammerink, F. Dijkstra, Z. Houkes, and J. van Kuijk, Intelligent gas- mixture flow sensor, Sensors and Actuators A, 46/47, 380-384, 1995."

Copied!
6
0
0

Testo completo

(1)

[1] OMEGA, Volume 4 - Flow and Level Measurement, Table 1, Transactions in Measurement and Control, OMEGA Press

[2] J. G. Webster, Electronics - Measurement, Instrumentation and Sensors Handbook, cap. 28, CRC Press, 1999.

[3] M. Elwenspoek, R. Wiegerink, Mechanical Microsensors, first ed., Springer- Verlag, Berlin, 2001.

[4] P. Bradshaw, Thermal methods of flow measurement, J. Phys. E: Sci. Instrum.,1 (1968) 504-509.

[5] T.S.J. Lammerink, F. Dijkstra, Z. Houkes, and J. van Kuijk, Intelligent gas- mixture flow sensor, Sensors and Actuators A, 46/47, 380-384, 1995.

[6] T.S.J. Lammerink, N.R. Tas, M. Elwenspoek and J.H.J. Fluitman, Micro-liquid flow sensor, Sensors and Actuators A, 37/38, 45-50, 1993.

[7] van Putten, A.F.P., and Middelhoek, Integrated Silicon Anemometer, IEE Electronics Letters, Vol. 10, 1974, pp. 425-426.

[8] van Riet, R.W.M., and J.H. Huysing, Integrated Direction-Sensitive Flow-Meter, IEE Electronics Letters, Vol. 12, 1976, pp. 647-648.

[9] A.W. van Herwaarden, D.C. van Duyn, B.W. van Oudheusden, P.M. Sar- ro, Integrated Thermopile Sensors, Sensors and Actuators, A21-A23, 1989, 621-630.

[10] R. Lenggenhager, CMOS thermoelectric infrared sensors, Tesi di dottorato in scienze naturali, Svizzera, 1960.

150

(2)

[11] T.S.J. Lammerink, N.R. Tas, G.J.M. Kijnen and M. Elwenspoek, A New Class of Thermal Flow Sensors Using ∆T=0 as a Control Signal, Proc. International Conference on Micro Electro Mechanical Systems (MEMS), Miyazaki, Japan, 2000, pp. 525-530.

[12] G. Stemme, A Monolithic Gas Flow Sensor with Polymide as Thermal Insulator, IEEE Trans. on Electron Devices, Vol. 33, No. 10, 1986, pp. 1470-1474.

[13] S. Wu, et al., MEMS Flow Sensors for Nano-Fluid Applications, Sensors and Actuators, Vol. A89, 2001, pp. 152-158.

[14] T. Ebefors, E. K¨ alvesten, and G. Stemme, Three Dimensional Silicon Triple- Hot-Wire Anemometer Based on Polymide Joints, Proc. International Confe- rence on Micro Electro Mechanical Systems (MEMS), Heidelberg, Germany, 1998, pp. 93-98.

[15] J. Chen, et al., Two-Dimensional Micromachined Flow Sensor Array for Fluid Mechanics Studies, Journal of Aerospace Engineering, Vol. 16, No. 2, 2003, pp.

85-97.

[16] F. Mayer, O. Paul and H. Baltes, Influence of Design Geometry and Packaging of the Response of Thermal CMOS Flow Sensors, The 8th International Con- ference on Solid-State Sensors and Actuators, and Eurosensors IX, Stockholm, Sweden, June 25-29, 1995.

[17] Seiji Oda, Mitsuyoshi Anzai, Shoichi Uematsu, and Kenzo Watanabe, A Silicon Micromachined Flow Sensor Using Thermopiles for Heat Transfer Measure- ments, IEEE Transactions on Instrumentation an Measurement, Vol. 52, No. 4, August 2003.

[18] N. Sabat´ e, J. Santander, L. Fonseca, I. Gr` acia, C. Can´ e, Multi-range silicon micromachined flow sensor, Sensors and Actuators A 110, 2004, 282-288.

[19] Grigoris Kaltas, Athanase A. Nassiopoulos, and Androula G. Nassiopoulou,

Characterization of a Silicono Thermal Gas-Flow Sensor With Porous Silicon

Thermal Isolation, IEEE Sensors Journal, Vol. 2, No. 5, October 2002.

(3)

[20] K.A.A. Makinwa, and J.H. Huijsing, A Smart Wind Sensor Using Thermal Sigma-Delta Modulation Techniques, Sensors and Actuators, Vol. A97-98, 2002, pp. 15-20.

[21] M. Ashauer et al., Thermal Flow Sensor for Liquids and Gases Based on Combinations of Two Principles, Sensors and Actuators, Vol. A73, 1999, pp.7-13.

[22] Ellis Meng and Yu-Chong Tai, A parylene MEMS Flow Sensing Array, De- partement of Electrical Engineering, Caltech Micromachining Lab California Institute of Technology.

[23] S.T. Cho, and K.D. Wise, A High Performance Microflowmeter with Built-In Self Test, Proc. Transducers, San Francisco, CA, 1991, pp. 400-403.

[24] R.E. Oosterbroek, et al., A Micromachined Pressure/Flow Sensor, Sensors and Actuators, Vol. A77, 1999, pp. 167-177.

[25] P. Enoksson, G. Stemme, and E. Stemme, A Silicon Resonant Sensor Struc- ture for Coriolis Mass-Flow Measurements, Journal of Microelectromechanical System, Vol. 6, No. 2, 1997, pp. 119-125.

[26] D. Sparks, et al., A Portable MEMS Coriolis Mass Flow Sensor, IEEE Sensors Conference, 2003, Toronto, Canada, No. 8.4 p.90, Oct. 2003.

[27] Hans-Elias de Bree, An overview of Microflown

Technologies,www.microflown.com.

[28] Dong-Hui Gao, Ming Qin, Hai-Yang Chen, Qing-An Huang, A Self-packaged Thermal Flow Sensor by CMOS MEMS Technology.

[29] Tesi di laurea di Carmine Iannella, Progetto di un sensore di portata per gas con interfaccia di lettura integrata, Universit` a degli studi di Pisa, Facolt` a di Ingegneria, Corso di Laurea in Ingnegneria Elettronica, AA. 2003/2004.

[30] Tesi di laurea di Alessio Ciomei, Progetto e dimensionamento di sensori in- tegrati di portata mediante simulazioni FEM, Universit` a degli studi di Pi- sa, Facolt` a di Ingegneria, Corso di Laurea in Ingegneria Elettronica, AA.

2004/2005.

(4)

[31] Marc J. Madou, Fundamentals of Microfabrication, CRC Press, 2002, cap. 1.

[32] Tesi di laurea di Stefano Stanzione, Progetto e simulazione di anemometri ba- sati su sistemi micro-elettro-meccanici, Universit` a degli studi di Pisa, Facolt` a di Ingegneria, Corso di Laurea in Ingegneria Elettronica, AA. 2005/2006.

[33] Jian-Bo Sun, Ming Qin, Qing-An Huang, A Flip-Chip Packaged CMOS Thermal Flow Sensor, 2005.

[34] I. Filippi, Progetto di un interfaccia per termopile integrate in tecnologia BCD.

Tesi di laurea in ingegneria elettronica, Pisa 2003.

[35] B.W. van Oudheusden, The determination of the effective ambient tempera- ture for thermal flow sensors in a non-isothermal environment, Sensors and Actuators, Vol. 72, 1999, pp. 38–45.

[36] K. E. Petersen, Silicon as a mechanical material, Proc. IEEE, Vol. 70, 1982, pp.

420-457.

[37] G. T. A. Kovacs, N. I. Maluf, K. E. Petersen, Bulk Micromachining of Silicon, Proc. IEEE, Vol. 86, 1998, pp. 1536-1551.

[38] H. Seidel, The mecanism of anisotropic silicon etching and its relevance for micromachining, Proc. Transducers ’87, Rec. 4th Int. Conf. Solid-State Sensors and Actuators, Tokyo, Japan, 1987, pp. 120-125.

[39] H. Seidel, L. Csepregi, A. Heuberger, and H. Baumg¨ artel, Anisotropic etching of crystalline silicon in alkaline solutions I: Orientation dependence and beha- viour of passivation layers, J. Electrochem. Soc., Vol. 137, no. 11, pp. 3612-3626, 1990.

[40] J. B: Price, Anisotropic etching of silicon with K OH − H

2

O-isopropyl alcohol, Semiconductor Silicon, 1973, p. 339.

[41] D. Moser, CMOS flow sensors, Doctoral dissertation, Swiss Federal Institute of Technology, Zurich, Swutzerland, 1993.

[42] F. I. Chang, R. Yeh, G. Lin, P. B. Chu, E. Hoffman, E. J. Kruglick, K. S. J. Pister,

and M. H. Hecht, Gas-phase silicon micromachining with xenon difluoride,

(5)

Proc. SPIE Microelectronic Structures and Microelectromechanical Devices for Optical Processing and Multimedia Applications, Austin, TX, July 1995, Vol. 2641, pp. 117-128.

[43] S. Beeby, G. Ensell, M. Kraft, N. White, MEMS Mechanical Sensors, Artech House, 2004, cap. 2.

[44] G. C. Schwartz and P. M. Schaible, Reactive ion etching of silicon, J. Vac. Sci.

Technol., Vol. 16, no. 2 , pp. 410-413, 1979.

[45] G. Mulhern, D. Soane, and R. Howe, Supercritical Ca rbon Dioxide Drying of Microstructures, Transducers ’93, Yokahama, Japan, 1993, pp. 296-298.

[46] O. Tabata, R. Asahi, H. Funabashi, K. Shimaoka, and S. Sugiyama, Anisotropic etching of silicon in TMAH solutions, Sensors Actuators A, Vol. 34, no. 1, pp.

51-57, 1992.

[47] G. Yan, P. C. H. Chan, et al., An improved TMAH Si-etching solution without attacking exposed aluminum, Sensors and Actuators, Vol. A89, 2001, pp. 135- 141.

[48] P. M. Sarro, S. Brida, C. M. A. Ashruf, et al., Anisotropic Etching of Silicon in Saturated TMAHW Solutions for IC-Compatible Micromachining.

[49] A. Merlos, M. Acero, M. H. Bao, J. Bausells, and J. Esteve, TMAH/IPA anisotro- pic etching characteristics, Sensors and Actuators, Vol. A37-A38, pp. 737-743, 1993.

[50] M. Shikida, T. Masuda, D. Uchikawa, K. Sato, Surface roughness of single- crystal silicon etched by TMAH solution, Sensors and Actuators, Vol. A90, 2001, pp. 223-231.

[51] R. J. Reay, E. H. Klaassen, and G. T. A. Kovacs, Thermally and electrically isolated single-crystal silicon structures in CMOS technology, IEEE Electron Device Lett., Vol. 15, pp. 399-401, 1994.

[52] N. Maluf, K. Williams, An Introduction to Microelectromechanical Sistems

Engineering, Artech House, 2004.

(6)

[53] M. Wang, P.Catalano and Gianluca Iaccarino, Prediction of high Reynolds number flow over a circular cylinder using LES with wall modeling.

[54] M. Zhao, L. Cheng, B. Teng, D. Liang, Numerical simulation of viscous flow past

two circular cylinders of different diameters, Applied Ocean Research, Vol. 27,

2005, pp. 39-55.

Riferimenti

Documenti correlati

Abstract: - In this paper a rectangular silicon nitride membrane capacitive micromachined ultrasonic transducer (CMUT) has been proposed to suit best for medical imaging

During the experimental study the velocity field in the reactor spray zone were measured.. For CFD modelling the modification of standard OpenFOAM solver is

Effect of resuscitation maneuvers on sublingual microcirculation (percentage of well perfused vessels) assessed by the Orthogonal Polarization Spectral imaging technique in 12

De Rosa M., Computational Fluid-Dynamic Analysis of Experimental Data on Heat Transfer Deterioration with Supercritical water, MSc thesis, Department of

Grazie alle sue caratteristiche di fre- quenza e velocità, esso supporterà l’au- mento di passeggeri in transito da Bolo- gna, derivato dalla realizzazione della

Il Presidente della Repubblica Giorgio Napolitano ha inau- gurato Roma Tiburtina, la prima delle nuove stazioni AV, presenti le massime autorità dello Stato, tra cui il

Poi riscriviamo e traduciamo uno studio dell’Agenzia per la sicurezza ferroviaria dell’Unione Europea (ERA) che (come purtroppo avviene sempre più spesso) antepone

The BepiColombo trajectory employs a solar electric propulsion system so that a combi- nation of low-thrust arcs and flybys at Earth, Venus and Mercury are used to reach Mercury