• Non ci sono risultati.

BIBLIOGRAFIA 76 [12] W.A. de Heer and P. Milani. Large ion volume time-of-flight mass spectrometer with position- and velocity-sensitive detection capabilities for cluster beams.

N/A
N/A
Protected

Academic year: 2021

Condividi "BIBLIOGRAFIA 76 [12] W.A. de Heer and P. Milani. Large ion volume time-of-flight mass spectrometer with position- and velocity-sensitive detection capabilities for cluster beams."

Copied!
5
0
0

Testo completo

(1)

[12] W.A. de Heer and P. Milani. Large ion volume time-of-flight mass spectrometer with position- and velocity-sensitive detection capabilities for cluster beams. Rev. Sci. Instrum., 62(3):670–677, 1990. [13] T. Bergmann, T.P. Martin, and H. Schaber. High-resolution

time-of-flight mass spectrometers: Part I. Effects of field distortions in the vicinity of wire meshes. Rev. Sci. Instrum., 60(3):347–349, 1989.

[14] W. Ekardt. Dynamical polarizability of small metal particles: Self-consistent spherical jellium background model. Phys. Rev. Lett., 52(21):1925–1928, 1984.

[15] J. Pedersen, S. Bjørnholm, J. Borggreen, K. Hansen, T.P. Martin, and H.D. Rasmussen. Observation of quantum supershells in clusters of sodium atoms. Nature, 353:733–735, 1991.

[16] C. Kittel. Introduction to solid state physics. Wiley, 1995. [17] J.D. Jackson. Classical electrodynamics. Wiley, 3 edition, 2001.

[18] N.D. Lang and W. Kohn. Theory of metal surfaces: Induced surface charge and image potential. Phys. Rev. B, 7(8):3541–3550, 1973.

[19] D.R. Snider and R.S. Sorbello. Density-functional calculation of the static electronic polarizability of a small metal sphere. Phys. Rev. B, 28(10):5702–5710, 1983.

[20] L.P. Gor’kov and G.M. Eliashberg. Sov. Phys. JETP, 21:940, 1965. [21] R. Dupree and M.A. Smithard. The electronic properties of small

me-tal particles: the electric polarizability. J. Phys. C: Solid State Phys., 5:408–414, 1972.

[22] F. Meier and P. Wyder. Magnetic moment of small indium particles in the quantum size-effect regime. Phys. Rev. Lett., 30(5):181–184, 1973. [23] M.J. Rice, W.R. Schneider, and S. Strässler. Electronic polarizabilities

of very small metallic particles and thin films. Phys. Rev. B, 8:474–482, 1973.

[24] M. Brack. The physics of simple metal clusters: self consistent jellium models and semiclassical approaches. Rev. Mod. Phys, 65(3):677–732, 1993.

(2)

BIBLIOGRAFIA 77

[25] H. Nishioka. Shells and supershells in metal clusters. Z. Phys. D, 19(1):19–23, 1991.

[26] U. Röthlisberger and W. Andreoni. Structural and electronic proper-ties of sodium microclusters (n=2-20) at low and high temperatures: New insights from ab initio molecular dynamics studies. J.Chem.Phys, 94(12):8129–8151, 1991.

[27] V. Kresin. Photoabsorbation of small metal clusters: Surface and volume modes. Phys. Rev. B, 42(6):3247–3252, 1989.

[28] V. Kresin. Static electric polarizabilities and collective resonance frequencies of small metal clusters. Phys. Rev. B, 39(5):3042–3046, 1989.

[29] A. Szabo and N.S. Ostlund. Introduction to advanced electronic structure theory. Dover Publication, 1996.

[30] C.J. Cramer. Essentials Of Computational Chemistry: Theories And Models. John Wiley and Sons, 2004.

[31] K. Bonin and V.V. Kresin. Electric-Dipole Polarizabilities of Atoms, Molecules and Clusters. World Scientific, 1997.

[32] F. Sim, S. Chin, M. Dupuis, and J.E. Rice. Electron correlation effects in hyperpolarizabilities of p-nitroaniline. J. Phys. Chem., 1993.

[33] J. Frenkel. Wave mechanics – Advanced General Theory. Oxford university, 1931.

[34] J.E. Rice, R.D. Amos, S.M. Colwell, N.C. Handy, and J. Sanz. Frequen-cy dependent hyperpolarizabilities with application to formaldehyde and methyl fluoride. J. Chem. Phys., 93(12):8828–8839, 1990.

[35] N. Ullah and D.J. Rowe. Properties of real RPA matrices and a simple diagonalization procedure. Nucl.Phys.A, 163:257–260, 1971.

[36] P.M.W. Ghosh, S. Gill. Finite jellium models. I. Restricted Hartree Fock calculations. J. Chem. Phys., 122:154108–1–154108–12, 2005. [37] M. Hamermesh. Group Theory. Addison-Wesley, 1962.

(3)

[39] K. Rüdenberg, L.M. Cheung, and S.T. Elbert. MCSCF optimiza-tion through combined use of natural orbitals and the Brillouin-Levy-Berthier theorem. Int. J. Quantum Chem., 16:1069–1101, 1979.

[40] D.M. Wood and N.W. Ashcroft. Quantum size effects in the optical properties of small metallic particles. Phys. Rev. B, 25(10):6255–6274, 1982.

[41] L. Serra, F. Garcias, M. Barranco, J. Navarro, L.C. Balbás, A. Ru-bio, and A. Mananes. The static polarisability of small metal clu-sters and spheres in an improved Thomas-Fermi approximation. J.Phys:Condens.Matter, 1(51):10391–10405.

[42] O. Genzken and M. Brack. Temperature dependence of supershells in large sodium clusters. Phys. Rev. Lett., 67(23):3286–3289.

[43] G. P. Arrighini, F. Biondi, and C. Guidotti. Dynamic multipole po-larizabilities of two- and four-electron atomic systems. Phys. Rev. A, 8(2):577–588, 1973.

[44] P.W Atkins and R.S. Friedman. Molecular quantum mechanics. Oxford University Press, fourth edition, 2005.

[45] R. Fuchs. Theory of the optical properties of ionic crystal cubes. Phys. Rev. B, 11(4):1732–1740, 1975.

[46] R. Ruppin. Plasmon frequencies of cube shaped metal clusters. Z. Phys. D,, 86(1):69–71, 1996.

[47] M. Madjet, C. Guet, and W. R. Johnson. Comparative study of exchange-correlation effects on the electronic and optical properties of alkali-metal clusters. Phys. Rev. A, 51(2):1327–1339, 1995.

[48] A.H. Stroud and D. Secrest. Gaussian Quadrature Formulas. Prentice Halls, 1966.

[49] M. Abramowitz and I.A. Stegun. Handbook of Mathematical functions, volume 55 of Applied mathematics. Dover Publications, 1968.

[50] F.B. Hildebrand. Introduction to Numerical Analysis. McGraw-Hill, 1956.

[51] E.W. Weisstein. Jacobi-Gauss quadrature. From MathWorld – A Wolfram Web Resource. http://mathworld.wolfram.com.

(4)

BIBLIOGRAFIA 79

[52] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, and M. Met-calf. Numerical recipes in Fortran 77. Cambridge University Press, 1986.

(5)

[1] U. Kreibig and M. Vollmer. Optical properties of metal clusters. Springer-Verlag, 1995.

[2] K.K. Likharev. Single-electron devices and their applications. Proceeding of the IEEE, 87(4):606–632, 1999.

[3] G. Mie. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik, 1908.

[4] R. Kubo. Electronic properties of metal fine particles. J. Phys. Soc. Jpn., 17, 1962.

[5] P.G. Reinhard and E. Suraud. Introduction to cluster dynamics. Wiley-VCH, 2004.

[6] W.A. de Heer. The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys., 65(3):611–676, 1993. [7] R. Skomski and D.J. Sellmyer. Advanced magnetic nanostructure.

Springer, 2006.

[8] B.B. Dasgupta. Surface plasmon dispersion for very small metallic spheres: A quantum mechanical formulation. Z. Phys. B, 27(1):75–79, 1977.

[9] M. Cini and P. Ascarelli. Quantum size effects in metal particles and thin films by an extended RPA. J. Phys. F, 4(11):1998–2008, 1974. [10] W. Knight, W.D. Clemenger, K. de Heer, W.A. Saunders, W.A.

Chou, M.Y. Cohen, and L. Marvin. Electronic shell structure and abundances of sodium clusters. Phys. Rev. Lett., 52(24):2141–2143, 1984.

[11] G. Scoles. Atomic and molecular beam method. Oxford university press, New York, 1988.

Riferimenti

Documenti correlati