• Non ci sono risultati.

Show that if the leading coefficient of Q and its constant term are both real, then P and Q are real

N/A
N/A
Protected

Academic year: 2021

Condividi "Show that if the leading coefficient of Q and its constant term are both real, then P and Q are real"

Copied!
1
0
0

Testo completo

(1)

Problem 11822

(American Mathematical Monthly, Vol.122, February 2015) Proposed by G. Stoica (Canada).

Call a polynomial real if all its coefficients are real. Let P and Q be polynomials with complex coefficients such that the composition P ◦ Q is real. Show that if the leading coefficient of Q and its constant term are both real, then P and Q are real.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Our proof is inspired by A. Horwitz’s paper Compositions of polynomials with coefficients in a given field, J. Math. Anal. Appl. 267 (2002), no. 2, 489-500. The same proof still holds if we replace R and C with two fields of characteristic 0, F1 and F2, such that F1⊂ F2.

We assume that P and Q are not constant, otherwise the statement is false:

P (x) = 0, Q(x) = x2+ ix, P (Q(x)) = 0 and P (x) = ix, Q(x) = 0, P (Q(x)) = 0.

Let P, Q ∈ C[x] such that P ◦ Q ∈ R[x] with P (x) =

n

X

k=0

akxk, Q(x) =

m

X

j=0

bjxj and P (Q(x)) =

mn

X

i=0

cixi. where n, m ≥ 1, bm, b0∈ R, and an6= 0, bm6= 0. Note that an= cmn/bm∈ R.

i) We show that Q ∈ R[x].

Assume by contradiction that Q is not real, and let d = min{j : bm−j6∈ R} ∈ [1, m − 1].

Since mn − d > m(n − 1), it follows that cmn−d= an[xmn−d]Q(x)n = an

X

k0+···km=n 0k0+···mkm=mn−d

 n

k0, . . . km



(b0)k0· · · (bm)km.

Moreover

m−1

X

i=0

(m − i)ki= m

m

X

i=0

ki

m

X

i=0

iki= mn − (mn − d) = d,

which implies that ki = 0 for i ∈ [0, m − d − 1)] (otherwise the above sum is greater than d).

Hence

dkm−d+

m−1

X

i=m−d+1

(m − i)ki= d

If km−d> 0 then km−d= 1 and ki= 0 for i ∈ [m − d + 1, m − 1]. Therefore cmn−d= annbm−dbn−1m + an

X n

km−d+1, . . . km



(bm−d+1)km−d+1· · · (bm)km.

Since an6= 0, bm6= 0, and cmn−d, an, bm−d+1, . . . , bm∈ R, it follows that also bm−d ∈ R which contradicts the definition of d.

ii) We show that P ∈ R[x].

Assume by contradiction that P is not real, and let d = min{j : an−j6∈ R} ∈ [1, n]. Then cmn−md= [xm(n−d)]

n

X

k=n−d+1

akQ(x)k+ an−dbn−dm .

Since an 6= 0, bm6= 0, Q ∈ R[x] and cmn−md, an−d+1, . . . , an∈ R, it follows that also an−d∈ R which contradicts the definition of d.



Riferimenti

Documenti correlati

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.. Solution. } and the multisets

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,