• Non ci sono risultati.

CAPITOLO 4

N/A
N/A
Protected

Academic year: 2021

Condividi "CAPITOLO 4"

Copied!
20
0
0

Testo completo

(1)

CAPITOLO 4

TRAVE VITREA TENSEGRITY

Se si sceglie di progettare una struttura in vetro, il fattore estetico gioca sempre un ruolo fondamentale ed è necessario limitare il più possibile l’uso di componenti non traspa-renti. Tuttavia, nel caso di un elemento strutturale primario, come una trave, non è accetta-bile il comportamento fragile, tipico del vetro. Queste due considerazioni hanno guidato la ricerca intorno ad una nuova tecnologia strutturale mirata ad ottenere una trave in vetro che manifesti un tipo di rottura duttile.

L’idea di base è usare elementi sciolti, tenuti insieme unicamente dalla presollecita-zione di sottili tiranti. In questo modo si è cercato di ottenere una struttura capace di de-formarsi in maniera reversibile anche per carichi molto elevati e dotata di una capacità portante residua successiva alla crisi di alcuni suoi componenti.

La validità dell’intuizione, che ha condotto anche al deposito di un brevetto per l’Università di Pisa nel 2006, è stata confermata sia dalle simulazioni numeriche attraverso codici di calcolo agli elementi finiti, sia da una approfondita campagna di analisi sperimen-tali.

Le proprietà migliori del vetro e dell’acciaio vengono combinate per ottenere da un la-to trasparenza e leggerezza e dall’altro elevata resistenza, ottima rigidezza in esercizio ed una buona capacità di deformazione allo stato limite ultimo (duttilità). Non trascurabile, inoltre è la capacità di dissipare energia per attrito attraverso movimenti rigidi degli ele-menti che costituiscono la trave.

Il risultato è una struttura con una naturale resistenza alle azioni dinamiche, adatta ad essere impiegata anche in zona sismica o nei casi in cui l’interazione con il carico folla è un parametro determinante (passerelle pedonali ed orizzontamenti accessibili al pubblico).

Poiché l’integrità della trave, costituita da nodi metallici e pannelli di vetro assemblati per semplice contatto, è conferita da un campo autoequilibrato di presollecitazioni, si è scelto di battezzarla TVT (acronimo di Trave Vitrea Tensegrity).

(2)

4.1 Sistema strutturale Tensegrity

L’invenzione del termine “tensegrity”, contrazione delle parole inglesi “tensile” e

“in-tegrity”, è da attribuire a Richard Buckminster Fuller (Massachussetts, 1895-1983) che

studiò questo affascinante concetto strutturale ai ni fra scultura, architettura, matematica ed ingegneria e brevettò nel 1961 una classe di strutture costituite da cavi e puntoni alla quale diede questo nome.

Tuttavia la paternità del sistema strutturale non può essere attribuita al solo Fuller, ma deve essere condivisa con il suo allievo ed ispiratore Kenneth Snelson (Oregon 1927), lo scultore autore della Needle

Tower (figura 4.1), le cui prime opere di questo tipo

risalgono al 1948 e con l’ingegnere David Georges Emmerich (Ungheria 1925-1996) [13], [23].

Il concetto di tensegrity fa riferimento ad una so-spensione discontinua di compressione in un sistema continuo in tensione.

Una definizione da attribuire allo stesso Fuller è quella di “isole di compressione in un mare di

tensio-ne”. Snelson invece coniò il termine “floating com-pression”

Meno poeticamente si può dire che un sistema tensegrity è una rete di cavi autoequilibrati, presolleci-tati mediante un sistema discontinuo di puntoni interni alla rete stessa (non c’è quindi la necessità di trasferire all’esterno le tensioni come per le normali tensostrutture).

I singoli elementi sono in tensione o in compressione an-cor prima che la struttura sia soggetta alle forze esterne, per questo si parla di self stressed structures.

In una struttura tensegrity pura, in ciascun nodo conflui-sce un solo puntone ed almeno tre cavi, in modo tale che i puntoni compressi non sono in contatto reciproco e che il si-stema di cavi pretesi definisce spazialmente il sisi-stema (figura 4.2).

Il sistema è intrinsecamente efficiente come tutte le strut-ture in cui non sono presenti sforzi di flessione e ciascun membro è sottoposto a forze di trazione o compressione pura.

Nella pratica queste strutture manifestano alcuni proble-mi legati alla difficoltà di realizzazione, alla scarsa rigidezza Figura 4.1: K. Snelson – Needle Tower

(1968) alluminio ed acciaio inossidabi-le, dimensioni: 18,2x6x6 m

Figura 4.2:prisma triangola-re tensegrity (cellula elemen-tare “T-Prism” o “simplex”).

(3)

ed alla difficoltà di determinare con precisione la geometria iniziale (dipendente dal livello di pretensione) [36], [28].

Alcune di queste difficoltà possono essere superate se si rimuove la condizione di non contatto fra gli elementi compressi.

Le realizzazioni di strutture tensegrity in ingegneria civile sono legate essenzialmente al settore delle coperture leggere e delle torri. Alcuni degli esempi più significativi sono ri-portati nelle seguenti figure.

Figura 4.4: Arteplage di Yverdon, lago di Neuchatel, Svizzera.

Figura 4.3: Olympic Gymnastics Arena (Seoul, 1986), prima struttura significativa realizzata con il sistema tensegrity

(4)

Realizzata da Schlaich Bergermann & Partners, con i suoi 62,3 metri di altezza (com-presa l’antenna fissata sulla sommità), la torre di Rostock (figura 4.5) costituisce la struttu-ra tensegrity più alta del mondo. È composta da 6 elementi prismatici triangolari sovrapposti,alternativamente destrorsi e sinistrorsi, disposti con uno schema analogo alla Needles Tower. In questo caso, però i moduli sono ruotati di 30° in modo che le barre di un livello entrano in contatto con quelle dei livelli adiacenti.

(5)

4.2 Concezione strutturale della trave TVT

Alla base della concezione di una trave in sezione mista vetro-acciaio presollecitata c’è l’idea di sfruttare le eccellenti proprietà di resistenza a compressione del vetro, e la ele-vatissima resistenza a trazione delle funi di acciaio, attribuendo a ciascun elemento una funzione ben determinata e specializzata.

Ciascun componente della trave, da solo non sarebbe in grado di garantire una suffi-ciente affidabilità strutturale, ma una opportuna combinazione degli stessi, assieme ad un attento studio dei dettagli di interconnessione ha dato luogo ad una struttura le cui presta-zioni si sono rivelate più che soddisfacenti.

Figura 4.6: vista frontale del prototipo TVT .

4.2.1 Il vetro

La trave TVT è composta da pannelli triangolari di vetro stratificato e temperato chi-micamente, che svolgono la duplice funzione di resistere alle tensioni di compressione e di conferire rigidezza alla trave.

Il vetro, infatti sottoposto a compressione è in grado di sviluppare tensioni di rottura dell’ordine di 1000 N/mm2

ed in condizioni ambientali normali manifesta un compor-tamento elastico lineare con un modulo di Young relativamente elevato (circa 70 000

N/mm2). Tuttavia in presenza di sforzi di trazione anche molto deboli la rottura può manifestarsi in maniera improvvisa, senza alcun segno che possa mettere in guardia contro il raggiungimento del limite della capacità portante.

(6)

La fragilità del vetro è una proprietà intrinseca del materiale legata alla sua struttura molecolare che rende impossibile la deformazione plastica e la ridistribuzione delle ni. La presenza di imperfezioni superficiali anche microscopiche provoca le concentrazioni di tensione responsabili della rottura [20].

I procedimenti di tempera possono indurre un benefico stato di compressione superfi-ciale che tende a richiudere le microlesioni, ma quando i carichi esterni inducono nel mate-riale tensioni di trazione che annullano le tensioni di tempera, il problema della fragilità torna a presentarsi.

Con la trave TVT si è cercato di superare il problema sviluppando una tecnologia che non si oppone alle grandi deformazioni ma è in grado di assecondarle senza compromettere la sicurezza strutturale.

Osservando l’idea di base da un altro punto di vista si può pensare di aver progettato e anticipato la frattura del vetro suddividendolo in componenti triangolari che possono di-stanziarsi quando le sollecitazioni superano un certo livello, ma che successivamente tor-nano nella posizione iniziale conservando delle discontinuità ridotte e regolari che non recano danno alle qualità estetiche della trave.

4.2.2 Le funi

Le funi, presollecitate mediante tenditori, conferiscono integrità alla trave, inducendo nel vetro uno stato di compressione quasi isotropo.

È noto che le funi di acciaio, pur presentando elevatissime tensioni di rottura (oltre

1300 N/mm2) legate all’incrudimento che subiscono i fili nel processo di produzione, sono elementi strutturali dotati di una rigidezza relativamente bassa.

Le funi, infatti manifestano un modulo elastico apparente notevolmente inferiore ri-spetto a quello del materiale di base, perché quando sono sottoposte a trazione i fili avvolti a spirale che le compongono tendono a compattarsi determinando una quota di deforma-zione longitudinale aggiuntiva (i cataloghi dei produttori indicano moduli apparenti dell’ordine di 100 000 N/mm2

).

Un semplice esempio può evidenziare la differenza di rigidezza estensionale e di resi-stenza tra una barra di acciaio ed una fune di pari diametro nominale.

Per la barra si ha:

𝑓𝑢 = 510 𝑁/𝑚𝑚2 (tensione di rottura)

𝐿 = 1 000 𝑚𝑚 (lunghezza)

𝜙 = 6 𝑚𝑚 (diametro)

𝐴 = 28,27 𝑚𝑚2 (area della sezione trasversale)

𝐸 = 200 000 𝑁/𝑚𝑚2 (modulo elastico)

(7)

𝐸𝐴

𝐿 = 5 654 𝑁/𝑚 (rigidezza estensionale)

𝐹𝑢 = 14,4 𝑘𝑁 (resistenza ultima)

Per la fune si ha:

𝑓𝑢 = 1 300 𝑁/𝑚𝑚2 (tensione di rottura)

𝐿 = 1 000 𝑚𝑚 (lunghezza)

𝜙𝑛𝑜𝑚 = 6 𝑚𝑚 (diametro nominale)

𝐴𝑟𝑒𝑠 = 15,42 𝑚𝑚2 (area netta della sezione trasversale)

𝐸𝑎 = 100 000 𝑁/𝑚𝑚2 (modulo elastico apparente)

e quindi:

𝐸𝑎𝐴𝑟𝑒𝑠

𝐿 = 1 542 𝑁/𝑚 (rigidezza estensionale)

𝐹𝑢 = 20,0 𝑘𝑁 (resistenza ultima)

Quindi la fune rispetto alla barra di egual diametro ha una rigidezza estensio-nale inferiore del 72% e una resistenza superiore del 39%.

Il punto debole dell’elemento fune, che sembra essere la rigidezza, può però trasformarsi in un pregio in una struttura presollecitata.

Per chiarire questo concetto si consi-derino due elementi disgiunti premuti l’uno contro l’altro dall’azione di due fu-ni. In analogia con la trave TVT si può immaginare che gli elementi compressi siano di vetro, figura 4.8.

Dapprima le funi vengono messe in

tensione applicando su ciascuna un tiro pari ad 𝐹20; le funi esercitano quindi sul vetro attra-verso le piastre terminali una forza assiale di compressione pari ad 𝐹0.

In questa fase le funi subiscono un allungamento pari a: 𝛿𝑓0 = 𝐸𝐹𝑜 𝐿

𝑎𝐴𝑟𝑒𝑠

da cui:

𝐹0 =𝐸𝑎𝐴𝐿𝑟𝑒𝑠 𝛿𝑓0

Figura 4.8:esempio di struttura presollecitata da fu-ni.

(8)

il vetro invece subisce l’accorciamento: 𝛿𝑣𝑜 =𝐸𝐹0𝐿

𝑣𝐴𝑣

da cui:

𝐹0 = 𝐸𝑣𝐿𝐴𝑣 𝛿𝑣0

Una prima deduzione che si può fare è che l’accorciamento del vetro è molto inferiore all’allungamento delle funi; nel caso in esame si ha:

𝛿𝑣0 = 𝐸𝑎𝐴𝑟𝑒𝑠

𝐸𝑣𝐴𝑣 𝛿𝑓0 = 0,02 𝛿𝑓0

In una seconda fase alla struttura composta viene applicata una forza esterna di trazio-ne 𝑁 che si ripartisce tra vetro e funi (che lavorano in parallelo) proporzionalmente alle ri-spettive rigidezze assiali. La forza 𝑁 produce un incremento di tiro nelle funi e una diminuzione di compressione nel vetro date dalle relazioni:

𝛥𝑁𝑓 = 𝐸𝑎𝐴𝑟𝑒𝑠

𝐸𝑎𝐴𝑟𝑒𝑠+𝐸𝑣𝐴𝑣 𝑁 = 0,02 𝑁

𝛥𝑁𝑣 = 𝐸 𝐸𝑣𝐴𝑣

𝑎𝐴𝑟𝑒𝑠+𝐸𝑣𝐴𝑣 𝑁 = 0,98 𝑁

Quindi il 98% della forza esterna è as-sorbito dal vetro come sforzo di decompres-sione mentre solo il 2% viene incassato dalle funi come incremento di trazione.

Quando Δ𝑁𝑣 uguaglia la compressione iniziale 𝐹0, i due elementi di vetro si de-comprimono ed ulteriori sforzi di trazione vengono assorbiti interamente delle funi.

In corrispondenza della decompressio-ne la forza esterna applicata 𝑁𝑑𝑒𝑐 è tale che:

𝛥𝑁𝑣 = 𝐹0 = 0,98 𝑁𝑑𝑒𝑐

da cui:

𝑁𝑑𝑒𝑐 = 0,981 𝐹0 = 1,02 𝐹0

Si deduce che la risposta meccanica della struttura composta presollecitata è governata dalla rigidezza del vetro fino alla decompressione, e che successivamente, quando il con-tatto fra gli elementi di vetro viene meno, la struttura assume la rigidezza delle sole funi (che è pari appena al 2 % della rigidezza iniziale).

Figura 4.9: diagramma della forza applicata sulle piastre di estremità in funzione dello spostamento reciproco.

(9)

Si è dunque ottenuta una struttura caratterizzata da una buona rigidezza fino alla de-compressione, in grado di sopportare grosse deformazioni senza trasferire sforzi di trazione al vetro.

Queste considerazioni possono essere estese alla trave TVT considerando che le solle-citazioni di flessione inducono nella parte inferiore della trave una situazione analoga a quella riportata nell’esempio.

4.2.3 I nodi metallici e l’interfaccia acciaio-vetro

Ai nodi realizzati in acciaio inox spetta il compito di trasferire gli sforzi dalle funi ai pannelli di vetro e tra pannelli di vetro adiacenti. Sono assimilabili a vincoli monolaterali che trasmettono al vetro solo azioni di compressione consentendone il distacco e guidan-done la deformazione.

Sono costituiti da un nucleo interno opportunamente sagomato e due piastre laterali che realizzano l’alloggiamento in cui vengono accolti i vertici dei pannelli evitando perico-lose concentrazioni di tensione e consentendo piccole rotazioni e spostamenti.

All’interno del nucleo sono realizzati i fori filettati nei quali vengono avvitati i capi-corda delle funi.

Il contatto diretto acciaio-vetro è evitato interponendo uno strato di alluminio3, mate-riale più deformabile dell’acciaio e più tenace del vetro. Questo strato che costituisce un “cuscinetto” sul quale il vetro lascia la propria impronta favorisce l’abbattimento dei picchi di tensione e limita l’insorgere di microfessure proteggendo la parte più delicata dei pan-nelli: i bordi.

L’alluminio che è caratterizzato da un modulo elastico molto simile a quello del vetro consente di realizzare un collegamento sufficientemente rigido e di mantenere questa pro-prietà inalterata nel tempo4.

3

Nella prima generazione di travi TVT (prototipo ) era stato usato il PTFE per favorire lo scorrimento fra vetro e metallo

4

Per evitare che si manifestino fenomeni di corrosione galvanica causati dal contatto con l’acciaio inox è sufficiente isolare le lamine di alluminio verniciandole.

(10)

4.3 Gerarchia e ridondanza

Il concetto di gerarchia è associato nella progettazione strutturale a quello di

prevedi-bilità: soprattutto per le costruzioni realizzate con un materiale fragile come il vetro è

indi-spensabile che tutti i percorsi di carico siano chiaramente ed inequivocabilmente identificati [25].

Evitare introduzioni di stati tensionali imprevisti è ancor più importante se si ha a che fare con un materiale che ha una risposta strutturale dipendente dalla sollecitazione appli-cata. Come detto, infatti il vetro è in grado di sviluppare una eccellente resistenza a patto che non sia sottoposto a sforzi di trazione.

Nel rispetto di questo principio, la progettazione della trave TVT è stata orientata da una precisa distribuzione dei ruoli tra i componenti strutturali: il vetro incassa gli sforzi di compressione, le funi gli sforzi di trazione e l’assemblaggio per semplice contatto, senza l’ausilio di fori o adesivi, è progettato per salvaguardare questa ripartizione funzionale.

Altro concetto chiave nella progettazione di strutture in vetro è la ridondanza.

Con questo termine si indica la pratica di aumentare il numero di elementi necessari a garantire la stabilità globale della struttura in modo che nel caso di rottura di uno o più e-lementi, gli altri non siano trascinati nella crisi, ma possano sopportare il carico addiziona-le consentendo alla struttura nel suo insieme di continuare ad esercitare la propria funzione portante. Naturalmente in questo caso possono essere accettati margini di sicurezza ridotti considerando che si tratta di una situazione temporanea, in attesa della sostituzione dei componenti danneggiati.

Applicando il concetto di ridondanza si può quindi progettare una struttura sicura a di-spetto della intrinseca fragilità e della spiccata aleatorietà delle caratteristiche di resistenza del materiale che la compone.

In pratica, poiché la possibilità di rottura di un elemento non può essere del tutto eli-minata, si cerca di fare in modo che essa non sia pericolosa (eventuali schegge o frammenti di vetro non cadano a terra) e che non inneschi un processo a catena che pregiudichi l’integrità della struttura (collasso globale).

Nel rispetto di questo principio per la progettazione della trave TVT sono stati consi-derati diversi scenari di rottura, sviluppando da un lato una ridondanza locale attraverso l’uso di lastre di vetro stratificato e temperato chimicamente e dall’altro una ridondanza globale ottenuta raddoppiando gli elementi resistenti.

la rottura di una sola delle due lastre che compongono il pannello stratificato non compromette la sicurezza della trave e lo strato di interlayer mantiene i frammenti incollati alla lastra sana evitandone la caduta.

Anche nel caso che si manifestino lesioni in entrambe le lastre, l’uso del vetro tempe-rato chimicamente (che si rompe in frammenti di grosse dimensioni) e di un interlayer rigi-do (SGP) fa sì che la trave conservi una sufficiente capacità portante.

(11)

Qualora invece l’entità del danno sia tale che tutto un pannello perda improvvisamente rigidezza, entra in gioco la ridondanza globale: la trave infatti è costituita da due sistemi resistenti in parallelo e qualora uno di essi venga meno per cause accidentali, l’altro può sostituirlo temporaneamente nella sua funzione portante.

b) a)

Figura 4.10: ridondanza strutturale locale (a) ottenuta con l’impiego di vetro stratificato temperato chimi-camente (pur presentando vistose lesioni la trave ha conservato resistenza e rigidezza; solo un ulteriore con-sistente incremento dei carichi ha causato il collasso) e ridondanza globale (b) ottenuta disponendo due pareti uguali in parallelo.

(12)

4.4 Modularità

Un aspetto molto importante nella progettazione di una trave di vetro di grande luce è costituito dal sistema di collegamento delle lastre [21].

I limiti alla realizzazione di travi monolitiche di grandi dimensioni sono imposti da esigenze costrut-tive e di trasporto. Se infatti la tecnologia di produ-zione del vetro float consente di realizzare nastri di 3,2 metri di larghezza, che vengono tagliati in lastre di 6 o al massimo 7 metri, le limitazioni legate al trasporto fanno sì che difficilmente si possano otte-nere pannelli di lunghezza superiore a 4,5 metri.

Per luci maggiori si pone quindi la questione della giunzione delle lastre.

La tecnologia TVT che prevede l’assemblaggio di moduli di piccole dimensioni, facilmente traspor-tabili, supera questo problema senza ricorrere a fori nel vetro che causerebbero pericolose concentrazioni di tensione.

Poiché inoltre i pannelli elementari sono tutti uguali ed hanno forma di triangolo equi-latero, anche i nodi in acciaio possono essere standardizzati.

Anche in caso di rottura di un pannello la modularità offre il notevole vantaggio di po-ter sostituire senza grandi difficoltà solo la parte danneggiata disponendo opere provvisio-nali che limitano parzialmente e per breve tempo l’esercizio della struttura.

Una struttura modulare offre quindi dei vantaggi sia strutturali che economici, consen-tendo di limitare i costi di costruzione e di manutenzione dell’opera

Figura 4.11: con l’assemblaggio di più moduli di piccole dimensioni si possono superare grandi luci e si risolvono molti problemi di trasporto e montaggio.

(13)

4.5 Caratteristiche geometriche e meccaniche dei prototipi

4.5.1 Trave TVT

Anche se questa tesi si occupa della seconda generazione di travi TVT, in questo pa-ragrafo si vuole dare una breve descrizione del primo prototipo, battezzato TVT , realiz-zato e sottoposto a prove di carico nel laboratorio del Dipartimento di Ingegneria Strutturale dell’Università di Pisa.

I dettagli strutturali del secondo prototipo, TVT , sono stati infatti ricavati per la maggior parte da quelli della prima trave, apportando delle modifiche che ne correggessero i difetti emersi in fase di assemblaggio e di prova.

Il campione a è formato da due ordini di 17 lastre di vetro triangolari equilatere di lato

330 mm. La lunghezza complessiva della trave, misurata tra i vincoli è di 2970 mm (figura

4.12).

Figura 4.12: schema geometrico della trave TVT e disposizione dei controventi.

I nodi (figura 4.13) sono realizzati in acciaio inox AISI 316, e sono provvisti di cavità per alloggiare i pannelli dei due piani vetrati distanziandoli di 20 mm.

(14)

Nei quattro bracci del nucleo dei nodi sono stati ricavati i fori nei quali vengono avvtate le estremità filetavvtate dei tiranti, che in questo caso sono costituiti da barre in acciaio i-nox di sezione circolare piena e di diametro 6 mm per quelle di parete e 8 mm per i correnti inferiori e superiori.

Figura 4.14: elemento assemblato.

L’assemblaggio viene realizzato attraverso la pretensione delle barre che sono dotate di tenditori. Lo schema che si ottiene è simile ad una trave reticolare tipo Warren.

a) b)

(15)

Figura 4.15: trave assemblata.

Per conferire un sufficiente grado di stabilità flessotorsionale al prototipo, il corrente superiore è stato controventato con una tralicciatura costituita da cavetti di acciaio e punto-ni in sezione tubolare. Lo schema dei controventi è riportato nella figura 4.12.

4.5.2 Trave TVT

I limiti del primo prototipo sono stati individuati nella eccessiva deformabilità, nella scarsa stabilità flessotorsionale e nella difficoltà di montaggio cau-sata dalla necessità di ottenere un allineamento molto preciso fra le barre per inserire i tenditori. Alla luce di queste considerazioni sono state apportate le mo-difiche che verranno di seguito descritte.

Per aumentare il grado di stabilità flessotorsio-nale i nodi metallici sono stati tagliati in due lungo il piano medio e sono state assemblate due pareti paral-lele distanziate di 171 mm. I nodi del corrente supe-riore delle due pareti sono stati collegati con un controvento reticolare a croci di S. Andrea. Poiché le barre diagonali del controvento sono state ricavate dai tiranti del prototipo , non è stato difficile equi-paggiarle di tenditori e presollecitarle aumentando

ulteriormente la rigidezza trasversale. Figura 4.16: i due piani che costituiscono la trave  collegati dal controvento supe-riore

(16)

Figura 4.17 schema geometrico della trave TVT e disposizione dei controventi.

Anche i montanti di controvento sono stati ricavati dai profili tubolari (CHS 20x2) u-sati per il prototipo . Il dettaglio del collegamento (figura 4.18) è stato studiato per con-sentire un gioco sufficiente a recuperare un eventuale disallineamento dei nodi.

Trattandosi di un prototipo e non es-sendo note a priori le tolleranze strutturali si è preferito lasciare una abbondante possibilità di rotazione5. Una volta posi-zionati i montanti, le quattro viti M3 ven-gono serrate contro il profilo per dare rigidezza flessionale al collegamento.

Poiché, però il braccio tra le viti è piuttosto piccolo e la rigidezza delle pare-ti del profilo tubolare è modesta, si è pre-ferito adottare uno schema di controvento reticolare a croci di S. Andrea. Un detta-glio in grado di garantire maggiore rigi-dezza flessionale del nodo avrebbe forse consentito di adottare uno schema

Vie-rendeel.

5

Tuttavia in fase di montaggio si è riscontrato un buon allineamento fra i nodi.

figura 4.18:dettaglio del montante di controvento e del collegamento con il nodo.

(17)

Un’altra differenza evidente fra i due prototipi è costituita dalle dimensioni dei pan-nelli di vetro. Per la trave  sono stati usati pannelli di lato 660 mm (doppio rispetto al pro-totipo ). Anche la lunghezza è leggermente maggiore: 3300 mm, misurati tra i vincoli, con un rapporto h/L circa uguale a 1/6.

Lo spessore dei pannelli e le caratteristiche fisiche e meccaniche del vetro (Tabella 4.1) sono uguali per i due prototipi: è stato adottato vetro temperato chimicamente in lastre di spessore 5 mm accoppiate mediante uno strato di PVB di 1,52 mm per ottenere pannelli stratificati dello spessore complessivo di 11,52 mm.

Densità:  2 500 Kg/m3 Durezza 6 unità (scala Mohs) Modulo di Young: E 70 000 MPa Coefficiente di Poisson: 0,2

Coeff. di espansione lineare:  9x10-6 K-1

Tabella 4.1:proprietà fisiche e meccaniche del vetro (UNI 572)

I tiranti che nella trave  erano costituiti da barre, nella TVT  sono stati realizzati con funi spiroidali in acciaio inox AISI 316. Questa soluzione ha facilitato notevolmente l’assemblaggio, pur creando qualche difficoltà in fase di tesatura6

.

6

A causa della scarsa rigidezza torsionale della fune, applicando una coppia torcente al tenditore si ot-teneva un attorcigliamento della fune piuttosto che un avvitamento del tenditore, è stato quindi necessario predisporre un dispositivo di blocco torsionale.

(18)

4.6 Comportamento meccanico della trave TVT

Dal punto di vista qualitativo, la risposta della trave può essere interpretata come so-vrapposizione di tre meccanismi elementari.

Il primo meccanismo (figura 4.19) prevale nella fase iniziale di pretensione delle funi e corrisponde ad uno stato di compressione quasi isotropa dei pannelli di vetro. Le forze indotte dalle azioni sui tenditori sono auto equilibrate e garantiscono l’integrità della trave.

Figura 4.19: primo meccanismo - distribuzione schematica delle trazioni (blu) e delle compressioni (rosso) in fase di pretensione delle funi.

Quando vengono applicati i carichi esterni, prevale un secondo meccanismo che con-duce ad una distribuzione degli sforzi simile a quella di una trave reticolare Warren7.

Figura 4.20: secondo meccanismo – schema simile ad una trave Warren con compressioni nel corrente superiore (crescenti spostandosi verso la mezzeria, dove è massimo il momento flettente) e nei

diagona-li ascendenti verso la mezzeria (crescenti spostandosi verso gdiagona-li appoggi, dove è massimo il tagdiagona-lio).

Le compressioni nel corrente superiore (proporzionali al momento flettente) e nei dia-gonali ascendenti verso la mezzeria (proporzionali al taglio) vengono assorbite dal vetro, mentre le trazioni nel corrente inferiore e nei diagonali discendenti verso la mezzeria ven-gono assorbite dalle funi (figura 4.20). Naturalmente questo meccanismo si sovrappone al precedente e, almeno in una prima fase di carico, le trazioni vengono assorbite anche dal vetro che si decomprime.

7

Per la somiglianza con una trave Warren spesso si farà riferimento ai nodi superiori come ai “nodi del corrente superiore” ed alla sottostruttura composta dalle funi superiori e dalla parte superiore dei pannelli di vetro come “corrente superiore della trave”, anche se in realtà un vero e proprio corrente non esiste.

(19)

Quando il corrente inferiore della trave si decomprime ed i vertici inferiori dei pannel-li di vetro si staccano dai nodi metalpannel-lici viene meno la possibipannel-lità di trasferire gpannel-li sforzi o-rizzontali nel nodo. Si instaura quindi, nei pannelli con vertice rivolto verso l’alto, un meccanismo resistente locale attraverso la formazione di due puntoni discendenti verso i nodi inferiori ed un tirante orizzontale nel vetro (figura 4.21).

Figura 4.21: terzo meccanismo resistente – schema locale di tipo puntone-tirante che si manifesta dopo la decompressione del corrente inferiore.

Infine, quando le deformazioni della trave cominciano ad essere consistenti, si mani-festa un effetto del secondo ordine legato alle caratteristiche dei vincoli, che sono in grado di sviluppare una reazione orizzontale. Questo effetto può essere descritto dallo schema, proprio di un cavo teso tra due punti fissi, riportato in figura 4.22.

Figura 4.22: quarto meccanismo resistente, legato alle caratteristiche dei vincoli

Quest’ultimo meccanismo è responsabile della diminuzione di compressione che si osserva nella parte superiore dei pannelli di vetro più vicini ai vincoli quando vengono ap-plicati carichi molto elevati (vedi capitolo 5, analisi numerica agli elementi finiti).

Osservando la figura 4.22, si può notare una ulteriore fonte di ridondanza strutturale. Nel caso in cui uno o più pannelli appartenenti al corrente superiore di entrambi i piani col-lassino contemporaneamente, la trave subisce un cedimento improvviso di qualche centi-metro ma si arresta quando le funi superiori entrano in tensione.

Progettando quindi opportunamente i dispositivi di vincolo ed i dettagli di collega-mento con la struttura portata si può evitare che una eventuale crisi della trave abbia con-seguenze gravi per il complesso strutturale ed i suoi occupanti.

(20)

Figura

Figura  4.2:prisma  triangola- triangola-re  tensegrity  (cellula   elemen-tare “T-Prism” o “simplex”).
Figura 4.3: Olympic Gymnastics Arena (Seoul, 1986), prima struttura significativa realizzata con il sistema  tensegrity
Figura 4.5: torre tensegrity (Rostock, 2003).
Figura 4.7: dettaglio di un pannello di vetro.
+7

Riferimenti

Documenti correlati