• Non ci sono risultati.

Fast and stable rational RBF-based Partition of Unity interpolation1

N/A
N/A
Protected

Academic year: 2022

Condividi "Fast and stable rational RBF-based Partition of Unity interpolation1"

Copied!
37
0
0

Testo completo

(1)

Fast and stable rational RBF-based Partition of Unity interpolation 1

Stefano De Marchi

Department of Mathematics “Tullio Levi-Civita”

University of Padova SMART 2017 - Gaeta September 18, 2017

1joint work with A. Martinez (Padova) and E. Perracchione (Padova)

(2)

Outline

1 From RBF to Rational RBF (RRBF)

2 Partion of Unity, VSK, Computational issues

3 Numerical experiments

4 Future work

(3)

From RBF to Rational RBF (RRBF)

3 of 27

(4)

RBF Approximation

Notation

1 Data: Ω ⊂ Rd, X ⊂Ω, test function f XN = {x1, . . . , xN} ⊂Ω

f= {f1, . . . , fN}, where fi= f (xi)

2 Approximation setting: kernel Kε,NK(Ω),NK(XN) ⊂ NK(Ω) kernelK = Kε, Strictly Positive Definite (SPD) and radial Examples:

globally supported: Kε(x,y) =e−(εkx−yk)2(gaussian),

locally supported: Kε(x,y) = (1−ε2kxyk2)4+[4ε2kxyk2+1] (C2(R2)Wendland )

native spaceNK(Ω)(where K is the reproducing kernel) finite subspaceNK(XN)= span{K (·, x) : x ∈ XN} ⊂ NK(Ω)

Aim

FindPf ∈ NK(XN)s.t. Pf ≈f

(5)

RBF Approximation

Notation

1 Data: Ω ⊂ Rd, X ⊂Ω, test function f XN = {x1, . . . , xN} ⊂Ω

f= {f1, . . . , fN}, where fi= f (xi)

2 Approximation setting: kernel Kε,NK(Ω),NK(XN) ⊂ NK(Ω) kernelK = Kε, Strictly Positive Definite (SPD) and radial Examples:

globally supported: Kε(x,y) =e−(εkx−yk)2(gaussian),

locally supported: Kε(x,y) = (1−ε2kxyk2)4+[4ε2kxyk2+1] (C2(R2)Wendland )

native spaceNK(Ω)(where K is the reproducing kernel) finite subspaceNK(XN)= span{K (·, x) : x ∈ XN} ⊂ NK(Ω)

Aim

FindPf ∈ NK(XN)s.t. Pf ≈f

4 of 27

(6)

RBF Approximation

Notation

1 Data: Ω ⊂ Rd, X ⊂Ω, test function f XN = {x1, . . . , xN} ⊂Ω

f= {f1, . . . , fN}, where fi= f (xi)

2 Approximation setting: kernel Kε,NK(Ω),NK(XN) ⊂ NK(Ω) kernelK = Kε, Strictly Positive Definite (SPD) and radial Examples:

globally supported: Kε(x,y) =e−(εkx−yk)2(gaussian),

locally supported: Kε(x,y) = (1−ε2kxyk2)4+[4ε2kxyk2+1] (C2(R2)Wendland )

native spaceNK(Ω)(where K is the reproducing kernel) finite subspaceNK(XN)= span{K (·, x) : x ∈ XN} ⊂ NK(Ω)

Aim

(7)

RBF Interpolation

Given Ω, XN, f

Interpolant: Pf(x) =

N

X

k=1

αkK (x, xk), x ∈ Ω, xk ∈ XN. [Hardy and Gofert 1975] usedmultiquadricsK (x, y) = p1 + 2kx − yk2.

Rescaled interpolant: ˆPf(x) = Pf(x) Pg(x)=

PN

k=1αkK (x, xk) PN

k=1βkK (x, xk) where Pg

is the kernel based interpolant of g(x) = 1, ∀x ∈ Ω [Deparis at al 2014, DeM et al 2017].Shepard’s PU method.

Rational interpolant: R(x) = R(1)(x) R(2)(x) =

PN

k=1αkK (x, xk) PN

k=1βkK (x, xk) [Jackbsson et al. 2009, Sarra and Bai 2017].

5 of 27

(8)

RBF Interpolation

Given Ω, XN, f

Interpolant: Pf(x) =

N

X

k=1

αkK (x, xk), x ∈ Ω, xk ∈ XN. [Hardy and Gofert 1975] usedmultiquadricsK (x, y) = p1 + 2kx − yk2. Rescaled interpolant: ˆPf(x) = Pf(x)

Pg(x)= PN

k=1αkK (x, xk) PN

k=1βkK (x, xk) where Pg

is the kernel based interpolant of g(x) = 1, ∀x ∈ Ω [Deparis at al 2014, DeM et al 2017].Shepard’s PU method.

Rational interpolant: R(x) = R(1)(x) R(2)(x) =

PN

k=1αkK (x, xk) PN

k=1βkK (x, xk) [Jackbsson et al. 2009, Sarra and Bai 2017].

(9)

RBF Interpolation

Given Ω, XN, f

Interpolant: Pf(x) =

N

X

k=1

αkK (x, xk), x ∈ Ω, xk ∈ XN. [Hardy and Gofert 1975] usedmultiquadricsK (x, y) = p1 + 2kx − yk2. Rescaled interpolant: ˆPf(x) = Pf(x)

Pg(x)= PN

k=1αkK (x, xk) PN

k=1βkK (x, xk) where Pg

is the kernel based interpolant of g(x) = 1, ∀x ∈ Ω [Deparis at al 2014, DeM et al 2017].Shepard’s PU method.

Rational interpolant: R(x) = R(1)(x) R(2)(x) =

PN

k=1αkK (x, xk) PN

k=1βkK (x, xk) [Jackbsson et al. 2009, Sarra and Bai 2017].

5 of 27

(10)

Rational RBF

General framework

polynomial case d = 1.

r(x) = p1(x)

p2(x) = amxm+ · · · + a0x0 xn+ bn1xn1· · ·+ b0

.

M = m + n + 1 unknowns (Pad ´e approximation). If N> M to get the coefficients we may solve the LS problem

min

p1∈Π1m,p2∈Π1n







N

X

k=1

f (xk) − r(xk)

2







 .

Let Xm = {xk, . . . , xk+m1}, Xn= {xj, . . . , xj+n1} ⊂ XNbe non empty, such that m + n≤N

R(x) = R(1)(x) R(2)(x) =

Pk+m1

i1=k αi1K (x, xi1) Pj+n1

i2=j βi2K (x, xi2)

, (1)

provided R(2)(x) , 0, x ∈ Ω.

(11)

Rational RBF

General framework

polynomial case d = 1.

r(x) = p1(x)

p2(x) = amxm+ · · · + a0x0 xn+ bn1xn1· · ·+ b0

.

M = m + n + 1 unknowns (Pad ´e approximation). If N> M to get the coefficients we may solve the LS problem

min

p1∈Π1m,p2∈Π1n







N

X

k=1

f (xk) − r(xk)

2







 .

Let Xm = {xk, . . . , xk+m1}, Xn= {xj, . . . , xj+n1} ⊂ XNbe non empty, such that m + n≤N

R(x) = R(1)(x) R(2)(x) =

Pk+m1

i1=k αi1K (x, xi1) Pj+n1

i2=j βi2K (x, xi2)

, (1)

provided R(2)(x) , 0, x ∈ Ω.

6 of 27

(12)

Rational RBF

Posedness

In the case m + n = N, asking R(xi) = fi,

R(1)(xi) − R(2)(xi)fi = 0 =⇒ Bξ = 0 withξ = (α, β) and B = B1+ B2.

Obs: depending on Xm, Xnand on the function values f, we might have cancellations and B can be singular.

We must look for non-trivial solutions!

Example

Given XNand f. Let Xm∩ Xn, ∅, with m + n = N. Suppose that fi = a, i = 1, . . . , N, a ∈ R, then the system Bξ = 0 admits infinite solutions.

(13)

Rational RBF

Posedness

In the case m + n = N, asking R(xi) = fi,

R(1)(xi) − R(2)(xi)fi = 0 =⇒ Bξ = 0 withξ = (α, β) and B = B1+ B2.

Obs: depending on Xm, Xnand on the function values f, we might have cancellations and B can be singular.

We must look for non-trivial solutions!

Example

Given XNand f. Let Xm∩ Xn, ∅, with m + n = N. Suppose that fi = a, i = 1, . . . , N, a ∈ R, then the system Bξ = 0 admits infinite solutions.

7 of 27

(14)

Rational RBF

Posedness

In the case m + n = N, asking R(xi) = fi,

R(1)(xi) − R(2)(xi)fi = 0 =⇒ Bξ = 0 withξ = (α, β) and B = B1+ B2.

Obs: depending on Xm, Xnand on the function values f, we might have cancellations and B can be singular.

We must look for non-trivial solutions!

Example

Given XNand f. Let Xm∩ Xn, ∅, with m + n = N. Suppose that fi = a, i = 1, . . . , N, a ∈ R, then the system Bξ = 0 admits infinite solutions.

(15)

Example

Example

N = 26, m = n = 13, Ω = [0, 1], fi= 1 (Left) or f be piecewise constant (Right) .

Following [GolubReinsch1975] non-trivial solution by asking ||ξ||2= 1 i.e.

solving constrained problem min

ξ∈RN,||ξ||2=1||Bξ||2.

Figure :The black dots represent the set of scattered data, the red solid line and the blue dotted one are the curves reconstructed via the rational RBF and classical RBF approximation, by the Gaussian kernel.

8 of 27

(16)

Rational RBF

Find the coefficients: I

[Jackobsson et al 2009] proved thewell-posednessof

R(x) = R(1)(x) R(2)(x) =

PN

i=1αiK (x, xi) PN

k=1βkK (x, xk),

Bis now a sum of two squared blocks of order N i.e.B is N × 2N

B =











K (x1, x1) · · · K (x1, xN) −f1K (x1, x1) · · · −f1K (x1, xN)

... ... ...

K (xN, x1) · · · K (xN, xN) −fNK (xN, x1) · · · −fNK (xN, xN)











 .

The systemBξ = 0can be written as(A − DA )(ξ) = 0with D = diag(f1, . . . , fN), andAi,j= K (xi, xj). Butunderdetermined!

(17)

Rational RBF

Find the coefficients: II

Since R(1)(xi) = fiR(2)(xi), find q = (R(2)(x1), . . . , R(2)(xN))T and then get p = (R(1)(xi), ..., R(1)(xN))T as p = Dq .

If p, q are given then the rational interpolant is known by solving

Aα = p, Aβ = q. (2)

Existence+Uniqueness of (2) since K is SPD

Using thenative space normsthe above problem is equivalent

Problem 1

min

R(1),R(2)∈NK, 1/||f||22||p||22+||q||22=1, R(1)(xk)=fkR(2)(xk).





 1

||f ||22||R(1)||2N

K+ ||R(2)||2N

K





. (3)

10 of 27

(18)

Rational RBF

Find the coefficients: II

Since R(1)(xi) = fiR(2)(xi), find q = (R(2)(x1), . . . , R(2)(xN))T and then get p = (R(1)(xi), ..., R(1)(xN))T as p = Dq .

If p, q are given then the rational interpolant is known by solving

Aα = p, Aβ = q. (2)

Existence+Uniqueness of (2) since K is SPD

Using thenative space normsthe above problem is equivalent

Problem 1

min

R(1),R(2)∈NK, 1/||f||22||p||22+||q||22=1, R(1)(xk)=fkR(2)(xk).





 1

||f ||22||R(1)||2N

K+ ||R(2)||2N

K





. (3)

(19)

Rational RBF

Find the coefficients: II

Since R(1)(xi) = fiR(2)(xi), find q = (R(2)(x1), . . . , R(2)(xN))T and then get p = (R(1)(xi), ..., R(1)(xN))T as p = Dq .

If p, q are given then the rational interpolant is known by solving

Aα = p, Aβ = q. (2)

Existence+Uniqueness of (2) since K is SPD

Using thenative space normsthe above problem is equivalent

Problem 1

min

R(1),R(2)∈NK, 1/||f||22||p||22+||q||22=1, R(1)(xk)=fkR(2)(xk).





 1

||f ||22||R(1)||2N

K+ ||R(2)||2N

K





. (3)

10 of 27

(20)

Rational RBF

Find the coefficients: III

||R(1)||2N

KTAα, and ||R(2)||2N

KTAβ.

Then, from (2) and symmetry of A

||R(1)||2N

K = pTA1p, and ||R(2)||2N

K = qTA1q.

Therefore, the Problem 1 reduces to solve

Problem 2

min

q∈RN, 1/||f||22||Dq||22+||q||22=1.





 1

||f ||22qTDTA1Dq + qTA1q





.

(21)

Rational RBF

Find the coefficients: IV

[Jackbsson 2009] show that this is equivalent to solve the following generalized eigenvalue problem

Problem 3

Σq =λΘq, with

Σ = 1

||f ||22DTA1D + A1, and Θ = 1

||f ||22DTD + IN, where INis the identity matrix.

12 of 27

(22)

Partion of Unity, VSK, Computational issues

(23)

RRBF- PU interpolation

Ω = ∪sj=1i (can overlap): that is, each x ∈ Ω belongs to a limited number of subdomains, say s0< s.

Then we consider, Wjnon-negative fnct on Ωj, s.t.Ps

j=1Wj= 1 is a partition of unity.

RRBF-PU interpolant

I(x) =

s

X

j=1

Rj(x)Wj(x), ∀ x ∈ Ω (4)

where Rj is a RRBF interpolant on Ωji.e.

Rj(x) =Rj(1)(x) Rj(2)(x)

= PNj

i=1αjiK (x, xij) PNj

k=1βjkK (x, xkj) ,

Nj= |Ωj|, xkj ∈ XNj, k = 1, . . . , Nj. 14 of 27

(24)

RRBF-PU interpolation

The RRBF interpolant is constructed as the global one solving Problem 3 on Ωj .

The RRBF interpolants can suffer of instability problems, especially for → 0like the classical one.

(Some) Stability issues

Optimal shape parameter (Trial&Error, Cross Validation), stable bases (RBF-QR, HS-SVD, WSVD) [Fornberg et al 2011, Fasshauer Mc Court 2012, DeM Santin 2013], Optimal shape parameters for PUM [Cavoretto et al. 2016], Rescaled RBF [ Deparis 2015, DeM et al 2017],Variably Scaled Kernels[Bozzini et al. 2015].

(Some) Computational issues

Fast WSVD bases [DeM Santin 2015], Fast algorithm for shape and radius parameters [Cavoretto et al. 2016], Explicit formulas for the optimal shape parameters 1d [Bos et al 2017].

(25)

RRBF-PU interpolation

The RRBF interpolant is constructed as the global one solving Problem 3 on Ωj .

The RRBF interpolants can suffer of instability problems, especially for → 0like the classical one.

(Some) Stability issues

Optimal shape parameter (Trial&Error, Cross Validation), stable bases (RBF-QR, HS-SVD, WSVD) [Fornberg et al 2011, Fasshauer Mc Court 2012, DeM Santin 2013], Optimal shape parameters for PUM [Cavoretto et al. 2016], Rescaled RBF [ Deparis 2015, DeM et al 2017],Variably Scaled Kernels[Bozzini et al. 2015].

(Some) Computational issues

Fast WSVD bases [DeM Santin 2015], Fast algorithm for shape and radius parameters [Cavoretto et al. 2016], Explicit formulas for the optimal shape parameters 1d [Bos et al 2017].

15 of 27

(26)

Our approach: RRBF-PU via VSK

Definition

Letψ : Rd→(0, ∞) be a given scale function. AVariably Scaled Kernel (VSK) Kψon Rdis

Kψ(x, y) := K((x, ψ(x)), (y, ψ(y))), ∀x, y ∈ Rd. where K is a kernel on Rd+1.

Definition

Given XN and the scale functionsψj : Rd→(0, ∞), j = 1, . . . , s, the RVSK-PU is

Iψ(x) =

d

X

j=1

Rψj(x) Wj(x), x ∈ Ω, (5)

with Rψj(x) the RVSK-PU on Ωj.

(27)

Computational steps

PU construction: Ω = ∪si=1i. We choose Ωj as d-dimensional balls of radiusδ and s ∝ N. [Fassahuer2007] suggests

s =









d

N 2d









, δ > δ0=pd 1/s .

Choice of VSK scaling functionsψj, j = 1, . . . , s.

To compute the local rational fit, by solving on each Ωjthe

eigenvalueProblem 3, we use the Deflated Augumented Conjugate Gradient (DACG) [Bergamaschi et al 2002].

Construction of the RVSK-PU by finding qψj and pψj(solving two smaller linear systems (2)).

Use then the PU weights to get the global rational VSK interpolant Iψ.

17 of 27

(28)

Numerical experiments

(29)

Globally supported RBFs

d = 2, f1(x1, x2) = (tan(x2− x1) + 1)/(tan 9 + 1), circular patches and ψ(j1)(x1, x2) = 0.5 + p9 − [(x1− ˜x1j)2+ (x2− ˜x2j)2],

Figure :The approximate surface f1obtained with the SRBF-PU (left) and RVSK-PU (right) methods with N = 1089 Halton data. Results are computed using the Gaussian Ckernel as local approximant.

19 of 27

(30)

Globally supported RBFs

0 1 2 3 4 5 6 7

x 104 0

5 10 15 20 25 30

N

CPU

SRBF−PU RVSK−PU (no DACG) RVSK−PU

0 1 2 3 4 5 6 7

x 104 10−7

10−6 10−5 10−4 10−3 10−2 10−1

N

RMSE

SRBF−PU RVSK−PU (no DACG) RVSK−PU

Figure :Left: the number of points N versus the CPU times for the SRBF-PU, RVSK-PU and RVSK-PU (no DACG), i.e. the RVSK-PU computed with the IRLM (Implicit Restarted Lanczos) method. Right: the number of points N versus the logarithmic scale of the RMSE for the

(31)

Globally supported RBFs

10−6 10−4 10−2 100 102

10−4 10−2 100 102 104 106 108

ε

RMSE

Rational PUM PUM QR−PUM

10−6 10−4 10−2 100 102

10−6 10−4 10−2 100 102 104 106

ε

RMSE

Rational PUM PUM QR−PUM

Figure :Comparison ofRMSEs vs shape parametersfor the SRBF-PUM, RRBF-PUM and RBF-QR+PUM methods on f1on two sets of Halton points, with Gaussian kernel

21 of 27

(32)

Compactly supported RBFs

f3(x1, x2) = sin(3x12+ 6x22) − sin(2x12+ 4x2− 0.5). Noisy Halton data (0.01 noise), s = 16 subdivisions,δ = δ0.

Figure :The approximate surface f3obtained with the SRBF-PU (left) and RVSK-PU (right) methods with N = 1089 noisy Halton data. Results are

(33)

Compactly supported RBFs

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 100 200 300 400

0

50

100

150

200

250

300

350

400

Figure :Typical sparsity pattern of the local interpolation matrices obtained via the RVSK-PU method with 289 (left) and 4225 (right) noisy Halton data. C2Wendland’s kernel.

23 of 27

(34)

Future work

Cardinal functions and barycentric form of the rational interpolant.

Error estimates, native spaces.

Applications and extensions.

(35)

References

25 of 27

(36)

Some references

L. Bergamaschi, M. Putti, Numerical comparison of iterative eigensolvers for large sparse symmetric matrices, Comp. Methods App. Mech. Engrg. 191 (2002), pp. 5233–5247.

: Interpolation with Variably Scaled Kernels. IMA J. Numer. Anal. 35(1) (2015), pp. 199–219.

R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, G. Santin, Partition of unity interpolation using stable kernel-based techniques, Appl. Numer. Math. 116 (2017), pp. 95–107.

R. Cavoretto, A. De Rossi, E. Perracchione, Optimal selection of local approximants in RBF-PU interpolation, to appear on J. Sci. Comput. (2017).

S. De Marchi, G. Santin, Fast computation of orthonormal basis for RBF spaces through Krylov space methods, BIT 55 (2015), pp. 949–966.

Stefano De Marchi, Andrea Idda and Gabriele Santin: A rescaled method for RBF approximation. Springer Proceedings on Mathematics and Statistics, Vol. 201, pp.39–59. (2017)

(37)

grazie per la vostra attenzione!

thanks for your attention!

27 of 27

Riferimenti

Documenti correlati

During the fifth site visits to public works and/or services financed by EU and national funds being developed in their territory and interview with key players

usura in concreto (art. 644 c.p., commi 1 e 3, seconda parte) occorre che il soggetto passivo versi in condizioni di difficoltà economica o finanziaria e che gli interessi

Conjecture 2: For tree branches: maximize the amount of light collected by the leaves, subject to the cost of constructing the branch structure.. Answers (provided by the

From left to right, top to bottom, we consider Nc = 81, 289, 1089 and 4225 Halton data... RBF-based partition of

At the component community level (i.e., helminth communities for each host species considering the sample of hosts as a whole), we compared differences of species richness between

Indeed, maternal microbial communities, including prenatal gut, vaginal, oral, and skin microbiomes, undergo pronounced changes during pregnancy that may affect healthy

We perform a local computation via the Partition of Unity (PU) method of rational Radial Basis Function (RBF) interpolants.. We investigate the well-posedness of the problem and

Results show for the Non-Newtonian case, a classical coaxial static mixer, the application of OSD allows a sensible improvement of the performances, while in the Newtonian case