• Non ci sono risultati.

danilo giulietti

N/A
N/A
Protected

Academic year: 2021

Condividi "danilo giulietti"

Copied!
54
0
0

Testo completo

(1)

danilo giulietti

Il laser incontra la fisica delle Alte Energie: interazione radiazione-materia ad intensità relativistiche.

Danilo Giulietti

Physics Department of the Pisa University and INFN, Italy.

danilo.giulietti@df.unipi.it

(2)

The gigantism of conventional accelerators

10km

LHC

(3)

danilo giulietti

E

Q

=m

p

c

2

NL Optics

FLAME

The evolution of the pulsed laser amplification techniques:

from ns to fs

from MW to PW

(4)

danilo giulietti

Riding the wave

(5)

danilo giulietti

Force of Gravity:WAVE WAKE

(6)

danilo giulietti

Force of Gravity: SURFER

(7)

danilo giulietti

Ultra-short & super-intense laser pulse in a plasma

(8)

danilo giulietti

LASER impulsati

• Energia dell’impulso E

• Durata dell’impulso τ

• Frequenza di ripetizione f

• Potenza di picco W=E/ τ

• Potenza media <W>=f x E

(9)

danilo giulietti

LASER impulsati

• Modalità di funzionamento

• Free-running

• Q-switching

• Mode-locked

• CPA

(10)

danilo giulietti

CPA

(11)

11

Super-intense laser pulse in plasmas (1) I = uv g = ! 0 E 2 c " n

for n #1 E V / cm # 27.5 I W "cm

$2

1 2

n = 1! " p 2

" 2

#

$%

&

'(

1 2

" pe = n e e 2 ) 0 m *

#

$%

&

'(

1 2

* = 1! ( + 2 ) ! 1 2 + = v c

! = 1+ " a 2 2

#

$ % &

' (

1

2 " =1 (lin. p.) ; 2 (circ. pol.)

a = eE

m ) c * 8.5+10 ,10 + I W +cm

,2

1/ 2 + - µ m

(12)

12

Super-intense laser pulse in plasmas (2)

for 1J, 30 fs @ ! " 0.815 µ m laser pulse focal spot # " 5 µ m

I "10 20 W $ cm %2

E " 3$10 11 V cm >> E at "5$10 9 V cm B "1 GGauss

P = I

c ! 6.6"10 15 N m 2 ! 66 GBar

a ! 7 # $ ! 5 # E cin = mc 2 ( $ %1) ! 2MeV

(13)

danilo giulietti

ELECTRON PLASMA WAVE (1)

-0.5 0 0.5 1 1.5

0 20 40 60 80 100 120 140

E

x

(a.u.)

x (a.u.)

n

e

(a.u.) electron density

electric field

+

- -

+

-eEx

(14)

ELECTRON PLASMA WAVE (2)

!n

e

= !n

e

sin(k

p

x " #

p

t)

$ % ! !

E = &

' 0 = " !n

e

e

' 0 ( E

x

= !n

e

e

' 0 k

p

cos(k

p

x " #

p

t)

#

p

2 = #

pe

2 + 3v

T

2 k

p

2 = # 2

pe

( 1 + 3 )

D

2 ) )

D

= # v

T

pe

v * = #

p

k

p

= v

T

3 + 1 k

p

)

D

( ) 2

+ , - -

. / 0 0

1 2

= #

pe

k

p

+ , 1 + 3 k ( )

p

)

D

2 . / 1 2 v

g

= 1#

p

1k

p

= 3 k

p

#

p

v

T

2 = 3 v

T

2

v *

(15)

ELECTRON PLASMA WAVE (3)

for !n e " n 0 and v # " c

E max " n 0 ec

$ 0 % pe " n 0 cm

&3

'( ( ) )* 1 2 V

cm

Example :

for n 0 = n c ( @1 µ m ) " 1.1+10 21 cm &3 , E max " 3+10 10 V cm

n c = $ 0 m % 2

e 2 " 1.1 +10 21

- µm 2 cm

&3

DAWSON LIMIT

(16)

E.P.W. EXCITATION BY PONDEROMOTIVE FORCES (1)

F ! = ! !

" < U >= ! e 2

2 # 0 mc $ 2

"I !

U = 1

2 mv e 2 v e = eE m $ F ! = !mc 2 !

" < % >

U = mc 2 ( % ! 1 )

v & , EPW = v g, LASER

non relativistic intensities

relativistic intensities

the excited E.P.W. phase velocity

equals the e.m. wave group velocity

(17)

danilo giulietti

The ponderomotive force related to the laser pulse

produces the Wake Field and the Coulomb force related

to the Electron Plasma Wave accelerates the electrons

(18)

danilo giulietti

RF CAVITY versus ‘’PLASMA CAVITY’’

Plasma cavity 100 µm RF cavity

Courtesy of W. Mori & L. da Silva

1 m

E max ≈ 20MV/m E max > 100GV/m

(19)

danilo giulietti

Why a plasma to accelerate electrons ?

* no limits to the accelerating electric fields

* electron plasma waves fit requirements for particle acceleration:

- intense longitudinal electric fields: E

V/cm

(n

cm-3

) 0.5 - phase velocity very close to the speed of light c

Why high intensity fs laser pulses ?

* the ponderomotive force is proportional to - ∇ I

* the plasma resonance can be excited at higher

density 2c τ

laser

≈ λ

p

(20)

L ASER W AKE F IELD

E.P.W.

second push first push

v g LASER

! " c # $ p

2 % ! # T p

2 & n e ( ) cm '3 # 3 "10 ! '9

(s) 2

example : ! = 30 fs & n e # 3.3"10 18 cm '3 v ( ,epw = v g,laser = c(1' ) 2

pe

) 2 )

1

2

(21)

ELECTRON ACCELERATION IN E.P.W.

for !

p

" #

#

pe

>>1 $ %W

max

= 4 !

p2

& n

e

n

e

mc

2

is the max. energy gain

along a distance L

deph

" !

p2

'

p

= '

0

n

c

n

e

( ) * +

, -

3 2

'

p

" 2 . c

#

pe

%W

max

" eE

max

/ L

deph

0 n

e12

/ 1

n

e

/ n

e112

= 1 n

e

γ e

φ e

(22)

danilo giulietti

Typical underdense plasmas for Ti:Sa laser

n e =10 20 cm !3 " p = 3.16 E max #10 10 Vcm !1 $W max # 20MeV L deph # 30µm

n e =10 18 cm !3 " p = 31.6 E max #10 9 Vcm !1 $W max # 2GeV L deph # 3cm

(23)

danilo giulietti

LASER PLASMA ACCELERATION

PIC simulation by Carlo Benedetti, INFN-BO

N

e

=10

19

cm

-3

L=1mm T=20fs W=9µm

I=1.5 10

20

W/cm

2

U

el

≈400MeV

(24)

EXTEDINNG THE ACCELERATION LENGTH

in the most LWFA experiments L acc << L deph ! " p 2 # p

for LWFA to be effective

I = E L

$%w 2 & I 0 ' w ( E L

$%I 0 )

* + , - .

1

2 ' L acc = 2Z R = 2 %w 2

# ! 2E L

$#I 0 w = 1.22 # f

D ; I 0 the int ensity for which /n e

n e !1 For E L ≈10J, τ≈20fs, λ≈1µm, I 0 ≈10 20 W/cm 2

L acc ≈1mm

(25)

danilo giulietti

LASER GUIDING

• Hollow fiber

• Gas cell

• Relativistic Self-Focusing P(GW) >17 n c /n e

• Pre-formed channel

(26)

danilo giulietti

1GeV in 3.3 cm capillary

W.P. Leemans, S. Hooker et al Nature 2, 629, 2006

40 TW Ti:Sa laser focused on a Ti:Sa capillary 3.3 cm long, filled with Hydrogen.

Electrical discharge produces a 10 18 cm-3 plasma

2.5% energy spread of accelerated

electron

(27)

GeV acceleration in two-stages

GeV Laser Plasma channel

•50-150 TW

•~50 fs

Nozzle Gas-Jet

Laser

•170±20 MeV

•30 fs

•10 mrad

•1 J •10 TW

•30 fs

•Pulse guiding condition : Δn>1/πr e r c 2

•Weak nonlinear effects ⇒ more control : a 0 ~ 1-2

•High quality beams : L bp ⇒ n 0 <10 18 cm -3

r

c

Δ n n

0

Density profile

Courtesy V. Malka

(28)

danilo giulietti

IMPROVING THE ENERGY SPREAD

• Controlled injection

• Injecting electron from a LINAC

(29)

Controlled injection of electrons in

Controlled injection of electrons in Langmuir Langmuir waves: a compact waves: a compact way of producing

way of producing monoenergetic monoenergetic electron bunches electron bunches (from an original idea of S. Bulanov et al PRL 1998)

Heating pulse

Controlled injection

P. Tomassini, M. Galimberti, A.Giulietti, D. Giulietti, L.A.Gizzi, L.Labate, F. Pegoraro, Production oh high quality …PRST, 6, 121301 (2003).

e-beam e-beam

Electronic density simulated with POLLUX code

Double foil target

Main pulse Heating pulse

(30)

danilo giulietti

Z

inj

=225 μm

Tunable monoenergetic bunches

Z

inj

=125 μm Z

inj

=25 μm Z

inj

=-75 μm Z

inj

=-175 μm Z

inj

=-275 μm Z

inj

=-375 μm

pump injection

pump injection

late injection

early injection

pump injection

middle injection

V. Malka and J. Faure

(31)

danilo giulietti

The birth of….

(32)

Conceptual Design Report

PLASMA ACCELERATION AND MONOCHROMATIC X-RAY PRODUCTION Acronym: PLASMONX

D. Giulietti

Università di Pisa e INFN-Pisa

A. Barbini, W. Baldeschi, M. Galimberti, A. Gamucci, A. Giulietti, L.A. Gizzi, P. Koester, L. Labate, A. Rossi, P. Tomassini

ILIL Team @ CNR/IPCF - Pisa

D. Alesini, S. Bertolucci, M.E. Biagini, C. Biscari, R. Boni, M. Boscolo, M. Castellano, A.

Clozza, G. Di Pirro, A. Drago, A. Esposito, M. Ferrario, V. Fusco, A. Gallo, A. Ghigo, S.

Guiducci, M. Incurvati, C. Ligi, F. Marcellini, M. Migliorati, C. Milardi, A. Mostacci, L.

Palumbo, L. Pellegrino, M. Preger, P. Raimondi, R. Ricci, C. Sanelli, M. Serio, F. Sgamma, B.Spataro, A. Stecchi, A. Stella, F. Tazzioli, C. Vaccarezza, M. Vescovi,

C. Vicario, M. Zobov

SPARC- Project Team @ INFN-LNF

F. Alessandria, A. Bacci, I. Boscolo, F. Broggi, S.Cialdi, C. DeMartinis, D. Giove, C. Maroli, V. Petrillo, M. Romè, L. Serafini

SPARC Project Team @ INFN-Milano e Università di Milano

R. Bonifacio, N. Piovella, R. Pozzoli Università di Milano e INFN-Milano

(33)

danilo giulietti

PLAsma acceleration and MONochromatic X-ray production

@ LNF-INFN

(34)

danilo giulietti

FLAME: Frascati Laser for Acceleration and Multidisciplinary Experiments

300TW Ti:Sapphire 6J, 20fs, 10Hz

(35)

danilo giulietti

SPARC: the 200MeV LINAC

and the UNDULATORS

(36)

danilo giulietti

LINAC

UNDULATOR

synchronisation

uncompressed pulse vacuum compressor

acceleration chamber

detectors area control

& data

(37)

The The laboratory laboratory

MONOLITE

(38)

danilo giulietti

FLAME Target Area FLAME Target Area

Compressor vacuum chamber

Interaction vacuum chamber Main beam (>250 TW) Vacuum transport line

Beam transport to sparc bunker

Radiation protection walls

(39)

danilo giulietti

FLAME TARGET AREA

FLAME TARGET AREA

(40)

danilo giulietti

Interaction chamber

(41)

danilo giulietti

VERT. AND HORIZ. SHIELDING

VERT. AND HORIZ. SHIELDING

(42)

MAIN BEAM OPTICS IN PLACE MAIN BEAM OPTICS IN PLACE

45 AND 15° TURNING MIRROR MOUNTED

(43)

danilo giulietti

Gas-Jet nozzle

Laser

(44)

danilo giulietti

FOCUSING LASER FOCUSING LASER

1 m focal length, 7”, 15° Off Axis Parabola (SORL)

(45)

danilo giulietti

First “test” experiment

@

LNF

(46)

SIMULAZIONI ALADYN

(di C. BENEDETTI ET AL.,)

(47)

danilo giulietti

SIMULAZIONI ALADYN

(di C. BENEDETTI ET AL.,)

(48)

danilo giulietti

SELF-INJECTION

SELF-INJECTION CONCEPT CONCEPT

(49)

danilo giulietti

LPA @LNF

Electrons at lanex screen

Lineout

Energy dispersion with a 0.9 T magnetic dipole

Energy (MeV)

(50)

danilo giulietti

demonstrated

•Energy gains up to 1 GeV

•E-fields of 1 GV/m to 1000 GV/m

•Good e-beam quality : Emittance < 3πmm.mrad

•charge at high energy

•Quasi monoenergetic

•Generate a tunable e-beam

• Very high peak current : 100 kA TO DO

•enhance stability

•electron sources up to several GeV (nC, <1 ps):

*Guiding or PW class laser systems

*Multi Stages

• applications of the secondary sources

•Compact XFEL

The laser plasma accelerators status

(51)

danilo giulietti

Project manager

J.P. Chambaret + System Engineer

Laser system

P. Georges S. Karsch

Attosecond Science

G. Tsakiris, D Charalambidis P. Audebert

Laser plasma accelerator

D. Giulietti V. Malka

Ultrafast X-ray radiation beams

A. Rousse B. Rus

High field Science

D. Habs D. Bernard

Steering committee Project leader

G. Mourou

OPCPA TiSa:ampli Diode pumping Coherent beam

combining Adaptative optic

Attosecond to zeptosecond

Physics

Ultra relativisitc optics Beam lines

Coherent (X,γ)- rays

(FEL, HHG &

plasma)

Incoherent (X,γ)- ray beams

(synchrotron-like, atomic)

Beam lines

NLQED

Fundamendal physics Exotic physics Nuclear Physics

Proposed Applications Probe ultrafast dynamics (atom, molecule and plasma)

Ultra Non Linear X- UV phenomena Electron dynamics

Gamma imaging Radiotherapy

Test and Calibration Probing plasmas Polarised beam High energy physics

Probe ultrafast dynamics, high resolution image &

create new states of matter

BUILDING SAFETY

Safety Manager

Ultra relativistic plasma

Electron beam Proton beam Ions beam Muons beam Beam lines

Transmutation induced by laser

(52)

danilo giulietti

CONCLUSIONS

• National and international facilities based on ultra-intense and ultra-short pulse Ti:Sa laser systems will open unique

opportunities for:

• New Acceleration Techniques

• High brightness sources of electrons, protons, ions, neutrons, positrons, X & γ-rays, …

• Applications in HEP, medicine, ICF, material science,

astrophysics, femtochemistry, attosecond science, …

(53)

danilo giulietti

PLASMONX, little bit understaffed,

requires…..

(54)

danilo giulietti

……..young motivated

researchers

Riferimenti

Documenti correlati

For the inelastic interactions, most of the protons interacting with the gas are lost within the target, and the surviving ones show a wider energy range and a stronger

Kesterite-type CZTS material showing the highest energy conversion efficiency (η) is synthesized mostly via vacuum-based methods such as sputtering or evaporation of metals (or

Since the energy of fusion neutrons depends on the energy distribution of fusing ions [9], we can obtain basic characteristics of fusing ions from time-

The site was included among the former Key Regeneration Areas of the 2010 Barking and Dagenham Development Plan. A sensible goal

Ions of varying mass are shot axially into the rod The applied quadrupole field deflects the ions in the X and Y directions, causing them to describe. helical trajectories through

At room temperature, the heat conductivity and viscosity both increase as (rnT)''/d. For infinite parallel plates, K does not depend on pressure, as long as the mean free

diagram of EM with a cas- cade DP system. Signals from the Pirani gauge PiG4 at the foreline control the “basic” safety system. The valve V2 is a safety valve in the “standby”

Atmosphere to 10 -10 torr when backed with rotary vane pump Moderate pumping speed. Fragile, expensive, poor pumping of