• Non ci sono risultati.

1 Clifford algebra

N/A
N/A
Protected

Academic year: 2021

Condividi "1 Clifford algebra"

Copied!
6
0
0

Testo completo

(1)

G

2

fibre bundle structure on an oriented 3-dimensional manifold

Hideya Hashimoto i

Department of Mathematics, Meijo University hhashi@meijo-u.ac.jp

Misa Ohashi

Department of Mathematics, Nagoya Institute of Technology ohashi.misa@nitech-u.ac.jp

Received: 01-08-2016; accepted: 09-11-2016.

Abstract. By using algebraic structures of Clifford algebras and octonions, we show that there exists the G2 principal fibre bundle structure on any oriented 3-dimensional C Rie- mannian manifold.

Keywords:Clifford algebras, Octonions

MSC 2010 classification:Primary 53C30; Secondary 53C15.

Introduction

The purpose of this paper is to construct the G2 principal fibre bundle of any oriented 3-dimensional CRiemannian manifold, by using Clifford algebras and octonions.

1 Clifford algebra

We give a brief review of Clifford algebra. Let V be an n-dimensional vector space with the fixed positive definite inner product h , i. The tensor algebra T (V ) is given by

T (V ) = R · 1 ⊕ V ⊕ (V ⊗ V ) ⊕ (V ⊗ V ⊗ V ) ⊕ · · · ⊕ (⊗kV ) · · · . We define the two sided ideal I as follows

I = the two sided ideal of the set {x ⊗ x + hx, xi · 1|x ∈ V }.

The Clifford algebraCln= Cl(V ) is defined as a factor ring Cln= Cl(V ) = T (V )/I.

iThis work is partially supported by JSPS KAKENHI Grant Number 15K04860.

http://siba-ese.unisalento.it/ c 2017 Universit`a del Salento

(2)

In particular, we explain Clifford algebra Cl3 of degree 3. Let V be a 3- dimensional vector space over R and let (e1 e2 e3) be an orthonormal frame of V. An element x ∈ Cl3, is represented by

x = α0 1 + α1 e1+ α2 e2+ α12 e12+ α3 e3+ α13 e13+ α23 e23+ α123 e123, (1) where α ∈ R and eij = ei· ej and e123 = e1 · e2· e3. Here the symbol · is the multiplication of Clifford algebra. The multiplication table is given by

1 e1 e2 e12 e3 e13 e23 e123

1 1 e1 e2 e12 e3 e13 e23 e123

e1 e1 −1 e12 −e2 e13 −e3 e123 −e23 e2 e2 −e12 −1 e1 e23 −e123 −e3 e13 e12 e12 e2 −e1 −1 e123 e23 −e13 −e3 e3 e3 −e13 −e23 e123 −1 e1 e2 −e12 e13 e13 e3 −e123 −e23 −e1 −1 e12 e2 e23 e23 e123 e3 e13 −e2 −e12 −1 −e1 e123 e123 −e23 e13 −e3 −e12 e2 −e1 1

Table 1. the multiplication table of Cl3

We note the algebraic properties of Clifford algebra. The Clifford algebra is an associative algebra.

Cl1 ' C (Complex), Cl2 ' H (Quaternions).

The above two cases, they are division algebras and H is a skew field. However Cl3 ' R8, Cl4 ' R16, . . . , Cln' R2n, . . .

are not division algebras. In fact, we have

(1 + e123)(1 − e123) = 1 − e2123= 0.

In particular, note that Cl3 ' R8. Cl3 is a direct sum of two quaternions as follows. We set

v0+= 1/2(1 − e123), v0= 1/2(1 + e123), v1+= 1/2(e1+ e23), v1= 1/2(e1− e23), v2+= 1/2(e2+ e31), v2= 1/2(e2− e31),

v3+= 1/2(e3+ e12), v3= 1/2(e3− e12). (2)

(3)

Then we have

Cl3 = spanR{v+0, v+1, v+2, v3+} ⊕ spanR{v0, v1, v2, v3}

' Cl2⊕ Cl2' H ⊕ H. (3)

In fact, we easily see that the Clifford multiplication of spanR{v0+, v1+, v2+, v3+} (or spanR{v0, v1, v2, v3} ) coincides with the multiplication of the quater- nions.

2 Oriented 3-manifolds

Let M3 be an oriented 3-dimensional C Riemannian manifold with Rie- mannian metric h , i. Then there exists a principal SO(3)-frame bundleFSO(3) over M3, that is

FSO(3)→ M3

with fibre SO(3). For any p ∈ FSO(3), p is a pair p = (m, ( e1 e2 e3 )) where m ∈ M and ( e1 e2 e3 ) is an oriented orthonormal frame at m. Let U be an open subset of M3 with local triviality, that is, FSO(3)|U ' U × SO(3). Since the tangent space TmM3 at m ∈ M3 is isomorphic to 3-dimensional Euclidean space R3, we can construct the Clifford algebra Cl3(TmM3). Therefore we obtain Clifford bundle Cl3 over M3 with fibre Cl3 as

Cl3 = [

m∈M3

Cl3(TmM3).

If we take an orthonormal local frame field ( e1 e2 e3 ) on some open subset U.

Then, the basis of local sections of Cl3 are given by ( 1 e1 e2 e12 e3 e13 e23 e123 ).

We change the order and the sign of this base. Let σ be the new base of Cl3

define by

σ(m) = ( 1 e1(m) e2(m) e3(m) e23(m) e31(m) e12(m) e123(m) ).

In order to define the G2-fibre bundle structure whole on M3 (in the next section), and to prove the well-definedness of G2-local frame field, we prepare the following: Let ( e1 e2 e3 ), ( e01 e02 e03 ) be two orthonormal basis of TmM3. Then there exists A ∈ SO(3) such that

( e01 e02 e03 ) = ( e1 e2 e3 )A.

(4)

Then we can show that

( 1 e01 e02 e03 e023 e031e012 e0123 ) = ( 1 e1 e2 e3 e23 e31e12 e123 ) ˜A (4) where

A =˜

1 01×3 01×3 0 03×1 A 03×3 03×1 03×1 03×3 A 03×1 0 01×3 01×3 1

∈ M8×8(R). (5)

By (2), we define

v+0 = 1/2(1 − e123), v0 = 1/2(1 + e123), v+1 = 1/2(e1+ e23), v1 = 1/2(e1− e23), v+2 = 1/2(e2+ e31), v2 = 1/2(e2− e31),

v+3 = 1/2(e3+ e12), v3 = 1/2(e3− e12). (6) We note that vector fields v+0 and v0, and distributions spanR{v+1, v+2, v+3} spanR{v1, v2, v3}, are invariant under the above action of SO(3). Then we obtain the following identification

Cl3(TmM3) ' H ⊕ H.

By (5), this splitting does not depend on the choice of the orthonormal frame of TmM3. From this construction, we also obtain the principal (1 ⊕ ∆SO(3) ⊕ 1) fibre bundle over M3, where

∆SO(3) =

 A 03×3 03×3 A



for A ∈ SO(3).

3 Octonionic structure on an oriented 3-manifold

The octonions (or Cayley algebra) C over R can be considered as a direct sum H ⊕ H = C with the following multiplication

(a + bε)(c + dε) = ac − ¯db + (da + b¯c)ε,

where ε = (0, 1) ∈ H ⊕ H and a, b, c, d ∈ H. The symbol 00¯00 denotes the conju- gation of the quaternion. The octonions is a non-commutative, non-associative alternative division algebra. Hence the multiplication of C is different from that

(5)

of Cl3. The group of automorphisms of the octonions is the exceptional simple Lie group

G2 = {g ∈ SO(8) | g(uv) = g(u)g(v) for any u, v ∈ C}.

Since ∆SO(3) is a closed subgroup of G2, by (6), we can identify the basis of the octonions and the above basis (as an orthonormal basis of C)

1 ↔ 1C, v+1 ↔ i, v+2 ↔ j, v+3 ↔ k,

e123↔ ε, v1 ↔ iε, v2 ↔ jε, v3 ↔ kε. (7) Here we use the multiplication of C only. By using this identification, we de- fine the new octonionic multiplication on Cl3(TmM3). Therefore, we can define the G2 local frame field as follows

u = g(e123),

f1 = 1/2{g(v+1) −√

−1g(v1)}, f1= 1/2{g(v+1) +√

−1g(v1)}, f2 = 1/2{g(v+2) −√

−1g(v2)}, f2= 1/2{g(v+2) +√

−1g(v2)}, f3 = −1/2{g(v+3) −√

−1g(v3)}, f3= −1/2{g(v+3) +√

−1g(v3)}, (8) for any g ∈ G2. The multiplication table of the product of the complexfied octonions C ⊗RC is given by

u f1 f2 f3123

u −1 −√

−1f1 −√

−1f2 −√

−1f3

−1 ¯f1

−1 ¯f2

−1 ¯f3 f1

√−1f1 0 − ¯f32 −¯n 0 0

f2

−1f23 0 − ¯f1 0 −¯n 0

f3

√−1f3 − ¯f21 0 0 0 −¯n

1 −√

−1 ¯f1 −n 0 0 0 −f3 f2

2 −√

−1 ¯f2 0 −n 0 f3 0 −f1

3 −√

−1 ¯f3 0 0 −n −f2 f1 0

Table 2. the multiplication table of C ⊗RC where n = 1/2(1 −√

−1u). We set

FG2 = {(m, ( u, f1, f2, f3, f1, f2, f3)|m) | ( u, fi, fi)|m is a G2 frame at m}.

(6)

We can see that

FG2 → M3 is a principal fibre bundle on M3 with fibre G2.

Theorem 1. There exists the G2 fibre bundle structure on any oriented 3-dimensional manifold M3.

References

[1] R. L. Bryant. Submanifolds and special structures on the octonions. J.

Diff. Geom., 17 (1982) 185–232.

[2] R.Harvey and H.B.Lawson. Calibrated geometries. Acta Math., 148 (1982) 47–157.

[3] H.Hashimoto and M.Ohashi. Orthogonal almost complex structures of hypersurfaces of purely imaginary octonions. Hokkaido Math. J., 39 (2010) 351–387.

[4] K.Mashimo Homogeneous totally real submanifolds of S6. Tsukuba J.

Math., 1 (1985) 185–202.

Riferimenti

Documenti correlati

It remains to show that the partition exists when n is multiple of 8 and n ≥ 16.. For any non-negative integer x, we have a partition of {1

Then 2n satisfies i) and it has the same number of nonzero digits

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Let S(n, k) be the Stirling number of the second kind, i.e., the number of ways to partition a set of n objects into k

[r]

[r]

In particolare, abbiamo introdotto i concetti fondamentali di geometria spinoriale (algebra di Cli¤ord, gruppo di Cli¤ord, rappresentazioni spin, spinori) e abbiamo costruito la

Ratchford proved [3] that if G is a metabelian group, then the centralizer-like subsets associated with the second variable of w are all subgroups of G.. From this property it