• Non ci sono risultati.

Commutative Algebra (Algebra Commutativa) - 2015-2016 M.A. Garuti

N/A
N/A
Protected

Academic year: 2022

Condividi "Commutative Algebra (Algebra Commutativa) - 2015-2016 M.A. Garuti"

Copied!
1
0
0

Testo completo

(1)

Commutative Algebra (Algebra Commutativa) - 2015-2016 M.A. Garuti

University of Padova, Italy

Faculty of di Mathematics, Physics and Natural Sciences

It is open to students of the Mathematics Master’s Degree (Laurea Magistrale), and of the Erasmus Master Mundus ALGANT program.

When: From October 1st to January 25th Where: TBA

Total number of hours: about 64 (8 credits).

Examination: written exam.

Program

We introduce basic notions in Commutative Algebra required for Algebraic Geometry and Number Theory: commutative rings and modules, ideals, Jacobson radical and nilradical, spectrum of a ring.

Tensor product and flatness. Rings and modules of fractions, localisation. Integral dependence. Valua- tion rings. Noetherian and Artinian rings. Discrete valuation rings and Dedekind domains. Dimension theory and regular local rings.

Prerequisites A first Algebra Course: definitions of rings, fields, vector spaces and their basic theorems. The course can be followed independently, but students attending Introduction to Ring Theory and/or Number Theory 1 will benefit most.

References

Lecture notes, available at the course’s homepage http://mgaruti.weebly.com/ca.html

Further references

1) M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley 1969 (Italian edition by Feltrinelli, 1981).

2) D. Eisenbud, Commutative Algebra with a view toward Algebraic Geometry, Graduate Texts in Math. Vol. 150, Berlin, Springer-Verlag, 1994

3) H. Matsumura, Commutative Algebra, W.A. Benjamin, 1970.

4) L. Ramero, Grimoire d’Alg`ebre Commutative, lecture notes (linked from course’s homepage).

Riferimenti

Documenti correlati

2.1: moduli su anelli, rappresentazioni di anelli: definizioni, esempi – moduli fedeli – morfismi tra moduli, proprietà (bifuntorialità) di Hom(-,-) – modulo

2.1: moduli su anelli, rappresentazioni di anelli: definizioni, esempi – mor- fismi tra moduli, proprietà (bifuntorialità) di Hom(-,-) - modulo duale, modulo biduale; morfismo

Anelli, morfismi tra anelli - ideali, quozienti - Teorema Fondamentale di Omomorfismo, Teoremi di Isomorfismo - ideali primi, ideali massimali - anelli locali, anelli

2.1: moduli su anelli, rappresentazioni di anelli: definizioni, esempi – mor- fismi tra moduli, proprietà (bifuntorialità) di Hom(-,-) - modulo duale, modulo biduale; morfismo

Teorema della Base di Hilbert - Teorema di Zariski - Teorema degli Zeri di Hilbert (forma debole) – varietà affini - Teorema degli Zeri di Hilbert (forma

By the Stanley-Reisner correspondence, we can exploit tools from commutative algebra and infer the inequality above by the simple fact that the degree i monomials in n − d variables

So, by Selberg’s lemma, a Coxeter group is virtually torsion-free; in particular the virtual cohomological dimension of a Coxeter group is well-defined .... Question

Siccome l’ h-polinomio di un anello Cohen-Macaulay graduato ha coefficienti positivi, il teorema precedente implica che una qualche relazione fra le funzioni di Hilbert delle