• Non ci sono risultati.

When citing, please refer to the published version.

N/A
N/A
Protected

Academic year: 2021

Condividi "When citing, please refer to the published version."

Copied!
5
0
0

Testo completo

(1)

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

V. Brattka, A. Cettolo, G. Gherardi, A. Marcone and M. Schröder (2017) Addendum to “The Bolzano-Weierstrass Theorem is the jump of weak König’s Lemma”. Annals of Pure and Applied Logic, vol 168, no. 8, pp. 1605-1608, DOI:

10.1016/j.apal.2017.04.004

final published version is available online at: http://dx.doi.org/10.1016/j.apal.2017.04.004

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the

publishing policy. For all terms of use and more information see the publisher's website.

(2)

Addendum to: “The Bolzano–Weierstrass theorem is the jump of weak Kőnig’s lemma” [Ann. Pure Appl. Logic 163 (6) (2012) 623–655]

Vasco Brattkaa,b,∗, Andrea Cettoloc, Guido Gherardid, Alberto Marconec, Matthias Schrödere

a DepartmentofMathematics&AppliedMathematics,UniversityofCapeTown,SouthAfrica

bFacultyofComputerScience,UniversitätderBundeswehrMünchen,Germany

cDipartimentodiScienzeMatematiche,InformaticheeFisiche,UniversitàdiUdine,Italy

dDipartimentodiFilosofiaeComunicazione,Universitàdi Bologna,Italy

eFachbereichMathematik,UniversitätDarmstadt,Germany

a b s t r a c t

Thepurposeofthisaddendumistocloseagapintheproofof[1,Theorem 11.2], whichcharacterizesthecomputationalcontentoftheBolzano–WeierstraßTheorem forarbitrarycomputablemetricspaces.

In [1, Theorem 11.2] it is stated that BWTXsWKX holds for all computable metric spaces X. Here BWTX denotestheBolzano–WeierstraßTheorem,KXdenotesthejumpofcompactchoiceandsWstands for strong Weihrauchequivalence. Werefer the readerto [1]for the definitionof all notions thatare not definedhere.

WhilethereductionBWTXsWKX was provedcorrectlyin[1], theproofprovidedfor KXsWBWTX containsagapandisonlycorrectforthespecialcaseofcompactX as itstands.Thisfactwaspointedout byoneofus(M.Schröder)andisdue tothefactthatingeneraltheclosureofL−1X (K) isnotcompact.We closethisgap inthisaddendum.

WestartwithalemmathatshowsthatcompactsetsgiveninK (X) areeffectivelytotallyboundedina particularsense.ByO(X) wedenotetheset ofopensubsetsofX,representedascomplementsofelements

E-mailaddresses:[email protected](V. Brattka),[email protected](A. Cettolo),

[email protected](G. Gherardi),[email protected](A. Marcone),[email protected](M. Schröder).

(3)

of A(X),i.e.,p isanameofanopenset U ifandonlyifitisaψ-nameoftheclosedsetX\ U.Wecall anopenballB(a,r) rational,ifa isapointofthedensesubsetofX (thatisusedtodefinethecomputable metricspaceX) andr≥ 0 is arationalnumber.

Lemma1.LetX beacomputable metricspace.ConsiderthemultivaluedfunctionFX :⊆ K(X)⇒ O(X)N with dom(FX)={K ∈ K(X): K = ∅} and suchthat, for each K = ∅, we have (Un)n ∈ FX(K) if and only if thefollowingconditionshold foreach n∈ N:

(1) Un isaunion offinitely manyrational openballsof radius≤ 2−n, (2) K ⊆ Un.

Then FX iscomputable.

Proof. Let X be acomputable metric space and let K ⊆ X bea nonempty compact set. Let pii be a κ-nameofK.This meansthatp:= limi→∞pi isaκ-nameforK and,inparticular,foreachn∈ N:

• pi(n) isanameforafinite setofrationalopenballsforeachi∈ N,

• thereexistsk ∈ N suchthatthefinite setof rationalballs givenbypk(n) coversK and pk(n) = pi(n) foralli≥ k.

Wealsohavethat{p(n): n∈ N} is asetofnamesofallfinitecoversofK by rationalopen balls.Wewant to build asequence ofopen sets (Un)n such that(1) and (2) hold.Wedescribe how to construct aname of ageneric open set Un for n ∈ N.We start at stage 0 with Un =∅. At eachstage s = m,i that the computation reaches, we focus on the balls B(a0,r0),. . . ,B(al,rl) given by pi(m) and we check whether r0,. . . ,rl ≤ 2−n.If this is nottrue,then we goto stage s+ 1. Otherwise,if thecondition ismet, we add these balls to the name of Un and we check whether pi(m) = pi+1(m). If this is the case we add again B(a0,r0),. . . ,B(al,rl) tothenameofUn.Werepeat thisoperationaslongaswefindthesameopenballs givenbypj(m) forj > i.Ifwefindpi(m)= pj(m) forsomej > i,thenthecomputationgoestostages+ 1.

Weclaim that,for eachn,there existsastageinwhichthecomputationgoesonindefinitely.Consider, infact,{B(a0,r0),. . . ,B(al,rl)},afiniterationalcoverofK withr0,. . . ,rl≤ 2−n,whichexistsbyasimple argument using thecompactnessofK. Since pii is aκ-name ofK,there exists aminimum m,i such that:

• pi(m) isanameforthecover{B(a0,r0),. . . ,B(al,rl)},

• pi(m)= pj(m) foreachj > i.

If thealgorithm reachesstage s= m,i, thenit isclearthatthecomputationgoes onindefinitelywithin this stage. Ifthe algorithm neverreaches stage s, then necessarilyit alreadystopped at apreviousstage.

Inboth casesourclaimistrue.

Finally, sincewebuiltthename ofUn byadding onlyballsof radius≤ 2−n andsincethecomputation stabilizes atafinitestage,itisclearthatconditions(1)and(2)aremet. 2

WenotethateventhoughtheopensetsUn constructedinthepreviousproofarefiniteunionsofrational openballs,thealgorithmdoesnotprovideacorrespondingrationalcoverinafinitaryway.Itratherprovides aninfinitelistofrationalopenballsthatisguaranteedtocontainonlyfinitelymanydistinctrationalballs.

This is aweakform ofeffective totalboundedness and thebest onecan hopefor, given thatthe inputis representedbythejumpofκ.

(4)

Thefollowinglemma showsthatsequencesthatwechooseinrange(FX) inaparticularway giveriseto totallyboundedsets.

Lemma2.LetX beametricspaceandletUn⊆ X beafiniteunionofballsofradius≤ 2−nforeachn∈ N.

Let(xn)n beasequencein X withxnn

i=0Ui.Then{xn: n∈ N} istotallybounded.

Proof. Weobtain{xn : n∈ N}⊆

i=0



Uii−1

n=0B(xn, 2−i)

andthesetontheright-handsideisclearly totallybounded.Hencethesetontheleft-handsideistotallyboundedandso isitsclosure. 2

Wemention thatit iswell known thatasubsetof ametric spaceis totally boundedif and onlyif any sequenceinithasaCauchysubsequence[2,Exercise 4.3.A (a)].

Nowweusetheprevioustwolemmastocompletetheproofof[1,Theorem11.2].Withintheproofweuse thecanonicalcompletionX ofˆ acomputablemetricspace.Itisknownthatthiscompletionisacomputable metricspaceagainandthatthecanonicalembeddingX → ˆX isacomputableisometrythatpreserves the densesequence[3,Lemma 8.1.6]. Wewill identifyX withasubsetofX viaˆ thisembedding.

Theorem3([1,Theorem11.2]).BWTXsWKX forallcomputablemetric spacesX.

Proof. ThereductionBWTXsWKX hasbeenprovedin[1],sowefocusonthereductionKXsWBWTX. Let(X,d,α) beacomputablemetricspaceandletK⊆ X beanonemptycompactsetgivenbyaκ-name pii.WewanttocomputeapointofK usingBWTX.Theideaistodefineasequence(xn)ninX,working withinthecompletionX ofˆ X andusingtheopensetsbuiltinLemma 1,suchthat{xn : n∈ N} iscompact inX.

Itis clearthatK isacompact subsetofX andˆ that pii canbe consideredasaκ-nameforK in X.ˆ Weconsiderthemap

LXˆ : ˆXN→ A( ˆX), (xn)n → {x ∈ ˆX : x is a cluster point of (xn)n}.

By [1, Corollary 9.5] L−1ˆ

X is computable and hence L−1ˆ

X (K) yields asequence (zm)m inX whoseˆ cluster pointsareexactlytheelementsofK.

LetFXˆ bethe multivaluedfunctiondefinedinLemma 1.We cancompute asequence(Un)n ∈ FXˆ(K).

Since{zm: m∈ N} isnotcompact(andhencenotindom(BWTX))ingeneral,werefineitrecursivelytoa sequence (yn)n using(Un)n inthe followingway: foreachn∈ N, yn := zmn forthefirst mn thatwefind with zmn ∈ U0∩ · · · ∩ Un and suchthat mi < mn for alli < n. Notethat wecan alwaysfind such ayn, sinceU0∩ · · · ∩ UncoversK whichisthesetofclusterpointsof(zm)m.Clearlyeverycluster pointof(yn)n

isalsoaclusterpointof(zm)m,henceitbelongstoK.

Recall now that (yn)n is asequence of points inX andˆ thatwe want asequence (xn)n inX in order to applyBWTX. Wecompute(xn)n as follows: foreachn∈ N,xn is thefirstelement thatwefind inthe densesubsetrange(α) suchthatd(xn,yn)< 2−nandxn∈ U0∩ · · · ∩ Un,whered alsodenotestheextension ofthemetrictoX.ˆ BydensityofX inX suchˆ anxn alwaysexistsanditisclearthattheclusterpointsof (xn)n andthoseof(yn)n arethesameinX.ˆ

Now A := {xn : n∈ N} is totally bounded in X by Lemma 2 and hence every sequence in A has a Cauchy subsequence, which has alimit in X,ˆ since X isˆ complete.By construction of (xn)n thelimit of suchasubsequenceisinK andhenceinX.ThuseverysequenceinA hasasubsequencethatconvergesin X andhenceA iscompactinX.

Finally,wecanobtainanelementof K byapplyingBWTX to (xn)n. 2

(5)

References

[1]VascoBrattka,GuidoGherardi,AlbertoMarcone,TheBolzano–WeierstrasstheoremisthejumpofweakKőnig’slemma, Ann.PureAppl.Logic163(2012)623–655.

[2]RyszardEngelking,GeneralTopology,SigmaSer.PureMath.,vol. 6,Heldermann,Berlin,1989.

[3]KlausWeihrauch,ComputableAnalysis,Springer,Berlin,2000.

Riferimenti

Documenti correlati

BI, brood interruption; BR, brood removal; BR-n, nucleus; BR-oc, original colony. 2 Variations of total protein and Zn concentrations in honeybee haemolymph at

In addition, our obese PCOS subgroup had higher free testosterone than the normal weight subgroup. Since

In this work, the focus is on a partial offloading approach where the trade off between FN energy consumption and task processing delay is considered when estimating the portion to

Compared to other views, this proposal has the advantage of suggesting a mechanism underlying abstract concepts that is supported by a functional architecture of

Several simple tests can detect the presence of PIGD; examples include questions (can you still ride a bicycle?) or several gait and balance tests, such as the retropulsion

In 2009, the “Tokyo” consensus on propeller flaps defined a propeller flap as an “island flap that reaches the recipient site through an axial rotation”.In the

To this end, we prototyped our approach by applying the behavior-driven, intent-based SDI management to two practi- cal use cases: (i) service function chaining on a NFV environ-

Rule TClass uses an empty usage variable type environment and a field typing environment assigning initial types to the fields of the class: since when a new object is created, all