This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)
When citing, please refer to the published version.
This is the final peer-reviewed accepted manuscript of:
V. Brattka, A. Cettolo, G. Gherardi, A. Marcone and M. Schröder (2017) Addendum to “The Bolzano-Weierstrass Theorem is the jump of weak König’s Lemma”. Annals of Pure and Applied Logic, vol 168, no. 8, pp. 1605-1608, DOI:
10.1016/j.apal.2017.04.004
final published version is available online at: http://dx.doi.org/10.1016/j.apal.2017.04.004
Rights / License:
The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.
Addendum to: “The Bolzano–Weierstrass theorem is the jump of weak Kőnig’s lemma” [Ann. Pure Appl. Logic 163 (6) (2012) 623–655]
Vasco Brattkaa,b,∗, Andrea Cettoloc, Guido Gherardid, Alberto Marconec, Matthias Schrödere
a DepartmentofMathematics&AppliedMathematics,UniversityofCapeTown,SouthAfrica
bFacultyofComputerScience,UniversitätderBundeswehrMünchen,Germany
cDipartimentodiScienzeMatematiche,InformaticheeFisiche,UniversitàdiUdine,Italy
dDipartimentodiFilosofiaeComunicazione,Universitàdi Bologna,Italy
eFachbereichMathematik,UniversitätDarmstadt,Germany
a b s t r a c t
Thepurposeofthisaddendumistocloseagapintheproofof[1,Theorem 11.2], whichcharacterizesthecomputationalcontentoftheBolzano–WeierstraßTheorem forarbitrarycomputablemetricspaces.
In [1, Theorem 11.2] it is stated that BWTX≡sWKX holds for all computable metric spaces X. Here BWTX denotestheBolzano–WeierstraßTheorem,KXdenotesthejumpofcompactchoiceand≡sWstands for strong Weihrauchequivalence. Werefer the readerto [1]for the definitionof all notions thatare not definedhere.
WhilethereductionBWTX≤sWKX was provedcorrectlyin[1], theproofprovidedfor KX≤sWBWTX containsagapandisonlycorrectforthespecialcaseofcompactX as itstands.Thisfactwaspointedout byoneofus(M.Schröder)andisdue tothefactthatingeneraltheclosureofL−1X (K) isnotcompact.We closethisgap inthisaddendum.
WestartwithalemmathatshowsthatcompactsetsgiveninK− (X) areeffectivelytotallyboundedina particularsense.ByO(X) wedenotetheset ofopensubsetsofX,representedascomplementsofelements
E-mailaddresses:[email protected](V. Brattka),[email protected](A. Cettolo),
[email protected](G. Gherardi),[email protected](A. Marcone),[email protected](M. Schröder).
of A−(X),i.e.,p isanameofanopenset U ifandonlyifitisaψ−-nameoftheclosedsetX\ U.Wecall anopenballB(a,r) rational,ifa isapointofthedensesubsetofX (thatisusedtodefinethecomputable metricspaceX) andr≥ 0 is arationalnumber.
Lemma1.LetX beacomputable metricspace.ConsiderthemultivaluedfunctionFX :⊆ K−(X)⇒ O(X)N with dom(FX)={K ∈ K−(X): K = ∅} and suchthat, for each K = ∅, we have (Un)n ∈ FX(K) if and only if thefollowingconditionshold foreach n∈ N:
(1) Un isaunion offinitely manyrational openballsof radius≤ 2−n, (2) K ⊆ Un.
Then FX iscomputable.
Proof. Let X be acomputable metric space and let K ⊆ X bea nonempty compact set. Let pii be a κ−-nameofK.This meansthatp:= limi→∞pi isaκ−-nameforK and,inparticular,foreachn∈ N:
• pi(n) isanameforafinite setofrationalopenballsforeachi∈ N,
• thereexistsk ∈ N suchthatthefinite setof rationalballs givenbypk(n) coversK and pk(n) = pi(n) foralli≥ k.
Wealsohavethat{p(n): n∈ N} is asetofnamesofallfinitecoversofK by rationalopen balls.Wewant to build asequence ofopen sets (Un)n such that(1) and (2) hold.Wedescribe how to construct aname of ageneric open set Un for n ∈ N.We start at stage 0 with Un =∅. At eachstage s = m,i that the computation reaches, we focus on the balls B(a0,r0),. . . ,B(al,rl) given by pi(m) and we check whether r0,. . . ,rl ≤ 2−n.If this is nottrue,then we goto stage s+ 1. Otherwise,if thecondition ismet, we add these balls to the name of Un and we check whether pi(m) = pi+1(m). If this is the case we add again B(a0,r0),. . . ,B(al,rl) tothenameofUn.Werepeat thisoperationaslongaswefindthesameopenballs givenbypj(m) forj > i.Ifwefindpi(m)= pj(m) forsomej > i,thenthecomputationgoestostages+ 1.
Weclaim that,for eachn,there existsastageinwhichthecomputationgoesonindefinitely.Consider, infact,{B(a0,r0),. . . ,B(al,rl)},afiniterationalcoverofK withr0,. . . ,rl≤ 2−n,whichexistsbyasimple argument using thecompactnessofK. Since pii is aκ−-name ofK,there exists aminimum m,i such that:
• pi(m) isanameforthecover{B(a0,r0),. . . ,B(al,rl)},
• pi(m)= pj(m) foreachj > i.
If thealgorithm reachesstage s= m,i, thenit isclearthatthecomputationgoes onindefinitelywithin this stage. Ifthe algorithm neverreaches stage s, then necessarilyit alreadystopped at apreviousstage.
Inboth casesourclaimistrue.
Finally, sincewebuiltthename ofUn byadding onlyballsof radius≤ 2−n andsincethecomputation stabilizes atafinitestage,itisclearthatconditions(1)and(2)aremet. 2
WenotethateventhoughtheopensetsUn constructedinthepreviousproofarefiniteunionsofrational openballs,thealgorithmdoesnotprovideacorrespondingrationalcoverinafinitaryway.Itratherprovides aninfinitelistofrationalopenballsthatisguaranteedtocontainonlyfinitelymanydistinctrationalballs.
This is aweakform ofeffective totalboundedness and thebest onecan hopefor, given thatthe inputis representedbythejumpofκ−.
Thefollowinglemma showsthatsequencesthatwechooseinrange(FX) inaparticularway giveriseto totallyboundedsets.
Lemma2.LetX beametricspaceandletUn⊆ X beafiniteunionofballsofradius≤ 2−nforeachn∈ N.
Let(xn)n beasequencein X withxn∈n
i=0Ui.Then{xn: n∈ N} istotallybounded.
Proof. Weobtain{xn : n∈ N}⊆∞
i=0
Ui∪i−1
n=0B(xn, 2−i)
andthesetontheright-handsideisclearly totallybounded.Hencethesetontheleft-handsideistotallyboundedandso isitsclosure. 2
Wemention thatit iswell known thatasubsetof ametric spaceis totally boundedif and onlyif any sequenceinithasaCauchysubsequence[2,Exercise 4.3.A (a)].
Nowweusetheprevioustwolemmastocompletetheproofof[1,Theorem11.2].Withintheproofweuse thecanonicalcompletionX ofˆ acomputablemetricspace.Itisknownthatthiscompletionisacomputable metricspaceagainandthatthecanonicalembeddingX → ˆX isacomputableisometrythatpreserves the densesequence[3,Lemma 8.1.6]. Wewill identifyX withasubsetofX viaˆ thisembedding.
Theorem3([1,Theorem11.2]).BWTX≡sWKX forallcomputablemetric spacesX.
Proof. ThereductionBWTX≤sWKX hasbeenprovedin[1],sowefocusonthereductionKX≤sWBWTX. Let(X,d,α) beacomputablemetricspaceandletK⊆ X beanonemptycompactsetgivenbyaκ−-name pii.WewanttocomputeapointofK usingBWTX.Theideaistodefineasequence(xn)ninX,working withinthecompletionX ofˆ X andusingtheopensetsbuiltinLemma 1,suchthat{xn : n∈ N} iscompact inX.
Itis clearthatK isacompact subsetofX andˆ that pii canbe consideredasaκ−-nameforK in X.ˆ Weconsiderthemap
LXˆ : ˆXN→ A−( ˆX), (xn)n → {x ∈ ˆX : x is a cluster point of (xn)n}.
By [1, Corollary 9.5] L−1ˆ
X is computable and hence L−1ˆ
X (K) yields asequence (zm)m inX whoseˆ cluster pointsareexactlytheelementsofK.
LetFXˆ bethe multivaluedfunctiondefinedinLemma 1.We cancompute asequence(Un)n ∈ FXˆ(K).
Since{zm: m∈ N} isnotcompact(andhencenotindom(BWTX))ingeneral,werefineitrecursivelytoa sequence (yn)n using(Un)n inthe followingway: foreachn∈ N, yn := zmn forthefirst mn thatwefind with zmn ∈ U0∩ · · · ∩ Un and suchthat mi < mn for alli < n. Notethat wecan alwaysfind such ayn, sinceU0∩ · · · ∩ UncoversK whichisthesetofclusterpointsof(zm)m.Clearlyeverycluster pointof(yn)n
isalsoaclusterpointof(zm)m,henceitbelongstoK.
Recall now that (yn)n is asequence of points inX andˆ thatwe want asequence (xn)n inX in order to applyBWTX. Wecompute(xn)n as follows: foreachn∈ N,xn is thefirstelement thatwefind inthe densesubsetrange(α) suchthatd(xn,yn)< 2−nandxn∈ U0∩ · · · ∩ Un,whered alsodenotestheextension ofthemetrictoX.ˆ BydensityofX inX suchˆ anxn alwaysexistsanditisclearthattheclusterpointsof (xn)n andthoseof(yn)n arethesameinX.ˆ
Now A := {xn : n∈ N} is totally bounded in X by Lemma 2 and hence every sequence in A has a Cauchy subsequence, which has alimit in X,ˆ since X isˆ complete.By construction of (xn)n thelimit of suchasubsequenceisinK andhenceinX.ThuseverysequenceinA hasasubsequencethatconvergesin X andhenceA iscompactinX.
Finally,wecanobtainanelementof K byapplyingBWTX to (xn)n. 2
References
[1]VascoBrattka,GuidoGherardi,AlbertoMarcone,TheBolzano–WeierstrasstheoremisthejumpofweakKőnig’slemma, Ann.PureAppl.Logic163(2012)623–655.
[2]RyszardEngelking,GeneralTopology,SigmaSer.PureMath.,vol. 6,Heldermann,Berlin,1989.
[3]KlausWeihrauch,ComputableAnalysis,Springer,Berlin,2000.