• Non ci sono risultati.

ABBREVIATIONS ACV: ACycloVir ADA: Adenosine DeAminase AIRP: Autoimmune Infertility Related Protein AML: Acute Myeloid Leukemia AMPCP:

N/A
N/A
Protected

Academic year: 2021

Condividi "ABBREVIATIONS ACV: ACycloVir ADA: Adenosine DeAminase AIRP: Autoimmune Infertility Related Protein AML: Acute Myeloid Leukemia AMPCP:"

Copied!
26
0
0

Testo completo

(1)

122

ABBREVIATIONS

ACV: ACycloVir

ADA: Adenosine DeAminase

AIRP: Autoimmune Infertility Related Protein

AML: Acute Myeloid Leukemia

AMPCP: α,β-Methylene adenosine 5’ diphosphate

AraC(MP): 1--D-ArabinofuranosideCytosine (MonoPhosphate) AraG(MP): 9- -D-ArabinofuranosylGuanine (MonoPhosphate) AraTMP: 1- -D -ArabinofuranosylThymine (MonoPhosphate) AZT(MP): 3’-azido-2’,3’-deoxy-thymidine (MonoPhosphate)

BSA: Bovine Serum Albumine

BPG: 2,3-BisPhosphoGlycerate

BvdU(MP) : (E)-5-(2-Bromovinyl)-2’-deoxyUridine (MonoPhosphate) CdA(MP): 2-Chloro-2’-deoxyAdenosine (MonoPhosphate)

cdN: cytosolic 5’ (3’)-deoxyriboNucleotidase CIAP: Calf Intestinal Alkaline Phosphatase CLL: Chronic Lymphocytic Leukemia cN-IA: Cytosolic 5’-Nucleotidase IA cN-IB: Cytosolic 5’-Nucleotidase IB cN-II: Cytosolic 5’-Nucleotidase II cN-III: Cytosolic 5’-Nucleotidase III

CNT: Concentrative Nucleoside-specific membrane Transport carriers cPPT: Central PolyPurine Tract

dCK: deoxyCitidine Kinase ddC(MP): 2’,3’-dideoxyCytidine (MonoPhosphate ) ddIno: 2’,3’-DideoxyInosine dFdCMP: 2’,3’-difluorodeoxycytidine monophosphate DFS: Disease-Free Survival dGK: deoxyGuanosine Kinase

DIGs: Detergent-Insoluble Glycolipid-enriched plasma membrane microdomains DMEM: Dulbecco's Modified Eagle's Medium

DMSO: DiMethylSulfOxyde

(2)

123 dNT-2: Mytochondrial 5’ (3’)-deoxyriboNucleotidase (d)NTP: (deoxy)Nucleotides TriPhosphate DPB-T (S)-1-[2’deoxy-3’,5’-O-(1-phosphono)benzylidene--D-threo- pentofuranosyl]-thymine d4TMP: 2',3'-Didehydro-3'-dideoxy-thymidine-5'-monophosphate DTT: DiThioTreitol 5-EddU 5-Ethynyl-2‘,3‘-dideoxyUridine EDTA: EthyleneDiamine Tetracetic Acid

e-N: Ecto 5’-Nucleotidase

ENT: Equilibrative Nucleoside-specific membrane Transport carriers FACS: Fluorescence-Activated Cell Sorter

F-araA(MP): 9- -D-arabinofuranosyl-2-fluoroadenine (MonoPhosphate) FBS: Foetal Bovine Serum

FdUMP: 5’-fluorodeoxyuridine monophosphate 5FdUrd: 5’-fluoro-2’-deoxyuridine

GFP: Green Fluorescent Protein GPI: Glycosyl PhosphatidylInosytil HAD: HaloAcid Dehalogenase HCL: Hairy Cell Leukemia

HEK: Human Embryonic Kidney (cell)

HGPRT: Hypoxanthine-Guanine PhosphoRibosyl Transferase HP-1: Heterochromatin Protein-1

HR: Homologous Recombination

IMPDH: 5’-Inosine MonoPhosphate DeHydrogenase IPTG: IsoPropyl--D-ThioGalactopyranoside IRES: Internal Ribosome Entry Site

KRAB: Krüppel-associated box

LDs: Lipid Droplets

LTR: Long Terminal Repeat

LV: Lentiviral Vector

mdN: Mitochondrial 5’(3’)-deoxyNucleotidase

MMS: Methyl MethaneSulfonate

MOI: Multiplicity Of Infection

(3)

124

NA: Nucleoside Analog

NAPDD: Nucleotidase Associated Pervasive Developmental Disorder NEB: New England Biolab (Inc.)

NDPK: Nucleoside DiPhosphate Kinases

Nef: Negative factor gene

NHA: Nonspherocytic Hemolytic Anemia NMPK: Nucleoside MonoPhosphate 5’-NT: 5’-Nucleotidase

NTP: Nucleotide TriPhosphate

OD: Optical Density

OS: Overall Survival

PAP: Prostatic Acid Phospahtase PCR: Polimerase Chain Reaction

PEI: PolyEthylenImine

PHT: PhosphoTransferase

pI: Isoelectric Point

PMN: PolyMorphoNuclear (leukocyte) PNP: Purine Nucleoside Phosphorylase

Pol: Polymerase

Prom: Promoter

PRPP: 5-PhosphoRybosyl 1-PyroPhosphate PSP: PhosphoSerine Phosphatase

RCL: Replication Competent Lentivirus Rev: Regulatory of virus gene

RNAi: RNA interference

SDS: Sodium Dodecyl-Sulphate SIN: Self Inactivating

Tat: Transactivation gene

TBE: Tris-Borate- EDTA (buffer) TK1/2: Thymidine Kinase 1/2 Vif: Virion infectivity factor Vpr: Viral protein R gene

Vpu: Virus protein U

(4)

125 WPRE: Woodchuck hepatisis virus Post-transcriptional Regulatory Element

X: Inside a protein primary structure means "any amino acid"

Xao: Xanthosine

XO: Xanthine Oxidase

ZMP: 5’-amino-4-imidazolecarboxamide-1--D-Ribofuranosyl monophosphate

(5)

126

BIBLIOGRAPHY

Airas L., Hellman J., Salmi M., Bono P., Puurunen T., Smith D.J., Jalkanen S. (1995) CD73 is involved in lymphocyte binding to the endothelium: characterization of lymphocyte-vascular adhesion protein 2 identifies it as CD73. J. Exp. Med. 182, 1603-1608

Akinc A., Thomas M., Klibanov A.M., Langer R. (2004) Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med. 7 (5), 657-663

Aksoy P., Zhu M.J., Kalari K.R., Moon I., Pelleymounter L.L., Eckloff B.W., Wieben E.D., Yee V.C., Weinshilboum R.M., Wang L. (2009) Cytosolic 5’-nucleotidase III (NT5C3): gene sequence variation and functional genomics. Pharm Genom. 19 (8), 567-576

Albertioni F., Bayat N., Karlsson K., Juliusson G., Peterson C., Eriksson S., Lotfi K. (2005) Activity profiles of 5’-nucleotidases in peripheral blood cells from patients with untreated B-cell chronic lymphocytic leukemia: correlation to anticancer nucleoside-monophosphate degrading activity. Proceeding of the 97th Annual meeting of the American Association for Cancer Research 46, Abstract number 3974

Allegrini S., Pesi R., Tozzi M.G., Ipata P.L. and Camici M. (1993) Cytosolic 5’-nucleotidase / nucleoside phosphotransferase: a single assay for a bifunctional enzyme. J.

Biochem. and Bioph. methods 27, 293-299

Allegrini S., Pesi R., Tozzi M. G., Fiol C., Johnson B. and Eriksson S. (1997) Bovine cytosolic IMP/GMP-specific 5’-nucleotidase: cloning and expression of active enzyme in Escherichia coli. Biochem. J. 328, 483-487

Allegrini S., Scaloni A., Ferrara L., Pesi R., Pinna P., Sgarrella F., Camici M., Eriksson S. and Tozzi M.G. (2001) Bovine Cytosolic 5’-Nucleotidase acts through the formation of an aspartate 52-phosphoenzyme intermediate. J.B.C. 276, 33526-33532

(6)

127 Allegrini S., Scaloni A., Careddu M. G., Cuccu G., D’Ambrosio C., Pesi R., Camici M., Ferrara L. and Tozzi M.G. (2004) Mechanistic studies on bovine cytosolic 5’-nucleotidase II, an enzyme belonging to the HAD superfamily. Eur. J. Biochem. 271, 4881-4891

Allen K.N. and Dunaway-Mariano D. (2004) Phosphoryl group transfer: evolution of catalytic scaffold. TRENDS in Biochem. Sciences 29, 495-503

Amici A., Emanuelli M., Magni G., Raffaelli N. and Ruggieri S. (1997) Pyrimidine nucleotidases from human erytrocytes possess phosphotransferase activities specific for pyrimidine nucleotides. FEBS Lett. 419, 263-267

Amici A., Emanuelli M., Raffaelli N., Ruggirei S., Saccucci F., Magni G. (2000) Human erytrocyte pyrimidine 5’-nucleotidase, PN-I, is identical to p36, a protein associated to lupus inclusion formation in response to -interferon. American Soc. Hemat. 96, 1596-1598

Amici A. and Magni G. (2002) Human Erythrocyte Pyrimidine 5’-nucleotidase, PN-I. Archives of Biochem. and Bioph. 397, 2, 184-190

Baiocchi C., Pesi R., Camici M., Itoh R. and Tozzi M. G. (1996) Mechanisms of reaction catalyzed by cytosolic 5’-nucleotidase/phosphotransferase: formation of a phosphorilated intermediate. Biochem. J. 317, 797-801

Banditelli S., Baiocchi C., Pesi R., Allegrini S., Turriani M., Ipata P. L., Camici M., Tozzi M. G. (1996) The phosphotransferase activity of cytosolic 5’-nucleotidase; a purine analog

phosphorilating enzyme. Int. J. Biochem. Cell Biol. 28, 711-720

Barsotti C., Ipta P.L. (2004) Metabolic regulation of ATP breakdown and of adenosine production in rat brain extracts. Int. J. Biochem. Cell Biol. 36, 2214-2225

Barsotti C., Pesi R., Giannecchini M. and Ipata P.L. (2005) Evidence for the involvement of cytosolic 5’-nucleotidase (cN-II) in the synthesis of guanine nucleotides from xanthosine. J.B.C. 280, 13465-13469

(7)

128 Berman P.A., Black D.A., Human L., Harley E.H. (1988) Oxypurine cycle in human erythrocytes regulated by pH, inorganic phosphate, and oxygen. J. Clin. Invest. 82, 980-986

Bianchi V. and Spychala J. (2003) Mammalian 5’-Nucleotidases. J. Biol. Chem. 278, 46195-46198

Bitto E., Bingman C.A., Wesenberg G.E., McCoy J.G., Phillips G.N. Jr (2006) Structure of pyrimidine 5’-nucleotidase type 1 – Insight into mechanism of action and inhibition during lead poisoning. JBC 281, 20521-20529

Bobbert P., Schluter H., Schultheiss H.P., Reusch H.P. (2008) Diadenosine polyphosphates Ap3A

and Ap4A, but not Ap5A or Ap6A, induce proliferation of vascular smooth muscle cells. Biochem.

Pharm. 75, 1966-1973

Bontemps F., Van Den Berghe G., Hers H.G. (1988) 5’-Nucleotidase activities in human erythrocytes. Biochem. J. 250, 687-696

Boussif O., Lezoualc F., Zanta M.A., Mergny M.D., Scherman D., Demeneix B., Behr J.P. (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA 92, 7297-7301

Bradford M. (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254

Bretonnet A.S., Jordheim L.P, Dumontet C., Lancelin J.M. (2005) Regulation and activity of cytosolic 5’-nucleotidase II a bifunctional allosteric enzyme of the Haloacid Dehalogenase superfamily involved in cellular metabolism. FEBS Letters 579, 3363-3368

Brummelkamp T. R., Bernards R., Agami R. (2002) A System for Stable Expression of Short Interfering RNAs in Mammalian Cells. Science 296, 550-553

Buchschacher G.L. Jr (2002) Introduction to retroviruses and retroviral vectors. Somat. Cell Mol. Genet. 26, 1-11

(8)

129 Burns J.C., Friedmann T., Driever W., Burrascanos M., Yee J. (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: Concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. USA 90, 8033-8037

Burroughs M., Allen K. N., Dunaway-Mariano D. and L. Aravind (2006) Evolutionary Genomics of the HAD Superfamily: Understanding the Structural Adaptations and Catalytic Diversity in a Superfamily of Phosphoesterases and Allied Enzymes. J. Mol. Biol. 361, 1003–1034

Caligo M.A., Bonatti F., Guidugli L., Aretini P., Galli A. (2009) A yeast recombination assay to characterize human BRCA1 missense variants of unknown pathological significance. Hum. Mutat. 30, 123-2009

Camici M., Micheli V., Ipata P.L., Tozzi M.G. (2010) Pediatric neurological syndromes and inborn errors of purine metabolism. Neurochem. Intern. 56 (2010) 367–378

Careddu M.G., Allegrini S., Pesi R., Camici M., Garcia-Gil M., Tozzi M.G. (2008) Knockdown of cytosolic 5’-nucleotidase II ( cN-II ) reveals that its activity is essential for survival in astrocytoma cells. BBA 1783, 1529-1535

Ceruti S., Mazzola a., Abbracchio M.P. (2005) Resistance of human astrocytoma cells to apoptosis induced by mitochondria-damaging agents: possible implications for anticancer therapy. J. Pharmacol. Exp. Ther. 314, 825–837

Chiarelli L.R., Bianchi P., Fermo E., Galizzi A., Iadarola P., Mattevi A., Zanella A., Valentini G. (2005) Functional analysis of pyrimidine 5’-nucleotidase mutants causing nonspherocytic hemolytic anemia. Blood 106, 3340-3345

Chiarelli LR, Morera SM, Galizzi A, Fermo E, Zanella A, Valentini G. (2008) Functional analysis of pyrimidine 5'-nucleotidase mutants causing nonspherocytic hemolytic anemia. Blood 105 (8), 3340-5.

Chifflet S., Torriglia A., Chiesa R., Tolosa S. (1988) A method for the determination of inorganic phosphate in the presence of labile organic phosphate and high concentrations of protein: application to lens ATPases. Anal. Biochem. 168, 1-4

(9)

130 Colgan S.P., Eltzschig H.K., Eckle2 T., Thompson L.F. (2006) Physiological roles for

ecto-5’-nucleotidase (CD73). Purin. Sign. 2, 351–360

Coligan J.E., Dunn B.M., Ploegh H.L., Speicher D.W., Wingfield P.T. (2003) Current Protocols in

Protein Science. John Wiley & Sons Inc.

Collavoli A., Comelli L., Rainaldi G. and Galli A. (2008) A yeast-based genetic screening to identify human proteins that increase homologous recombination. FEMS Yeast Res 8, 351-361

Collet J.F., Stroobant V., Pirard M., Delpierre G. and Van Schaftingen E. (1998) A new class of phosphotransferases phosphorylated on an aspartate residue in an amino-terminal DXDX(T/V) motif. JBC 273, 14107-14112

Current Protocol in Protein Science (2003). Ed. Wiley

Darvish A., Postlewaite J. J., Metting P. J. (1993a) Immunogold localization of adenosine 5’-monophosphate specific cytosolic 5’nucleotidasein dog heart. Hypertension 21, 906-910.

Darvish A., Metting P. J. (1993b) Purification and regulation of anAMP-specific cytosolic 5V-nucleotidase from dog heart. Am. J. Physiol. 264, 1528-1534.

Deaglio S., Robson S.C. (2011) Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity. Adv. Pharmacol. 61, 301-332

Doyle A. and Griffiths J.B. (1999) Cell and tissue: laboratory procedures in biotechnology. Ed. Wiley

Eltzschig H. K., Ibla J. C., Furuta G. T., Leonard M. O., Jacobson K. A., Enjyoji K., Robson S.C., Colgan S.P. (2003). Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors. J. Exp. Med. 198, 783-796.

Filoni D.N., Pesi R., Careddu M.G., Allegrini S., Collavoli A., Scarfone I., Zucchi F., Galli A. and Tozzi M.G (2011) Initial studies to define the physiologic role of cN-II. NNNA 30, 1155–1160

(10)

131 Fini C., Amoresano A., Andolfo A., D'Auria S., Floridi A., Paolini S., Pucci P. (2000) Mass spectrometry study of ecto-5’-nucleotidase from bull seminal plasma. Eur. J. Biochem. 267, 4978-4987

Fisher C.L. and Pei G.K. (1997) Modification of a PCR-Based site-Directed Mutagenesis Method. Biotechniques 23 , 570-572

Fridland A.M., Connely C. and Robbins T. (1986) Tiazofurin metabolism in human lymphoblastoid cells: evidence for phosphorylation by adenosine kinase and 5’-nucleotidase. Cancer Res. 46, 532-537

Gallier F., Lallemand P., Meurillon M., Jordheim L.P., Dumontet C., Périgaud C., Lionne C., Peyrottes S., Chaloin L. (2011) Structural Insights into the Inhibition of Cytosolic 5’-Nucleotidase II (cN-II) by Ribonucleoside 5’-Monophosphate Analogues. PloS Comput Biol 7 (12): e1002295. doi:10.1371/journal.pcbi.1002295

Gallinaro L., Crovatto K., Rampazzo C., Pontarin G., Ferraro P., Milanesi E., Reichard P., Bianchi V. (2002) Human Mitochondrial 5’-Deoxyribonucleotidase – Overproduction in cultured cells and functional aspects. J. Biochem. Chem. 277 (38), 35080-25087

Galmarini C.M., Graham K., Thomas X., Calvo F., Rousselot P., El Jafaari A., Cros E., Mackey J.R. and Dumontet C. (2001a) Expression of high Km 5’-nucleotidase in leukemic blasts is an independent prognostic factor in adults with acute myeloid leukaemia. Blood 98, 1922-1926

Galmarini C.M., Mackey J.R. and Dumontet (2001b) Nucleoside analogues; mechanism of drug resistance and reversal strategies. Leukemia 15, 875-890

Galmarini C. M., Thomas X., Calvo F., Rousselot P., Jafaari A. E., Cros E., Dumontet C. (2002) Potential mechanisms of resistance to cytarabine in AML patients. Leukemia Res. 26, 621-629.

Galmarini C.M., Jordheim L. and Dumontet C. (2003a) Role of IMP-selective 5’-nucleotidase (cN-II) in hematological malignancies. Leuk. Lymphoma 44, 1005-1111

(11)

132 Galmarini C.M., Thomas X., Graham K., El Jafaari G., Cros E., Jordheim L., Mackey J.R., Dumontet C. (2003b) Deoxycytidine kinase and cN-II nucleotidase expression in blast cells predict survival in acute myeloid leukaemia patients treated with cytarabine. British J. Haemat. 122, 53-60

Galmarini C.M., Cros E., Graham K., Thomas X., Mackey J.R., Dumontet C (2004) 5'-(3')-nucleotidase mRNA levels in blast cells are a prognostic factor in acute myeloid leukemia patients treated with cytarabine. Haemat. 89(5), 617-9

Galmarini C.M., Cros E., Thomas X., Jordheim L., Dumontet C. (2005) The prognostic value of cN-II and cN-cN-III enzymes in adult acute myeloid leukemia. Haemat. 90( 12),1699-1701

Galmarini C.M. (2007) What does over-expression of cN-II enzyme signify in haematological malignancies? Leukemia Res. 31, 1325-1326

Garcia-Gil M., Pesi R., Perna S., Allegrini S., Giannecchini M., Camici M. and Tozzi M.G. (2003) 5’-aminoimidazole-4-carboxamide riboside induces apoptosis in human neuroblastoma cells. Neuroscience 117, 811-820

Garvey E. P., Lowen G. T., Almond M. R. (1998) Nucleotide and nucleoside analogues as inhibitors of cytosolic 5’-nucleotidase I from heart. Biochem. 37, 9043– 9051.

Gazziola C., Moras M., Ferraro P., Gallinaro L., Verin R., Rampazzo C., Reichard P., Bianchi V. (1999) Induction of human high Km 5’-Nucleotidase in cultured 293 cells. Exp. Cell Res. 253,

474-482

Gazziola C., Ferraro P., Moras M., Reichard P and Bianchi V. (2001) Cytosolic High Km 5’-Nucleotidase and 5’(3’)-Deoxyribonucleotidase in substrate cycles involved in nucleotide

metabolism. JBC 276, 6185-6190

Ge Q., Ilves H., Dallas A., Kumar P., Shorenstein J., Kazakov S.A., Johnston B.H. (2010) Minimal-length short hairpin RNAs: The relationship of structure and RNAi activity. RNA 16, 106-117

Genini D., Adachi S., Chao Q., Rose D.W., Carrera J.C., Cottam H.B., Caeson D.A and Leoni L. M. (2000) Deoxyadenosine analogues induce programmed cell death in chronic lymphocytic

(12)

133 leukemia cells by damaging the DNA and by directly affecting the mitochondria. Blood 96, 3537-3543

Gorman C.M., Howard B.H., Reeves R. (1983) Expression of recombinant plasmids in mammalian cells is enhanced by sodium butyrate. Nucleic Acids Res. 11, 7631-7648.

Grenz A., Zhang H., Eckle T., Mittelbronn M., Wehrmann M., Köhle C., Kloor D., Thompson L.F., Osswald H., Eltzschig H.K. (2007) Protective Role of Ecto-5’-Nucleotidase (CD73) in Renal Ischemia. J Am Soc Nephrol 18, 833–845

Hart M., Much C., Gorzolla I.C, Schittenhelm J., Kloor D., Stahl G.L., Eltzschig H.K., (2008) Extracellular Adenosine Production by Ecto-5’-Nucleotidase Protects During Murine Hepatic Ischemic Preconditioning. Gastroenterology 135, 1739-1750

Hisano T., Hata Y., Fujii T., Liu J.Q, Kurihara T., Esaki N., Soda K. (1996) Crystal structure of L-2-Haloacid Dehalogenase of Pseudomonas sp. YL. J. Biol. Chem. 271, 20322-20330

Höglund L. and Reichard P. (1990) Cytoplasmic 5’(3’)-nucleotidase from human placenta. JBC, 265, 6589-6595

Hunsucker S. A., Spychala J. and Mitchell B.S. (2001) Human cytosolic 5’-nucleotidase I: characterization and role in nucleoside analog resistance. JBC 276, 10498-10504

Hunsucker S.A., Mitchell B.S. , Spychala J. (2005) The 5’-nucleotidases as regulators of nucleotide and drug metabolism. Pharmac. & Therap. 107, 1-30

Ipata P.L. and Tozzi M.G. (2006) Recent advances in structure and function of cytosolic IMP-GMP specific 5’-nucleotidase II ( cN-II ). Purin. Signall. 2, 669-675

Itoh R., Mitsui A., Tsushima K. (1967) 5’-nucleotidase of chicken liver. BBA 146 (1), 151-9

Itoh R., Oka j., Ozasa H. (1986) Regulation of rat heart cytosol 5’-nucleotidase by adenylate energy charge. Biochem. J. 235, 847-851

(13)

134 Itoh R. and Yamada K. (1990) Pig lung 5’-nucleotidase: effect of diadenosine 5’,5’’’-P1,P4 -tetraphosphate and its related compounds. Int. J. Biochem. 22, 231-238

Itoh R. and Yamada K. (1991) Determination of cytoplasmic 5’-nucleotidase which preferentially hydrolyses 6-hydroxypurine nucleotides in pig, rat and human tisues by immunotitration. Int. J. Biochem. 23, 461-465

Itoh R., Echizen H., Hiouchi M., Oka J., Yamada K. (1992) A comparative study on tissue distribution and metabolic adaptation of IMP-GMP 5’- nucleotidase. Comp. Biochem. Physiol. 103, 153-159

Itoh R. (1993) IMP-GMP 5’- nucleotidase. Comp. Biochem. Physiol. 105 , 13-19

Itoh R. (1994) Purification and some properties of an IMP-specific 5’-nucleotidase from yeast. Biochem J. 298, 593-598

Itoh R., Kimura K. (2002) Occurrence of IMP-GMP 5’-nucleotidase in three fish species: a comparative study on Trachurus japonicus, Oncorhynchus masou masou and Triakis Scyllium. Comp. Biochem. Physiol. 132, 401-408

Itoh R., Kimura K. (2003a) IMP-GMP 5’-nucleotidase in reptiles: occurrence in a turtle, a tortoise end three species of snakes. Comp. Biochem. Physiol. 135, 657-662

Itoh R., Saint-Marc C., Chaignepain S., Katahira R., Schmitter J.M., Daignan-Fornier B. (2003b) The yeast ISN I ( YORI 55c ) gene encodes a new type of IMP-specific 5’-nucleotidase. BMC Biochem. (http://www.biomedcentral.com/1471-2091/4/4)

Itoh R., Kimura K. (2005) IMP-GMP 5’-nucleotidase in reptiles: occurrence and tissue distribution in a crocodile and three species of lizards. Comp. Biochem. Physiol., 107-112

Jewell N.A., Mansky L.M. (2000) In the beginning: Genome recognition, RNA encapsidation and the initiation of complex retrovirus assembly. J. Gen. Virology 81,1889-1899

(14)

135

Johnson M.A., Ahluwalia G., Connelly M.C., Cooney D.A., Broder S., Johns D.G., Fridland A. (1988) Metabolic pathways for the activation of the antiretroviral agent 2’,3’-Dideoxyadenosine in

human lymphoid cells. J. Biol. Chem. 263, 15354-15357

Johnson M.A. and Fridland A. (1989) Phosphorylation of 2’,3’-Dideoxyinosine by cytosolic 5’-nucleotidase of human lymphoid cells. Mol. Pharmac. 36, 291-295

Jordheim L.P., Galmarini C.M., Dumontet C. (2003) Drug resistance to cytotoxic nucleoside analogues. Current Drug Targets 4, 443-460

Jordheim L.P., Cros E., Galmarini C.M., Dumontet C., Bretonnet A.S., Krimm I., Lancelin J.M., Gagnieu M.C. (2006) F-ara-AMP is a substrate of cytoplasmic 5’-nucleotidase II ( cN-II ): HPLC and NMR studies of enzymatic dephosphorylation. NNNA 25, 289-297

Jordheim L.P., Dumontet C. (2007) Review of recent studies on resistance to cytotoxic deoxynucleoside analogues. BBA 1176, 138-159

Jordheim L.P. (2008) Differential Allelic Expression in Leukoblast from Patients with Acute Myeloid Leukemia Suggests Genetic Regulation of CDA, DCK, NT5C2, NT5C3, and TP53. Drug Metabolism and Disposition 36 (12), 2419-2423

Kanno H., Takizawa T., Miwa S., Fujii H. (2004) Molecular basis of Japanese variants of pyrimidine 5’-nucleotidase deficiency. Br. J. Haematol. 126, 265-271

Kawasaki H., Carrera C.J., Piro L.D., Seven A., Kipps T.J. and Carson D.A.(1993) Relationship of deoxycytidine kinase and cytoplasmic 5’-nucleotidase to the chemotherapeutic efficacy of 2-chlorodeoxyadenosine. Blood 81, 597-601

Keller P.M., McKee S.A. and Fyfe J.A. (1985) Cytoplasmic 5’-nucleotidase catalyses acyclovir phosphorylation. J. Biol. Chem. 260, 8664-8667

Kichler A., Leborgne C., Coeytaux E., Danos O. (2001) Polyethylenimine-mediated gene delivery: a mechanistic study. J. Gene Med. 3(2), 135-44

(15)

136 Knofel T. and Sträter N. (1999) X-ray structure of the Escherichia coli periplasmic 5’-nucleotidase containing a dimetal catalytic site. Nat. Struct. Biol. 6, 448-453

Knofel T. and Sträter N. (2001) Mechanism of hydrolysis of phosphate esters by a dimetal centre of 5’-nucleotidase based on crystal structure. J. Mol. Biol. 309, 239-254

Koonin E.V. (1994) Conserved sequence pattern in a wide variety of phosphoesterases. Protein Science 3, 356-358

Koonin E.V. and Tatusov R.L. (1994) Computer analysis of bacterial Haloacid Dehalogenases defines a large superfamily of hydrolases with diverse specificity. J. Mol. Biol. 244, 125-132

Kulkarni S.S., Karlsson H.K.R., Szekeres F., Chibalin A.V., Krook A., Zierath J.R. (2011) Suppression of 5’-Nucleotidase Enzymes Promotes AMP-activated Protein Kinase (AMPK) Phosphorylation and Metabolism in Human and Mouse Skeletal Muscle. J. Biol. Chem. 286, 40, 34567-34574

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685

Lahiri S.D., Zhang G., Dai J., Dunaway-Mariano D. and Allen K.N. (2004) Analysis of the substrate specificity loop of the HAD superfamily cap domain. Biochem. 43, 2812-2820

Lechward K. and Tkacz-Stachowska K. (2009) Expression of cytosolic 5’ nucleotidase does not correlate with expression of oxidative metabolism marker: myoglobine in human skeletal muscles. ABB Sin. 41, 280-284

Le Hir M. (1991) A soluble 5’-nucleotidase in rat kidney. Stimulation by decavanadate. Biochem. J. 273, 795-798

Lennon P. F., Taylor C. T., Stahl G. L., Colgan S. P. (1998) Neutrophil-derived 5V-adenosine monophosphate promotes endothelial barrier. J. Exp. Med. 188, 1433-1443

(16)

137 Li Y.F., Hata Y., Fujii T., Hisano T., Nishihara M., Kurihara T., Esaki N. (1998) Crystal structure of reaction intermediates of L-2-Haloacid Dehalogenase and implications for the reaction mechanism. J. Biol. Chem. 273, 15035-15044

Liu J.Q., Kurihara T., Miyagi M., Esaki N., Soda K. (1995) Reaction mechanism of L-2-Haloacid Dehalogenase of Pseudomonas sp. YL. J. Biol. Chem. 270, 18309-18312

Lotfi K., Månsson E., Chandra J., Wang Y., Xu D., Knaust E., Spasokoukotskaja T., Liliemark E., Eriksson S., Albertioni F. (2001) Pharmacological basis for cladribine resistance in a human acute T lymphoblastic leukaemia cell line selected for resistance to etoposide. British J. Haemat. 113, 339-346

Lu M.M., Chen F., Gitler A., Li J., Jin F., Ma X.K., Epstein J.A. (2000) Cloning and expression analysis of murine lupin, a member of a novel gene family that is conserved through evolution and associated with Lupus inclusions. Dev. Genes Evol. 210, 512-517

Manganini M., Serafini M., Bambacioni F., Casati C., Erba E., Follenzi A., Naldini L., Bernasconi S., Gaipa G., Rambaldi A., Biondi A., Golay J., Introna M. (2002) A human immunodeficiency virus type 1 pol gene-derived sequence (cPPT/CTS) increases the efficiency of transduction of human nondividing monocytes and T lymphocytes by lentiviral vectors. Hum. Gene Ther. 13 (15), 1793-807

Manjunath N., Wu H., Subramanya S., Shankar P. (2008) Lentiviral delivery of short hairpin RNAs. Advanced Drug Delivery Reviews 61, 732-745

Månsson E., Spasokoukotskaja T., Sallstrom J., Eriksson S. and Albertioni F. (1999) Molecular and biochemical mechanisms of Fludarabine and Cladribine resistance in a human promyelocytic cell line. Cancer Res. 59, 5956-5963

Margolin J. F., Friedman J. R., Meyer W. K., Vissing H., Thiesen H. J., Rauscher F. J. (1994) Kruppel-associated boxes are potent transcriptional repression domains. Proc. Natl. Acad. Sci USA 91, 4509-13

Marinaki A.M., Escuredo E., Duley J.A., Simmonds H.A., Amici A., Naponelli V. (2001) Genetic basis of hemolytic anemia caused by pirimidine 5’-nucleotidase deficiency. Blood 97, 3327-3332

(17)

138 Marques A.F.P., Teixeira N.A., Gambaretto C., Sillero A., Gunther Sillero M.A. (1998) IMP-GMP 5’-Nucleotidase from rat brain: activation by polyphosphates. J. Neurochem. 71, 1241-1250

Martinez-Martinez A., Munoz-Delgado E., Campoy F.J., Flores-Flores C., Rodriguez-Lopez J.N., Fini C., Vidal C.J. (2000) The ecto-5’-nucleotidase subunits in dimers are not linked by disulfide bridges but by non-covalent bonds. BBA 1478, 300-308

Maserti B.E., Del Carratore R., Croce C.M., Podda A., Migheli Q., Froelicher Y., Luro F., Morillon R., Ollitrault P., Talon M., Rossignol M. (2011) Comparative analysis of proteome changes induced by the two spotted spider mite Tetranychus urticae and methyl jasmonate in citrus leaves. J. Plant Physiol. 168 (4), 392-402

Mazzon C., Rampazzo C., Scaini M.C., Gallinaro L., Karlsson A., Meier C., Balzarini J., Reichard P., Bianchi V. (2003) Cytosolic and Mitochondrial deoxyribonucleotidases: activity with substrate analogs, inibitors and implications for therapy. Biochem. Pharmac. 66, 471-479

McBride M.S., Panganiban A.T. (1996) The human immunodeficiency virus type 1 encapsidation site is a multipartite RNA element composed of functional hairpin structures. J. Virol. 70, 2963-2973

McMillen L., Beacham I.R., Burns D.M. (2003) Cobalt activation of Escherichia coli 5’-nucleotidase is due to zinc ion displacement at only one of two metal ion binding sites. Biochem.

J. 372, 625-630

Misumi Y., Ogata S., Ohkubo K., Hirose S., Ikehara Y. (1990) Primary structure of human placental 5’-nucleotidase and identification of the glycolipid anchor in the mature form. Eur. J. Biochem. 191, 563-569

Mitra A.K., Crews K.R., Pounds S., Cao X., Feldberg T., Ghodke Y., Gandhi V., Plunkett W., Dolan M.E., Hartford C., Raimondi S., Campana D., Downing J., Rubnitz J.E., Ribeiro R.C., Lamba J.K. (2011) Genetic variants in cytosolic 5'-nucleotidase II are associated with its expression and cytarabine sensitivity in HapMap cell lines and in patients with acute myeloid leukemia. J. Pharm. Exp. Ther. 339 (1), 9-23

(18)

139 Morais M.C., Zhang W., Baker A., Zhang G., Dunaway-Mariano D., Allen K.N. (2000) The crystal structure of Bacillus cereus phosphonoacetaldehyde hydrolase: insight into catalysis of phosphorus bond cleavage and catalytic diversification within the HAD enzyme superfamily. Biochem. 39, 10385-10396

Moosmann P., Georgiev O., Thiesen H. J., Hagmann M., Schaffner W. (1997) Silencing of RNA polymerases II and III-dependent transcription by the KRAB protein domain of KOX1, a Kruppel-type zinc finger factor. Biol. Chem. 378, 669-77

Mosmann T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immun. Methods 65, 55-63

Morais M.C, Zhang W., Baker A.S., Zhang G., Dunaway-Mariano D., Allen K.N. (2000) The Crystal Structure of Bacillus cereus Phosphonoacetaldehyde Hydrolase: Insight into Catalysis of Phosphorus Bond Cleavage and Catalytic Diversification within the HAD Enzyme Superfamily. Biochem. 39, 10385-10396

Müller G., Jung C., Wied S., Biemer-Daub G., Frick W. (2010) Transfer of the glycosylphosphatidylinositolanchored 5’-nucleotidase CD73 from adiposomes into rat adipocytes stimulates lipid synthesis. British J. Pharmac. 160, 878-891

Naldini L., Blömer U., Gage F.H., Trono D., Verma I.M. (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci U S A. 93 (21), 11382-11388

Niepmann M., Zheng J. (2006) Discontinuous native protein gel electrophoresis. Electrophoresis 27(20), 3949-51

Niepmann M. (2007) Discontinuous native protein gel electrophoresis: pros and cons. Expert Rev. Proteomics 4 (3) , 355-361

Nyhan W.L. (1997) The recognition of Lesch-Nyhan syndrome as an inborn error of purine metabolism. J. Inher. Metab. Dis. 20, 171-178

(19)

140 Oka J., Matsumoto A., Hosokawa Y., Inoue S. (1994) Molecular cloning of human cytosolic purine 5'-nucleotidase. Biochem. Biophys. Res. Commun. 205 (1), 917-22

Page T. and Nyhan W.L. (1992), Neurologic Aspects of Pediatrics, Ed. Berg B.O, 177-193

Page T., Yu A., Fontanesi J. and Nyhan W.L. (1997) Developmental disorder associated with increased cellular nucleotidase activity. Proc. Natl. Acad. Sci USA 94, 11601-11606

Pauwels K. , Gijsbers R., Toelen J., Schambach A., Willard-Gallo K., Verheust C., Debyser Z. and Herman P. (2009) State-of-the-Art Lentiviral Vectors for Research Use: Risk Assessment and Biosafety Recommendations. Current Gene Therapy 9, 459-474

Pesi R., Turriani M., Allegrini S., Scolozzi C, Camici M., Ipata P.L. and Tozzi M.G. (1994) The bifunctional cytosolic 5’-nucleotidase: regulation of the phosphotransferase and nucleotidase activities. Arch. Biochem. Biophys. 312, 75-80

Pesi R., Baiocchi C., Tozzi M. G., Camici M. (1996) Synergistic action of ADP and 2,3-bisphosphoglycerate on the modulation of cytosolic 5’-nucleotidase. BBA 1294, 191-194

Pesi R., Baiocchi C., Allegrini S., Moretti E., Sgarrella F., Camici M. and Tozzi M. G. (1998) Identification, separation and characterization of two forms of cytosolic 5’-nucleotidase/nucleoside phosphotransferase in calf thymus. Biol. Chem. 379, 699-704

Pesi R., Micheli V., Jacomelli G., Peruzzi L., Camici M., Garcia-Gil M., Allegrini S., Tozzi M. G. (2000) Cytosolic 5’-nucleotidase hyperactivity in erythrocytes of Lesch-Nyhan syndrome patients. Cl. Neuroscience 11, 1827-1831

Pesi R., Camici M., Micheli V., Notarantonio L., Jacomelli G., Tozzi M. G. (2008) Identification of the nucleotidase responsible for the AMP hydrolysing hyperactivity associated with neurological and developmental disorders. Neurochem. Res. 33, 59-65

Pesi R., Allegrini S., Careddu M.G., Filoni D.N., Camici M. and Tozzi M.G. (2010) Active and regulatory sites of cytosolic 5’-nucleotidase. FEBS J. 277, 4863-4872

(20)

141

Pinto R. M., Canales J., Faraldo A., Sillero A. and Sillero M. A. G. (1987) Cytosolic 5’-nucleotidase from Artemia embryos. Purification and properties. Comp. Biochem. Physiol. 86,

49-53

Pluta K. And Kacprzak M.M. (2009) Use of HIV as a gene transfer vector. Acta Biochimica Polonica, 56 (4), 531-595

PYES2, version J, Invitrogen (no. V825-20)

QuikChange® Site-Directed Mutagenesis Kit manual, Stratagene (Catalog #200518, Revision #072008h)

Rampazzo C., Gazziola C., Ferraro P., Gallinaro L., Johansson M., Reichard P. and Bianchi V. (1999) Human high-Km 5’-nucleotidase. Effect of overexpression of the cloned cDNA in cultured

human cells. Eur. J. Biochem. 261, 689-697

Rampazzo C, Johansson M., Gallinaro L., Ferraro P., Hellman U., Karlsson A., Reichard P., Bianchi V. (2000a) Mammalian 5’(3’)-deoxyribonucleotidase, cDNA cloning and overexpression of the enzyme in Escherichia coli and mammalian cells. JBC 275, 5409-5415

Rampazzo C., Gallinaro L., Milanesi E., Frigimelica E, Reichard P. and Bianchi V. (2000b) A deoxyribonucleotidase in mitochondria: involvement in regulation of dNTP pools and possible link to genetic disease. Proc. Natl. Acad. Sci USA 97, 8239-8244

Rampazzo C., Kost-Alimova M., Ruzzenente B., Dumaski J.P., Bianchi V. (2002) Mouse cytosolic and mitochondrial deoxyribonucleotidase: cDNA cloning of the mitochondrial enzyme, gene

structure, chromosomal mapping and comparison with the human orthologs. Gene 294, 109-117

Rampazzo C., Ferraro P., Pontarin G., Fabris S., Reichard P. (2004) A deoxyribonucleotidase in mitochondria: involvement in regulation of dNTP pools and possibile link to genetic disease. Proc. Natl. Acad. Sci USA 97, 8239-8244

(21)

142 Rees D.C., Duley J.A., Marinaki A.M. (2003) Pyrimidine 5’-nucleotidase deficiency. British J. Haematol. 120, 375-383

Resta R., Hooker S. W., Hansen K. R., Laurent A. B., Park J. L., Blackburn M. R., et al. (1993). Murine ecto-5’-nucleotidase (CD73)-cDNA cloning and tissue distribution. Gene 133, 171-177.

Resta R., Yamashita Y., Thompson L. F. (1998). Ecto-enzyme and signaling functions of lymphocyte CD73. Immunol. Rev. 161, 95–109.

Ridder I.S. and Dijkstra B.W. (1999) Identification of the Mg2+-binding site in the P-type ATPase and phosphatase members of the HAD ( haloacid dehalogenase ) superfamily by structural similarity to the response regulator protein CheY. Biochem. J. 339, 223-226

Rinaldo-Matthis A., Rampazzo C., Reichard P., Bianchi V. and Nordlund P (2002) Crystal structures of a human mitochondrial deoxyribonucleotidase. Nature Struct. Biol. 9, 779-787

Rinaldo-Matthis A., Rampazzo C., Balzarini J., Reichard P., Bianchi V., Nordlund P. (2004) Crystal Structures of the Mitochondrial Deoxyribonucleotidase in Complex with Two Specific Inhibitors. Mol. Pharmacol. 65, 860-867

Sakoda T., Kasahara N., Hamamori Y., Kedes L. (1999) A High-Titer Lentiviral Production System Mediates Efficient Transduction of Differentiated Cells Including Beating Cardiac Myocytes. J. Mol. Cell Cardiol. 31, 2037-2047

Sala-Newby G.B., Skladanowski C., Newby A.C. (1999) The mechanism of adenosine formation in cells: cloning of cytosolic 5’-nucleotidase I. JBC 274, 17789-17793

Sala-Newby G.B., Freeman N. V. E, Skladanowski A.C., Newby A.C. (2000) Distinct roles for recombinant cytosolic 5’-nucleotidase-I and -II in AMP and IMP catabolism in COS-7 and H9c2 rat myoblast cell lines. J. Biol. Chem. 275, 11666-11671

Sala-Newby G.B. and Newby A.C. (2001) Cloning of a mouse cytosolic 5’-nucleotidase-I identifies a new gene related to human autoimmune infertility-related protein. BBA 1521, 12-18

(22)

143 Sala-Newby G.B., Freemann N.V.E., Curto M.A., Newby A.C. (2003) Metabolic and functional consequence of cytosolic 5’-nucleotidase Ia overexpression in neonatal rat cardiomyocytes. Circulation 285, 991-998

Sambrook J., Russell D.W. (2001) Molecular Cloning – A laboratory manual. CSH Press, III Edition

Schiestl RH. (1989) Nonmutagenic carcinogens induce intrachromosomal recombination in yeast. Nature 337, 285-288.

Schlaeger E.J. and Christensen K. (1999) Transient gene expression in mammalian cells grown in serum-free suspension culture. Cytotechnology 30, 71-83

Senatore B., Cafieri A., Di Marino I., Rosati M., Di Nocera P.P., Grimaldi G. (1999) A variety of RNA polymerases II and III-dependent promoter classes is repressed by factors containing the Krüppel-associated/finger preceding box of zinc finger proteins. Gene 234 (2), 381-394

Sève P., Mackey J.R., Isaac S., Trédan O., Souquet P.J., Pérol M., Cass C., Dumontet C. (2005) cN-II expression predicts survival in patients receiving gemcitabine for advanced non-small cell lung cancer. Lung Cancer 49, 363-370

Sidi Y. and Mitchell B.S. (1985) Z-nucleotide accumulation in erythrocytes from Lesch-Nyhan patients. J. Clin. Invest. 76, 2416-2419

Skladanowski A.C. and Newby A.C. (1990) Partial purification and properties of an AMP-specific soluble 5’-nucleotidase from pigeon heart. Biochem. J. 268, 117-122

Soneoka Y., Cannon P.M., Ramsdale E.E., Griffiths J.C., Romano G., Kingsman M.S., Kingsman A.J. (1995) A transient three plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res., 23 (4), 628-633

Sowa N.S., Voss M.K., Zylka M.J. (2010) Recombinant ecto-5'-nucleotidase (CD73) has long lasting antinociceptive effects that are dependent on adenosine A1 receptor activation. Mol. Pain 6:

(23)

144 Spychala J., Madrid-Marina V., Fox I.H. (1988) High Km solubile 5’-Nucleotidase from human

placenta. J. Biol. Chem. 263, 18759-18765

Spychala J., Chen V., Oka J. and Mitchell B. S. (1999) ATP and phosphate reciprocally affect subunit association of human recombinant High Km 5’-nucleotidase. Eur. J. Biochem. 259, 851-858

Sträter N. (2006) Ecto-5’-nucleotidase: Structure function relationships, Purin. Signall. 2, 343-350

Suzuki K., Sugawara T., Ovake T., Uchivama T., Aoki Y., Tsuikushi Y., Onodera S., Ito S., Murai K., Ishida Y. (2007) Clinical significance of high-Km 5’-nucleotidase ( cN-II ) mRNA expression in high-risk myelodysplastic syndrome. Leukemia Res. 31, 1343-1349

Synnestvedt K., Furuta G. T., Comerford K.M., Louis N., Karhausen J., Eltzsching H. K., Hansen K. R., Thompson L. F. and Colgan S. P. (2002) Ecto-5’-Nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J. Clin. Invest. 110, 993-1002

Szulc J., Wiznerowicz M., Sauvain M.O., Trono D., Aebischer P. (2006) A versatile tool for conditional gene expression and knockdown. Nature Methods 3, 109-116

Szulc J. and Aebischer P. (2008) Conditional Gene Expression and Knockdown Using Lentivirus Vectors Encoding shRNA. Methods Mol. Biol. 434 (2)

Tjernshaugen H. and Fritzon P. (1984) Activity of cytosolic 5’-nucleotidase in regenerating rat liver after partial hepatectomy. Int. J. Biochem. 16, 607-613

Tkacz-Stachowska K., Lechward K., Skladanowski A.C. (2005) Isolation and characterization of pigeon breast muscle cytosolic 5´-nucleotidase-I (cN-I). Acta Biochimica Polonica, 52 (4), 789-796

Tozzi M. G., Camici M., Pesi R., Allegrini S., Sgarrella F. and Ipata P.L. (1991) Nucleoside phosphotransferase activity of human colon carcinoma cytosolic 5’-nucleotidase. Archives Biochem. and Byoph. 291, 212-217

(24)

145 Truong V.L., Collinson A.R., Lowenstein J.M. (1988) 5'-Nucleotidases in rat heart. Evidence for the occurrence of two soluble enzymes with different substrate specificities. Biochem. J. 253 (1),117-21.

Tullson P.C., Terjung, R.L. (1990) Adenine nucleotide degradation in striated muscle. Int. J. Sports 11 (2), 47-55

Turriani M., Pesi R., Tardone A., Turchi G., Sgarrella F., Ipata P.L., Tozzi M.G. (1994) Cytosolic 5’-nucleotidase/nucleoside phosphotransferase: a nucleoside analog activating enzyme? J. Biochem. Toxicol. 9, 51-57

Urrutia R. (2003) KRAB-containing zinc-finger repressor proteins. Genome Biol. 4 (10), 231

Van den Bosch R.A., du Maine A.P., Geuze H.J., van der Ende A., Strous G.J. (1988) Recycling of 5'-nucleotidase in a rat hepatoma cell line. EMBO J. 7 (11), 3345-3351

Vartanian A.,Alexandrov I., Prudowski I., McLennan, Kisselev L. (1999) Ap4A induces apoptosis in

human cultured cells. FEBS Letters 456, 175-180

Walldén K., Ruzzenente B., Rinaldo-Matthis A., Bianchi V., Nordlund P. (2005) Structural basis for substrate specificity of the human mitochondrial deoxyribonucleotidase. Structure 13, 1081-1088

Walldén K., Rinaldo-Matthis A., Ruzzenente B., Rampazzo C., Bianchi V., Nordlund P. (2007a) Crystal structure of human and murine deoxyribonucleotidases: insights into recognition of substrates and nucleotide analogues. Biochem. 46, 13809-13818

Walldén K., Stenmark P., Nyman T., Flodin S., Graslund S., Loppnau P., Bianchi V., Nordlund P. (2007b) Crystal structure of human cytosolic 5’-nucleotidase II: insights into allosteric regulation and substrate recognition. J. Biol. Chem. 282 (24),17828-36

Walldén K. and Nordlund P. (2011) Structural Basis for the Allosteric Regulation and Substrate Recognition of Human Cytosolic 5’-Nucleotidase II. J. Mol. Biol. 408 (4) , 684-696

(25)

146 Wiznerowicz M. and Didier Trono (2003) Conditional Suppression of Cellular Genes: Lentivirus Vector-Mediated Drug-Inducible RNA Interference. J. Virology 77 (16), 8957-8961

Wiznerovicz M., Szulc J., Trono D. (2006) Tuning silence: conditional systems for RNA interference. Nature methods 3 (9), 682-688

Worku Y. and Newby A.C. (1982) Nucleoside exchange catalysed by the cytoplasmic 5’-nucleotidase. Biochem. J. 205, 503-510

Worku Y. and Newby A.C. (1983) The mechanism of adenosine production in rat polymorphonuclear leucocytes. Biochem. J. 214, 325-330

Wu F., Li P., Zou A. (1999) Microassay of 5’-Nucleotidase and Adenosine Deaminase Activity in Microdissected Nephron Segments. Anal. Biochem. 266, 133-139

Wu J.Z., Larson G., Walker H., Shim J.S., Hong Z. (2005) Phosphorylation of ribavirin and viramidine by adenosine kinase and cytosolic 5’-nucleotidase II: implications for ribavirin metabolism in erythrocytes. Antimic. Agents Chemoter. 49, 2164-2171

Yamamoto S., Yamauchi T., Kawai Y., Takemura H., Kishi S., Yoshida A., Urasaki Y., Iwasaki H., Ueda T. (2007) Fludarabine-mediated circumvention of cytarabine resistance is associated with fludarabine triphosphate accumulation in cytarabine-resistant leukemic cells. Int. J. Hematol. 85, 108-115

Yamauchi T., Negoro E., Kishi S.,Takagi K., Yoshida A., Urasaki Y., Iwasaki H., Ueda T. (2009) Intracellular cytarabine triphosphate production correlates to deoxycytidine kinase/cytosolic 5’-nucleotidase II expression ratio in primary acute myeloid leukemia cells. Biochem. Pharmac. 77, 1780-1786

Yokota S., Oka J., Ozaka H., Itoh R. (1988) Immunocytochemical localization of cytosol 5’-nucleotidase in chicken liver. J. Histochem. Cytochem. 36 (8), 983-989

Zanella A., Bianchi P., Fermo E., Valentini G. (2006) Hereditary pyrimidine 5’-nucleotidase deficiency: from genetics to clinical manifestations. British J Haem. 133, 113-123

(26)

147 Zhang G., Mazurkie A.S., Dunaway-Mariano D. and Allen K.N. (2002) Kinetic evidence for a substrate-induced fit in phosphonoacetaldehyde hydrolase catalysis. Biochem. 41, 13370-13377

Zimmermann H. (1992) 5’-Nucleotidase: molecular structure and functional aspects. Biochem. J. 285, 345-365

Zufferey R., Dull T., Mandel R.J., Bukovsky A., Quiroz D., Naldini L., Trono D. (1998) Self-Inactivating Lentivirus Vector for Safe and Efficient In Vivo Gene Delivery. J. Virology 72 (12), 9873-9880

Zufferey R., Donello J.E., Trono D., Hope T.J. (1999) Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element Enhances Expression of Transgenes Delivered by Retroviral Vectors. J. Virology 73 (4), 2886-2892

Riferimenti

Documenti correlati

B0 km west of the Alano section, provides a unique opportunity for attaining a direct correlation between Shallow Benthic Zones (SBZ; Serra-Kiel et al., 1998) and standard

We demonstrate by site directed mutage- nesis that replacement of histidines in the intracellular loop of Cx45 reduced its sensitivity to acidification, and that C264S mutation of

All six peptides (two T-cell epitopes and one B epitope for each glycoprotein), fully protected on the amino acid side chains, were synthesized by solid-phase methodology on

The research reported in this paper combined literary theories on and analyses of Late Style with stylometric analyses of the Late Style of three important German authors:

Questo si rivela come un di più per le classi superiori, ma è una riduzione delle alternative possibili per le classi sociali meno agiate: tra queste ultime, quanti orientano la

This article aim at analysing the innovation potential of a local food network, which sees different actors that cooperate 10.. to build a local organic food

In questo studio, sono state applicate analisi di morfometria geometrica su caratteri esterni e analisi molecolari del gene mitocondriale citocromo c ossidasi subunità II

The main experimental results as well as the potential energy surface illustrating possible reaction pathways for the formation of the observed reaction products are presented..