• Non ci sono risultati.

m Y j=1 sin (n + 1) arccos i cos jπ m+1

N/A
N/A
Protected

Academic year: 2021

Condividi "m Y j=1 sin (n + 1) arccos i cos jπ m+1"

Copied!
2
0
0

Testo completo

(1)

Problem 11187

(American Mathematical Monthly, Vol.112, December 2005) Proposed by Li Zhou (USA).

Find a closed formula for the number of ways to tile a4 by n rectangle with 1 by 2 dominoes.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

There is a well known formula for the number of domino tilings of a m by n rectangle due to P. W.

Kasteleyn (see The statistics of dimers on a lattice, Physica, 27 (1961), 1209–1225)

T (m, n) =

m

Y

j=1 n

Y

k=1

 4 cos2

 jπ m + 1



+ 4 cos2

 kπ n + 1

1/4

Since

 sin((n + 1)x) sin(x)

2

=

n

Y

k=1



4x2− 4 cos2

 kπ n + 1



then

T (m, n) =

m

Y

j=1

sin

(n + 1) arccos i cos

m+1



sin

arccos i cos

m+1



1/2

.

If m = 4 then

cos(π/5) = − cos2(4π/5) = (1 +√

5)/4 and cos(2π/5) = − cos2(3π/5) = (1 −√ 5)/4 and

T (4, n) =

4

Y

j=1

sin ((n + 1) arccos (i cos (jπ/5))) sin (arccos (i cos (jπ/5)))

1/2

=

2

Y

j=1

|sin ((n + 1) arccos (i cos (jπ/5)))|

2

Y

j=1

|sin (arccos (i cos (jπ/5)))|

.

Note that sin(arccos(ix)) =√

1 + x2 and therefore

2

Y

j=1

|sin (arccos (i cos (jπ/5)))| =p1 + cos2(π/5)p1 + cos2(2π/5) =√ 29/4.

Moreover if n is even

|sin((n + 1) arccos(ix))| = |cosh((n + 1) arcsinh(x))| = 1 2

(x +p

1 + x2)n+1+ (x +p

1 + x2)(n+1) on the other hand if n is odd

|sin((n + 1) arccos(ix))| = |sinh((n + 1) arcsinh(x))| = 1 2

(x +p

1 + x2)n+1− (x +p

1 + x2)(n+1) . hence we get the final formula:

T (4, n) = an+1− (−1/a)n+1 · bn+1− (−1/b)n+1 /√ 29 where

a =

 1 +√

5 + q

22 + 2√ 5



/4 > 1 and b = 4/

 1 −√

5 + q

22 − 2√ 5



> 1.

(2)

Note that ab, 1/ab, −b/a and −a/b are the four zeros of the polynomial x4− x3− 5x2− x + 1 related to the recurrence:

T (4, n) = T (4, n − 1) + 5T (4, n − 2) + T (4, n − 3) − T (4, n − 4).

The first terms of the sequence T (n, 4) are (see A005178 in The On-Line Encyclopedia of Integer Sequences):

1, 5, 11, 36, 95, 281, 781, 2245, 6336, 18061, 51205, 145601, 413351, 1174500, 3335651, 9475901 and

n→∞lim T (4, n)/T (4, n − 1) = ab = (1 +√ 29 +

q

14 + 2√

29))/4 ≈ 2.84053619409.



Riferimenti

Documenti correlati

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,