• Non ci sono risultati.

J/psi Polarization in pp Collisions at root s=7 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "J/psi Polarization in pp Collisions at root s=7 TeV"

Copied!
10
0
0

Testo completo

(1)

J=

c

Polarization in pp Collisions at

p

ffiffiffi

s

¼ 7 TeV

B. Abelev et al.* (ALICE Collaboration)

(Received 8 November 2011; published 23 February 2012)

The ALICE Collaboration has studiedJ=c production in pp collisions atpffiffiffis¼ 7 TeV at the LHC through its muon pair decay. The polar and azimuthal angle distributions of the decay muons were measured, and results on the J=c polarization parameters  and  were obtained. The study was performed in the kinematic region 2:5 < y < 4, 2 < pt< 8 GeV=c, in the helicity and Collins-Soper reference frames. In both frames, the polarization parameters are compatible with zero, within uncertainties.

DOI:10.1103/PhysRevLett.108.082001 PACS numbers: 13.88.+e, 13.20.Gd, 13.85.Qk

Almost 40 years after its discovery, heavy quarkonium still represents a challenging testing ground for models [1] based on quantum chromodynamics (QCD). Results ob-tained for charmonium production at the Tevatron collider in the 1990s [2] led theory to recognize the role of inter-mediate quark-antiquark color-octet states in the produc-tion process, in the framework of the nonrelativistic QCD model [3]. This approach brought the calculations ofpt spectra to agree rather well with the data [4] (pt is the transverse momentum, i.e., the momentum component perpendicular to the colliding beam direction). However, the same calculations were not able to reproduce satisfac-torily the polarization results for theJ=c obtained by the CDF experiment atpffiffiffis¼ 1:96 TeV [5]. In particular, the nonrelativistic QCD model at leading order predicts for high-pt J=c (pt mJ=c) a significant transverse polar-ization, i.e., a dominant angular momentum component Jz¼ 1, the z axis being defined by the J=c’s own momentum direction in the center of mass frame of the pp (p p) collision. Contrary to this expectation, the CDF data [5] rather exhibit a mild longitudinal polarization (Jz¼ 0). In a recent renaissance of quarkonium studies, also related to the publication of results from the Relativistic Heavy Ion Collider at pffiffiffis¼ 0:2 TeV [6], next-to-leading-order corrections for both color-singlet and color-octet intermediate states were calculated, and their impact on the pt spectra was found to be quite important [7–9]. The influence of these corrections on the polarization calculations is expected to be significant [10,11] and still has not been completely worked out. The start-up of the LHC provides the possi-bility to perform charmonium measurements in a new energy domain, over large ranges in pt and rapidity ðy ¼ 0:5 ln½ðE þ pzÞ=ðE  pzÞ, where E is the energy and

pz is the momentum component parallel to the colliding beam directionÞ. Various theoretical approaches [8,12,13] proved to be rather successful in describing the first LHC experimental results on the J=c pt spectra [14–17]. The measurement of polarization clearly represents a more stringent test of the theoretical calculations, offering there-fore the possibility of confirming or ruling out the current QCD approach to charmonium production.

In this Letter, we present the results of a study ofJ=c polarization at the LHC, carried out by the ALICE experi-ment inpp collisions atpffiffiffis¼ 7 TeV. The ALICE experi-ment [18] is based on a central barrel, covering the pseudorapidity region jj < 0:9 [19], and a muon spec-trometer, with 2:5 <  < 4 coverage. The polarization results presented in this Letter refer to inclusive J=c, measured via theJ=c ! þdecay in the muon spec-trometer. The spectrometer [17] consists of a 10 interaction length (I) thick front absorber, to remove hadrons, fol-lowed by a 3 T m dipole magnet. Charged particles which exit the front absorber are tracked in a detector system made up of five stations, each one with two planes of cathode pad chambers. The tracking system is followed by a 7:2I iron wall, which absorbs secondary hadrons escaping the front absorber and low-momentum muons. Finally, a trigger system, based on resistive plate chambers, is used to select candidate muons with a transverse mo-mentum larger than a given programmable threshold.

The analysis presented in this Letter was carried out on a significant fraction of the 2010 sample of muon-triggered events, corresponding to an integrated luminosity Lint 100 nb1. The usual event selection cuts, already applied to a previous analysis of J=c production [17], were also used for the polarization study. Events with at least one vertex reconstructed in the inner tracking system [20] are retained for the following analysis if they contain at least two tracks reconstructed in the muon spectrometer, out of which at least one has to satisfy the trigger condition (1 GeV=c pt threshold). We note that with this require-ment the acceptance of the spectrometer forJ=c extends down to pt¼ 0. The tracks must satisfy the condition 2:5 <  < 4 and must also have 17:6 < Rabs< 88:9 cm,

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

whereRabsis the radial distance of the track from the beam axis at the exit of the front absorber (z ¼ 503 cm). The latter requirement eliminates forward tracks, which, due to the high-Z material used in the absorber in that region, are strongly affected by multiple scattering. Finally, a rapidity cut 2:5 < y < 4 is applied to the selected muon pairs.

The distribution of theJ=c decay products can be ex-pressed in its general form [21] as

Wð; Þ / 1

3 þ ð1 þ cos 2 þ 

sin2 cos2

þ sin2 cosÞ; (1)

where  () are the polar (azimuthal) angles in a given reference frame. In this analysis, the Collins-Soper (CS) and helicity (HE) frames were considered. In the CS frame, thez axis is defined as the bisector of the angle between the direction of one beam and the opposite of the direction of the other one, in the rest frame of the decaying particle. In the HE reference frame, thez axis is given by the direction of the decaying particle in the center of mass frame of the collision. The ¼ 0 plane is the one containing the two beams, in the J=c rest frame. Equation (1) contains the three parameters , , and , which quantify the degree of polarization. In particular,> 0 values indicate transverse polarization, while a longitudinal polarization gives < 0. In principle, the values of the parameters could be extracted by means of a fit to the acceptance-corrected 2D distributions for cos vs . However, the limitedJ=c statistics (about 6:8  103signal events in the pt range under study) makes a 2D binning impossible. Therefore the study of the angular distributions was sepa-rately performed on the polar and azimuthal variables. In particular,  and  were obtained by studying the distributions WðcosÞ / 1 3 þ ð1 þ cos 2Þ; WðÞ / 1 þ 2 3 þ cos2; (2)

obtained by integrating Eq. (1) in the and cos variables, respectively.

The distributions of the angular variables for the J=c decay products were obtained starting from the study of the dimuon invariant mass spectra. The study was performed in five bins for thej cosj variable (the angular distribution is symmetric with respect to cos ¼ 0), in the range 0 < j cosj < 0:8. For the azimuthal variable, four bins in jj were defined, in the range 0 < jj < =2 (values between =2 and  were mirrored around jj ¼ =2, due to the period of the cos2 function). The analysis was carried out in three transverse momentum intervals (2 < pt< 3 GeV=c, 3 < pt< 4 GeV=c, and 4 < pt< 8 GeV=c). The limits of the explored ptrange are related to the strong decrease of the acceptance for largej cosj values at lowptand to the limited statistics at highpt.

The number ofJ=c signal events for the various bins in j cosj and jj were obtained by means of fits to the corresponding dimuon invariant mass spectra performed in the range 1:5 < m< 5 GeV=c2, and in Fig. 1 we show one of them as an example. The J=c signal was described by a Crystal Ball (CB) function [22], while for the background an empirical function, corresponding to a Gaussian with a width linearly depending on mass, was adopted. The position of the CB peak was left as a free parameter in the fits and was found to correspond to the nominalJ=c pole mass within at most 1%. The width of the CB function obtained from the data (between 72 and 120 MeV=c2, depending on the kinematics) was found to be in agreement with the Monte Carlo (MC) within 8–10 MeV=c2. In the fits, the width of the CB function for each bini (where i represents a certain j cosj or jj interval for the J=c pt bin under study) was fixed to i

J=c ¼ J=cði;MCJ=c=MCJ=cÞ, i.e., by scaling the measured width for the angle-integrated spectrum with the MC ratio between the widths for the bin i and for the integrated spectrum. The quality of all the fits is satisfactory, with 2=d:o:f: in a range between 0.63 and 1.34. Signal over background ratios in a 3 mass window around the CB peak vary between 0.5 and 3.5. The number of signal events per bin ranges from100 (for 2 < pt< 3 GeV=c, 0:6 < j cosCSj < 0:8) to 1000 (for 2 < pt< 3 GeV=c, 0 < j cosCSj < 0:15).

The polarization parameters for theJ=c were obtained by correcting the number of signal eventsNJ=ci for each bin for the product Ai"i of acceptance times detection effi-ciency, calculated via MC simulation, and then fitting the corrected angular distributions with the functions shown in Eq. (2). The simulation includes, for the tracking chambers, a map of dead channels and the residual misalignment of the detection elements and, for the trigger chambers, an evaluation of their efficiency based on data. It also includes a random misalignment of the tracking detector elements,

) 2 (GeV/c -µ + µ m 1.5 2 2.5 3 3.5 4 4.5 5 2

counts per 0.1 GeV/c

0 50 100 150 200 250 300 350 400 = 7 TeV s ALICE pp < 3 GeV/c 2.5 < y < 4 t 2 < p | < 0.15 HE θ 0 < | cos OS Fit

FIG. 1 (color online). The dimuon invariant mass spectrum for 2 < pt< 3 GeV=c, 0 < j cosHEj < 0:15, together with the re-sult of the fit. The contributions of the signal and background are also shown as dashed lines.

(3)

of the same size of the resolution obtained by the offline alignment procedure [17]. For both tracking and triggering detectors, the time variation of the efficiencies during the data-taking period was accounted for (see [17] for details). Since the cos and  acceptances are strongly correlated, the acceptance values as a function of one variable strongly depend on the input distribution used for the other variable. Given the fact that the correct input distributions are not known a priori but rather represent the outcome of the data analysis, an iterative procedure was followed in order to determine them. In the first iteration, a flat distribution of the angular variables (equivalent to a totally unpolarized J=cdistribution) was adopted to calculate the acceptances. After correcting the signal with those acceptances, a first determination of the polarization parameters is performed, and the results are then used in a second determination of the acceptance values. The procedure is then repeated until convergence is reached; i.e., the extracted polarization pa-rameters do not vary by more than 0.005 between two successive iterations. This occurs, for this analysis, after at most three steps. It was also checked that by using polarized MC input distributions in the first iteration the procedure converges towards the same results as in the default, unpolarized, case. Typical Ai"i values vary be-tween0:22 (0.05) at low ptand largej cosj and 0:41 (0.63) at largeptand smallj cosj for the HE (CS) frame.

A simultaneous study of theJ=c polarization variables in several reference frames, as first carried out in hadro-production studies by the HERA-B experiment [23], is particularly interesting since consistency checks on the results can be performed, using combinations of the polar-ization parameters which are frame-invariant. In particular we made use of the invariant F ¼ ðþ 3Þ=ð1  Þ [21], performing a simultaneous fit of thej cosj and jj distributions in the two reference systems and further con-straining the fit by imposingF to be the same in the CS and HE frames. In Fig.2we present, as an example, the result of such a fit relative to the last iteration of the Ai"i calculation, for 2 < pt< 3 GeV=c. The 2=d:o:f: values (d:o:f: ¼ 10) are 1.08, 1.00, 1.32 for 2 < pt< 3, 3<pt<4 and 4 < pt< 8 GeV=c, respectively, showing that the quality of the fits is good. Compatible results are obtained when the constraint onF is released.

In the analysis described so far, theparameter was implicitly assumed to be zero in the iterative acceptance calculation. In the one-dimensional approach followed in this analysis,could be estimated from the data, defin-ing an ad hoc variable ~, which is a function of cos and  and containsas a parameter (see [21] for details). In principle, the iterative procedure applied to  and  determination could be extended to include; however, in some cases, relatively small statistical fluctuations in the distributions of the measured variables tend to induce large variations of the fitted values in the following iterations, leading to convergence problems. A check of the¼ 0

assumption was done a posteriori for eachptbin, by fitting the ~ distributions, corrected with an acceptance which makes use of the measured and values as inputs. In this way, we get for all theptbinsvalues compatible with zero for both CS and HE reference frames. We also note that all the previous experiments assumed¼ 0 in their analysis, with the exception of HERA-B [23], who measured it inpA collisions atpffiffiffis¼ 41:6 GeV and found values ranging from 0 to 0.05.

Various sources of systematic uncertainty on the mea-surement of the polarization parameters have been inves-tigated. The uncertainty on the signal extraction was studied by leaving in the fits the width of the CB function as a free parameter. This choice leads to an absolute variation of the polarization parameters between 0.02 and 0.10. Another sizable source of systematic uncertainty is the choice of the input distributions for pt and y in the simulation. It was evaluated by comparing the results obtained with a parameterization of our 7 TeV results on differentialJ=ccross sections [17] with those obtained by using an extrapolation of lower energy results [24]. The absolute effect on the polarization parameters varies be-tween 0.01 and 0.07. For the lowestptbin, the acceptance in the HE frame drops by about 40% in the highestj cosj bin used in the analysis (0:6 < j cosj < 0:8) and has also a strong variation inside the bin itself. We therefore followed an alternative approach, fitting the angular spectrum in the restricted interval 0 < j cosj < 0:6 (instead of the default choice 0 < j cosj < 0:8), and we conservatively consid-ered the variation in the result of the fit (0.15) as an additional systematic uncertainty on . For consistency, the same evaluation was performed in the CS frame. The role of the systematic uncertainties on the trigger and tracking efficiency [17] was also studied. The first was

(arb. units) | | || φ d N d ∆φ 1 θ |cos d N d θ cos∆ 1 0.05 0.1 0.15 0.2 0.25 0.3 HELICITY = 7 TeV s ALICE pp < 3 GeV/c 2.5 < y < 4 t 2 < p 0 0.2 0.4 0.6 0.8 1 1.2 1.4 HELICITY θ cos 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.05 0.1 0.15 0.2 0.25 0.3 COLLINS-SOPER φ 0.2 0.4 0.6 0.8 1 1.2 1.4 COLLINS-SOPER

FIG. 2 (color online). The acceptance-corrected angular dis-tributions for theJ=c decay muons, for 2 < pt< 3 GeV=c. The simultaneous fit to the results in the CS and HE frames is also shown. The plotted errors are purely statistical. The horizontal bars represent the bin width.

(4)

evaluated by varying the efficiency values for each detector element by 2% with respect to the default values in the simulation. This choice is related to the estimated uncer-tainty on the detector efficiency calculation. For the sec-ond, we have used the rather conservative choice of comparing the reference results, obtained with realistic dead channel maps, with those relative to an ideal detector setup. The result is typically 0.03–0.04. Finally, by quad-ratically combining the results for the various sources, values between 0.04 and 0.21 are obtained for the global systematic uncertainties.

In Fig.3, we show the results onandfor inclusive J=c production. In both frames, all the parameters are compatible with zero, with a possible hint for a longitudi-nal polarization at lowpt(at a 1:6 level) in the HE frame. The numerical values are given in TableI.

The inclusive J=c yield is composed of a ‘‘prompt’’ component [direct J=cþ decay of the cð2SÞ and c resonances] and of a component from B-meson decays. In the pt range accessed in this analysis, the B-meson decay component accounts for 10% (2 <pT<3 GeV=c), 12% (3 < pT < 4 GeV=c), and 15% (4 < pT < 8 GeV=c) of the inclusive yield, according to the LHCb measure-ments carried out in our same kinematical domain [15]. The polarization of the nonprompt component is expected to be quite small. In fact, even if a sizable polarization were observed when the polarization axis refers to theB-meson direction [25], it would be strongly smeared when it is calculated with respect to the direction of the decayJ=c [15], as observed by CDF, who measured in this way ðJ=c BÞ  0:1 in the HE frame [5]. By assuming

conservativelyjðJ=c BÞj < 0:2 for both frames, and taking into account the fraction of the inclusive yield coming fromB-meson decays [15], the difference between prompt and inclusiveJ=c polarization was estimated and found to be at most 0.05, a value smaller than the system-atic uncertainties of our measurements. Concerning higher-mass charmonia, thec ! J=cþ decay cannot be reconstructed in the muon spectrometer, and the cð2SÞ !  statistics is currently too low. Values of the feed-down ratios measured mainly by lower energy experi-ments range from10% for thecð2SÞ [26] to 25%–30% for the c [27], implying that there could be a sizable difference between direct and promptJ=c polarization.

The results presented in Fig. 3extend the study of the J=c polarization to LHC energies and therefore open up a new testing ground for theoretical models. At present, next-to-leading-order calculations for directJ=c polariza-tion at the LHC via the color-singlet channel [10,12] predict a large longitudinal polarization in the HE frame ( 0:6) at pt 5 GeV=c, which is in contrast with the vanishing polarization that we observe in such a trans-verse momentum region. The contribution of the S-wave color-octet channels was also worked out [9] and indicates a significantly different trend (large transverse polariza-tion) with respect to the color-singlet contribution, but again in contrast with our result. In this situation, a rigor-ous treatment on the theory side of all the color-octet terms (includingP-wave contributions) is mandatory, as well as a study of the contribution of c and cð2SÞ feed-down which, as outlined before, is important for a quantitative comparison with our result [28]. Such studies are presently in progress, and the comparison of their outcome with the results presented in this Letter will allow a very significant test of the understanding of the heavy-quarkonium produc-tion mechanisms in QCD-based models.

In summary, we have measured the polarization parame-ters  and  for inclusive J=c production in pffiffiffis¼ 7 TeV pp collisions at the LHC. The measurement was carried out in the kinematical region 2:5 < y < 4, 2 < pt< 8 GeV=c. The polarization parameters  and  are consistent with zero, in both the helicity and Collins-Soper reference frames. These results can be used as a stringent constraint on the commonly adopted QCD frame-work for heavy-quarkonium production.

The ALICE Collaboration thanks all its engineers and technicians for their invaluable contributions to the con-struction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: Department of Science and Technology, South Africa; Calouste Gulbenkian Foundation from Lisbon and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientı´fico e Tecnolo´gico (CNPq), Financiadora de -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

0.8 ALICE pp s = 7 TeV 2.5 < y < 4 helicity

Collins-Soper (GeV/c) T p 0 1 2 3 4 5 6 7 8 9 10 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 θ λ φ λ

FIG. 3 (color online).  and  as a function of pt for inclusive J=c , measured in the HE (closed squares) and CS (open circles) frames. The error bars represent statistical errors, while systematic uncertainties are shown as boxes.

(5)

Estudos e Projetos (FINEP), Fundac¸a˜o de Amparo a` Pesquisa do Estado de Sa˜o Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE), and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation, and the Danish National Research Foundation; The European Research Council under the European Community’s Seventh Framework Program; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the ‘‘Region Pays de Loire,’’ ‘‘Region Alsace,’’ ‘‘Region Auvergne,’’ and CEA, France; German BMBF and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian OTKA and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) of Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT, DGAPA, Me´xico, ALFA-EC ,and the HELEN Program (High-Energy physics Latin-American– European Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), The Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Authority for Scientific Research - NASR (Autoritatea Nat¸ionala˘ pentru Cercetare S¸tiint¸ifica˘ -ANCS); Federal Agency of Science of the Ministry of Education and Science of Russian Federation, International Science and Technology Center, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations, and CERN-INTAS; Ministry of Education of Slovakia; CIEMAT, EELA, Ministerio de Educacio´n y Ciencia of Spain, Xunta de Galicia (Consellerı´a de Educacio´n), CEADEN, Cubaenergı´a, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (V. R.) and Knut and Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and

Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio.

[1] N. Brambilla et al.,Eur. Phys. J. C71, 1534 (2011). [2] F. Abe et al. (CDF Collaboration), Phys. Rev. Lett.69,

3704 (1992); 79, 572 (1997); S. Abachi et al. (D0 Collaboration),Phys. Lett. B370, 239 (1996).

[3] G. Bodwin, E. Braaten, and G. P. Lepage,Phys. Rev. D51, 1125 (1995);55, 5853(E) (1997).

[4] M. Kra¨mer,Prog. Part. Nucl. Phys.47, 141 (2001). [5] A. Abulencia et al. (CDF Collaboration),Phys. Rev. Lett.

99, 132001 (2007).

[6] A. Adare et al. (PHENIX Collaboration),Phys. Rev. Lett. 98, 232002 (2007);Phys. Rev. D82, 012001 (2010). [7] J. Campbell, F. Maltoni, and F. Tramontano,Phys. Rev.

Lett.98, 252002 (2007).

[8] M. Butenscho¨n and B. A. Kniehl, Phys. Rev. Lett. 106, 022003 (2011); Y. Q. Ma, K. Wang, and K. T. Chao,Phys. Rev. Lett.106, 042002 (2011).

[9] B. Gong, X. Q. Li, and J.-X. Wang,Phys. Lett. B673, 197 (2009).

[10] B. Gong and J.-X. Wang,Phys. Rev. D78, 074011 (2008). [11] J. P. Lansberg,Phys. Lett. B695, 149 (2011).

[12] J. P. Lansberg,Eur. Phys. J. C61, 693 (2008). [13] R. Vogt,Phys. Rev. C81, 044903 (2010).

[14] V. Khachatryan et al. (CMS Collaboration),Eur. Phys. J. C 71, 1575 (2011).

[15] R. Aaij et al. (LHCb Collaboration),Eur. Phys. J. C71, 1645 (2011).

[16] G. Aad et al. (ATLAS Collaboration),Nucl. Phys.B850, 387 (2011).

[17] K. Aamodt et al. (ALICE Collaboration),Phys. Lett. B 704, 442 (2011).

[18] K. Aamodt et al. (ALICE Collaboration), JINST 3, S08002 (2008).

[19]  ¼  ln½tanðlab=2Þ, where labis the polar angle in the laboratory frame.

[20] K. Aamodt et al. (ALICE Collaboration), JINST 5, P03003 (2010).

[21] P. Faccioli et al.,Eur. Phys. J. C69, 657 (2010). [22] J. E. Gaiser, Ph.D. thesis, Stanford [Report No.

SLAC-R-255, 1982 (unpublished)].

[23] I. Abt et al. (HERA-B Collaboration),Eur. Phys. J. C60, 517 (2009).

TABLE I. The values of and in the two reference frames. Statistical and systematic uncertainties are quoted separately.

pt(hpti) (GeV=c)   2–3 (2.5) 0:36  0:09  0:21 0:05  0:04  0:04 HE 3–4 (3.4) 0:20  0:11  0:13 0:01  0:05  0:05 4–8 (5.1) 0:00  0:10  0:10 0:00  0:04  0:04 2–3 (2.5) 0:10  0:14  0:13 0:04  0:08  0:07 CS 3–4 (3.4) 0:06  0:14  0:07 0:03  0:08  0:05 4–8 (5.1) 0:09  0:10  0:08 0:03  0:06  0:07

(6)

[24] F. Bossu` et al.,arXiv:1103.2394.

[25] B. Aubert et al. (BABAR Collaboration),Phys. Rev. D67, 032002 (2003).

[26] T. Aaltonen et al. (CDF Collaboration),Phys. Rev. D80, 031103 (2009); S. Chatrchyan et al. (CMS Collaboration),

arXiv:1111.1557.

[27] P. Faccioli et al.,J. High Energy Phys. 10 (2008) 004; F. Abe et al. (CDF Collaboration),Phys. Rev. Lett.79, 578 (1997).

[28] M. Butenscho¨n, arXiv:1109.1740; J.-X. Wang and M. Butenscho¨n (private communication).

B. Abelev,67A. Abrahantes Quintana,6D. Adamova´,72A. M. Adare,117M. M. Aggarwal,76G. Aglieri Rinella,30 A. G. Agocs,60A. Agostinelli,19S. Aguilar Salazar,56Z. Ahammed,113N. Ahmad,14A. Ahmad Masoodi,14 S. U. Ahn,62,37A. Akindinov,46D. Aleksandrov,87B. Alessandro,93R. AlfaroMolina,56A. Alici,94,30,9A. Alkin,2

E. Almara´z Avin˜a,56T. Alt,36V. Altini,28,30S. Altinpinar,15I. Altsybeev,114C. Andrei,69A. Andronic,84 V. Anguelov,81C. Anson,16T. Anticˇic´,85F. Antinori,98P. Antonioli,94L. Aphecetche,100H. Appelsha¨user,52 N. Arbor,63S. Arcelli,19A. Arend,52N. Armesto,13R. Arnaldi,93T. Aronsson,117I. C. Arsene,84M. Arslandok,52

A. Asryan,114A. Augustinus,30R. Averbeck,84T. C. Awes,73J. A¨ ysto¨,38M. D. Azmi,14M. Bach,36A. Badala`,95 Y. W. Baek,62,37R. Bailhache,52R. Bala,93R. Baldini Ferroli,9A. Baldisseri,12A. Baldit,62

F. Baltasar Dos Santos Pedrosa,30J. Ba´n,47R. C. Baral,48R. Barbera,24F. Barile,28G. G. Barnafo¨ldi,60 L. S. Barnby,89V. Barret,62J. Bartke,102M. Basile,19N. Bastid,62B. Bathen,54G. Batigne,100B. Batyunya,59

C. Baumann,52I. G. Bearden,70H. Beck,52I. Belikov,58F. Bellini,19R. Bellwied,108E. Belmont-Moreno,56 S. Beole,26I. Berceanu,69A. Bercuci,69Y. Berdnikov,74D. Berenyi,60C. Bergmann,54D. Berzano,26L. Betev,30 A. Bhasin,79A. K. Bhati,76N. Bianchi,64L. Bianchi,26C. Bianchin,22J. Bielcˇı´k,34J. Bielcˇı´kova´,72A. Bilandzic,71

F. Blanco,108F. Blanco,7D. Blau,87C. Blume,52M. Boccioli,30N. Bock,16A. Bogdanov,68H. Bøggild,70 M. Bogolyubsky,43L. Boldizsa´r,60M. Bombara,35J. Book,52H. Borel,12A. Borissov,116C. Bortolin,22,†S. Bose,88 F. Bossu´,30,26M. Botje,71S. Bo¨ttger,51B. Boyer,42P. Braun-Munzinger,84M. Bregant,100T. Breitner,51M. Broz,33

R. Brun,30E. Bruna,117,26,93G. E. Bruno,28D. Budnikov,86H. Buesching,52S. Bufalino,26,93K. Bugaiev,2 O. Busch,81Z. Buthelezi,78D. Caffarri,22X. Cai,40H. Caines,117E. Calvo Villar,90P. Camerini,20 V. Canoa Roman,8,1G. Cara Romeo,94W. Carena,30F. Carena,30N. Carlin Filho,105F. Carminati,30 C. A. Carrillo Montoya,30A. Casanova Dı´az,64M. Caselle,30J. Castillo Castellanos,12J. F. Castillo Hernandez,84

E. A. R. Casula,21V. Catanescu,69C. Cavicchioli,30J. Cepila,34P. Cerello,93B. Chang,38,120S. Chapeland,30 J. L. Charvet,12S. Chattopadhyay,88S. Chattopadhyay,113M. Cherney,75C. Cheshkov,30,107B. Cheynis,107 E. Chiavassa,93V. Chibante Barroso,30D. D. Chinellato,106P. Chochula,30M. Chojnacki,45P. Christakoglou,71,45

C. H. Christensen,70P. Christiansen,29T. Chujo,111S. U. Chung,83C. Cicalo`,91L. Cifarelli,19,30F. Cindolo,94 J. Cleymans,78F. Coccetti,9J.-P. Coffin,58F. Colamaria,28D. Colella,28G. Conesa Balbastre,63

Z. Conesa del Valle,30,58P. Constantin,81G. Contin,20J. G. Contreras,8T. M. Cormier,116Y. Corrales Morales,26 P. Cortese,27I. Corte´s Maldonado,1M. R. Cosentino,66,106F. Costa,30M. E. Cotallo,7E. Crescio,8P. Crochet,62 E. Cruz Alaniz,56E. Cuautle,55L. Cunqueiro,64A. Dainese,98H. H. Dalsgaard,70A. Danu,50D. Das,88I. Das,88 K. Das,88S. Dash,93A. Dash,48,106S. De,113A. De Azevedo Moregula,64G. O. V. de Barros,105A. De Caro,25,9 G. de Cataldo,92J. de Cuveland,36A. De Falco,21D. De Gruttola,25H. Delagrange,100E. Del Castillo Sanchez,30

A. Deloff,99V. Demanov,86N. De Marco,93E. De´nes,60S. De Pasquale,25A. Deppman,105G. D’Erasmo,28 R. de Rooij,45D. Di Bari,28T. Dietel,54C. Di Giglio,28S. Di Liberto,97A. Di Mauro,30P. Di Nezza,64R. Divia`,30

Ø. Djuvsland,15A. Dobrin,116,29T. Dobrowolski,99I. Domı´nguez,55B. Do¨nigus,84O. Dordic,18O. Driga,100 A. K. Dubey,113L. Ducroux,107P. Dupieux,62M. R. Dutta Majumdar,113A. K. Dutta Majumdar,88D. Elia,92

D. Emschermann,54H. Engel,51H. A. Erdal,32B. Espagnon,42M. Estienne,100S. Esumi,111D. Evans,89 G. Eyyubova,18D. Fabris,22,98J. Faivre,63D. Falchieri,19A. Fantoni,64M. Fasel,84R. Fearick,78A. Fedunov,59

D. Fehlker,15L. Feldkamp,54D. Felea,50G. Feofilov,114A. Ferna´ndez Te´llez,1E. G. Ferreiro,13A. Ferretti,26 R. Ferretti,27J. Figiel,102M. A. S. Figueredo,105S. Filchagin,86R. Fini,92D. Finogeev,44F. M. Fionda,28

E. M. Fiore,28M. Floris,30S. Foertsch,78P. Foka,84S. Fokin,87E. Fragiacomo,96M. Fragkiadakis,77 U. Frankenfeld,84U. Fuchs,30C. Furget,63M. Fusco Girard,25J. J. Gaardhøje,70M. Gagliardi,26A. Gago,90 M. Gallio,26D. R. Gangadharan,16P. Ganoti,73C. Garabatos,84E. Garcia-Solis,10I. Garishvili,67J. Gerhard,36 M. Germain,100C. Geuna,12A. Gheata,30M. Gheata,30B. Ghidini,28P. Ghosh,113P. Gianotti,64M. R. Girard,115

P. Giubellino,30,26E. Gladysz-Dziadus,102P. Gla¨ssel,81R. Gomez,104L. H. Gonza´lez-Trueba,56 P. Gonza´lez-Zamora,7S. Gorbunov,36A. Goswami,80S. Gotovac,101V. Grabski,56L. K. Graczykowski,115

(7)

R. Grajcarek,81A. Grelli,45A. Grigoras,30C. Grigoras,30V. Grigoriev,68S. Grigoryan,59A. Grigoryan,118 B. Grinyov,2N. Grion,96P. Gros,29J. F. Grosse-Oetringhaus,30J.-Y. Grossiord,107R. Grosso,30F. Guber,44 R. Guernane,63C. Guerra Gutierrez,90B. Guerzoni,19M. Guilbaud,107K. Gulbrandsen,70T. Gunji,110A. Gupta,79 R. Gupta,79H. Gutbrod,84Ø. Haaland,15C. Hadjidakis,42M. Haiduc,50H. Hamagaki,110G. Hamar,60B. H. Han,17 L. D. Hanratty,89A. Hansen,70Z. Harmanova,35J. W. Harris,117M. Hartig,52D. Hasegan,50D. Hatzifotiadou,94

A. Hayrapetyan,30,118M. Heide,54H. Helstrup,32A. Herghelegiu,69G. Herrera Corral,8N. Herrmann,81 K. F. Hetland,32B. Hicks,117P. T. Hille,117B. Hippolyte,58T. Horaguchi,111Y. Hori,110P. Hristov,30I. Hrˇivna´cˇova´,42 M. Huang,15S. Huber,84T. J. Humanic,16D. S. Hwang,17R. Ichou,62R. Ilkaev,86I. Ilkiv,99M. Inaba,111E. Incani,21 P. G. Innocenti,30G. M. Innocenti,26M. Ippolitov,87M. Irfan,14C. Ivan,84A. Ivanov,114M. Ivanov,84V. Ivanov,74

O. Ivanytskyi,2A. Jachołkowski,30P. M. Jacobs,66L. Jancurova´,59S. Jangal,58M. A. Janik,115R. Janik,33 P. H. S. Y. Jayarathna,108S. Jena,41R. T. Jimenez Bustamante,55L. Jirden,30P. G. Jones,89H. Jung,37W. Jung,37

A. Jusko,89A. B. Kaidalov,46,*V. Kakoyan,118S. Kalcher,36P. Kalinˇa´k,47M. Kalisky,54T. Kalliokoski,38 A. Kalweit,53K. Kanaki,15J. H. Kang,120V. Kaplin,68A. Karasu Uysal,30,119O. Karavichev,44T. Karavicheva,44

E. Karpechev,44A. Kazantsev,87U. Kebschull,61,51R. Keidel,121M. M. Khan,14S. A. Khan,113P. Khan,88 A. Khanzadeev,74Y. Kharlov,43B. Kileng,32S. Kim,17D. W. Kim,37J. H. Kim,17J. S. Kim,37M. Kim,120 S. H. Kim,37T. Kim,120B. Kim,120D. J. Kim,38S. Kirsch,36,30I. Kisel,36S. Kiselev,46A. Kisiel,30,115J. L. Klay,4

J. Klein,81C. Klein-Bo¨sing,54M. Kliemant,52A. Kluge,30M. L. Knichel,84K. Koch,81M. K. Ko¨hler,84 A. Kolojvari,114V. Kondratiev,114N. Kondratyeva,68A. Konevskikh,44C. Kottachchi Kankanamge Don,116 R. Kour,89M. Kowalski,102S. Kox,63G. Koyithatta Meethaleveedu,41J. Kral,38I. Kra´lik,47F. Kramer,52I. Kraus,84

T. Krawutschke,81,31M. Kretz,36M. Krivda,89,47F. Krizek,38M. Krus,34E. Kryshen,74M. Krzewicki,71 Y. Kucheriaev,87C. Kuhn,58P. G. Kuijer,71P. Kurashvili,99A. B. Kurepin,44A. Kurepin,44A. Kuryakin,86 V. Kushpil,72S. Kushpil,72H. Kvaerno,18M. J. Kweon,81Y. Kwon,120P. Ladro´n de Guevara,55I. Lakomov,114 R. Langoy,15C. Lara,51A. Lardeux,100P. La Rocca,24D. T. Larsen,15C. Lazzeroni,89R. Lea,20Y. Le Bornec,42

S. C. Lee,37K. S. Lee,37F. Lefe`vre,100J. Lehnert,52L. Leistam,30M. Lenhardt,100V. Lenti,92H. Leo´n,56 I. Leo´n Monzo´n,104H. Leo´n Vargas,52P. Le´vai,60X. Li,11J. Lien,15R. Lietava,89S. Lindal,18V. Lindenstruth,36 C. Lippmann,84,30M. A. Lisa,16L. Liu,15P. I. Loenne,15V. R. Loggins,116V. Loginov,68S. Lohn,30D. Lohner,81 C. Loizides,66K. K. Loo,38X. Lopez,62E. Lo´pez Torres,6G. Løvhøiden,18X.-G. Lu,81P. Luettig,52M. Lunardon,22

J. Luo,40G. Luparello,45L. Luquin,100C. Luzzi,30R. Ma,117K. Ma,40D. M. Madagodahettige-Don,108 A. Maevskaya,44M. Mager,53,30D. P. Mahapatra,48A. Maire,58M. Malaev,74I. Maldonado Cervantes,55 L. Malinina,59,‡D. Mal’Kevich,46P. Malzacher,84A. Mamonov,86L. Manceau,93L. Mangotra,79V. Manko,87 F. Manso,62V. Manzari,92Y. Mao,63,40M. Marchisone,62,26J. Maresˇ,49G. V. Margagliotti,20,96A. Margotti,94

A. Marı´n,84C. Markert,103I. Martashvili,109P. Martinengo,30M. I. Martı´nez,1A. Martı´nez Davalos,56 G. Martı´nez Garcı´a,100Y. Martynov,2A. Mas,100S. Masciocchi,84M. Masera,26A. Masoni,91L. Massacrier,107

M. Mastromarco,92A. Mastroserio,28,30Z. L. Matthews,89A. Matyja,102,100D. Mayani,55C. Mayer,102 M. A. Mazzoni,97F. Meddi,23A. Menchaca-Rocha,56J. Mercado Pe´rez,81M. Meres,33Y. Miake,111A. Michalon,58 J. Midori,39L. Milano,26J. Milosevic,18,§A. Mischke,45A. N. Mishra,80D. Mis´kowiec,84,30C. Mitu,50J. Mlynarz,116

A. K. Mohanty,30B. Mohanty,113L. Molnar,30L. Montan˜o Zetina,8M. Monteno,93E. Montes,7T. Moon,120 M. Morando,22D. A. Moreira De Godoy,105S. Moretto,22A. Morsch,30V. Muccifora,64E. Mudnic,101S. Muhuri,113

H. Mu¨ller,30M. G. Munhoz,105L. Musa,30A. Musso,93B. K. Nandi,41R. Nania,94E. Nappi,92C. Nattrass,109 N. P. Naumov,86S. Navin,89T. K. Nayak,113S. Nazarenko,86G. Nazarov,86A. Nedosekin,46M. Nicassio,28 B. S. Nielsen,70T. Niida,111S. Nikolaev,87V. Nikolic,85V. Nikulin,74S. Nikulin,87B. S. Nilsen,75M. S. Nilsson,18 F. Noferini,94,9P. Nomokonov,59G. Nooren,45N. Novitzky,38A. Nyanin,87A. Nyatha,41C. Nygaard,70J. Nystrand,15 H. Obayashi,39A. Ochirov,114H. Oeschler,53,30S. K. Oh,37J. Oleniacz,115C. Oppedisano,93A. Ortiz Velasquez,55

G. Ortona,30,26A. Oskarsson,29P. Ostrowski,115I. Otterlund,29J. Otwinowski,84G. Øvrebekk,15K. Oyama,81 K. Ozawa,110Y. Pachmayer,81M. Pachr,34F. Padilla,26P. Pagano,25G. Paic´,55F. Painke,36C. Pajares,13S. Pal,12 S. K. Pal,113A. Palaha,89A. Palmeri,95V. Papikyan,118G. S. Pappalardo,95W. J. Park,84A. Passfeld,54B. Pastircˇa´k,47

D. I. Patalakha,43V. Paticchio,92A. Pavlinov,116T. Pawlak,115T. Peitzmann,45M. Perales,10

E. Pereira De Oliveira Filho,105D. Peresunko,87C. E. Pe´rez Lara,71E. Perez Lezama,55D. Perini,30D. Perrino,28 W. Peryt,115A. Pesci,94V. Peskov,30,55Y. Pestov,3V. Petra´cˇek,34M. Petran,34M. Petris,69P. Petrov,89M. Petrovici,69

C. Petta,24S. Piano,96A. Piccotti,93,*M. Pikna,33P. Pillot,100O. Pinazza,30L. Pinsky,108N. Pitz,52F. Piuz,30 D. B. Piyarathna,108M. Płoskon´,66J. Pluta,115T. Pocheptsov,59,18S. Pochybova,60P. L. M. Podesta-Lerma,104

(8)

M. G. Poghosyan,30,26K. Pola´k,49B. Polichtchouk,43A. Pop,69S. Porteboeuf-Houssais,62V. Pospı´sˇil,34 B. Potukuchi,79S. K. Prasad,116R. Preghenella,94,9F. Prino,93C. A. Pruneau,116I. Pshenichnov,44G. Puddu,21

A. Pulvirenti,24,30V. Punin,86M. Putisˇ,35J. Putschke,116,117E. Quercigh,30H. Qvigstad,18A. Rachevski,96 A. Rademakers,30S. Radomski,81T. S. Ra¨iha¨,38J. Rak,38A. Rakotozafindrabe,12L. Ramello,27A. Ramı´rez Reyes,8

S. Raniwala,80R. Raniwala,80S. S. Ra¨sa¨nen,38B. T. Rascanu,52D. Rathee,76K. F. Read,109J. S. Real,63 K. Redlich,99,57P. Reichelt,52M. Reicher,45R. Renfordt,52A. R. Reolon,64A. Reshetin,44F. Rettig,36J.-P. Revol,30

K. Reygers,81H. Ricaud,53L. Riccati,93R. A. Ricci,65M. Richter,18P. Riedler,30W. Riegler,30F. Riggi,24,95 M. Rodrı´guez Cahuantzi,1D. Rohr,36D. Ro¨hrich,15R. Romita,84F. Ronchetti,64P. Rosnet,62S. Rossegger,30 A. Rossi,22F. Roukoutakis,77C. Roy,58P. Roy,88A. J. Rubio Montero,7R. Rui,20E. Ryabinkin,87A. Rybicki,102

S. Sadovsky,43K. Sˇafarˇı´k,30P. K. Sahu,48J. Saini,113H. Sakaguchi,39S. Sakai,66D. Sakata,111C. A. Salgado,13 S. Sambyal,79V. Samsonov,74X. Sanchez Castro,55L. Sˇa´ndor,47A. Sandoval,56M. Sano,111S. Sano,110R. Santo,54

R. Santoro,92,30J. Sarkamo,38E. Scapparone,94F. Scarlassara,22R. P. Scharenberg,82C. Schiaua,69R. Schicker,81 H. R. Schmidt,84,112C. Schmidt,84S. Schreiner,30S. Schuchmann,52J. Schukraft,30Y. Schutz,30,100K. Schwarz,84

K. Schweda,84,81G. Scioli,19E. Scomparin,93R. Scott,109P. A. Scott,89G. Segato,22I. Selyuzhenkov,84 S. Senyukov,27,58J. Seo,83S. Serci,21E. Serradilla,7,56A. Sevcenco,50I. Sgura,92G. Shabratova,59R. Shahoyan,30 N. Sharma,76S. Sharma,79K. Shigaki,39M. Shimomura,111K. Shtejer,6Y. Sibiriak,87M. Siciliano,26E. Sicking,30

S. Siddhanta,91T. Siemiarczuk,99D. Silvermyr,73G. Simonetti,28,30R. Singaraju,113R. Singh,79S. Singha,113 T. Sinha,88B. C. Sinha,113B. Sitar,33M. Sitta,27T. B. Skaali,18K. Skjerdal,15R. Smakal,34N. Smirnov,117

R. Snellings,45C. Søgaard,70R. Soltz,67H. Son,17J. Song,83M. Song,120C. Soos,30F. Soramel,22 M. Spyropoulou-Stassinaki,77B. K. Srivastava,82J. Stachel,81I. Stan,50I. Stan,50G. Stefanek,99G. Stefanini,30

T. Steinbeck,36M. Steinpreis,16E. Stenlund,29G. Steyn,78D. Stocco,100M. Stolpovskiy,43P. Strmen,33 A. A. P. Suaide,105M. A. Subieta Va´squez,26T. Sugitate,39C. Suire,42M. Sukhorukov,86R. Sultanov,46 M. Sˇumbera,72T. Susa,85A. Szanto de Toledo,105I. Szarka,33A. Szostak,15C. Tagridis,77J. Takahashi,106 J. D. Tapia Takaki,42A. Tauro,30G. Tejeda Mun˜oz,1A. Telesca,30C. Terrevoli,28J. Tha¨der,84J. H. Thomas,84 D. Thomas,45R. Tieulent,107A. R. Timmins,108D. Tlusty,34A. Toia,36,30H. Torii,39,110L. Toscano,93F. Tosello,93

T. Traczyk,115D. Truesdale,16W. H. Trzaska,38T. Tsuji,110A. Tumkin,86R. Turrisi,98T. S. Tveter,18J. Ulery,52 K. Ullaland,15J. Ulrich,61,51A. Uras,107J. Urba´n,35G. M. Urciuoli,97G. L. Usai,21M. Vajzer,34,72M. Vala,59,47 L. Valencia Palomo,42S. Vallero,81N. van der Kolk,71P. Vande Vyvre,30M. van Leeuwen,45L. Vannucci,65

A. Vargas,1R. Varma,41M. Vasileiou,77A. Vasiliev,87V. Vechernin,114M. Veldhoen,45M. Venaruzzo,20 E. Vercellin,26S. Vergara,1D. C. Vernekohl,54R. Vernet,5M. Verweij,45L. Vickovic,101G. Viesti,22 O. Vikhlyantsev,86Z. Vilakazi,78O. Villalobos Baillie,89A. Vinogradov,87L. Vinogradov,114Y. Vinogradov,86

T. Virgili,25Y. P. Viyogi,113A. Vodopyanov,59K. Voloshin,46S. Voloshin,116G. Volpe,28,30B. von Haller,30 D. Vranic,84J. Vrla´kova´,35B. Vulpescu,62A. Vyushin,86V. Wagner,34B. Wagner,15R. Wan,58,40Y. Wang,40 D. Wang,40Y. Wang,81M. Wang,40K. Watanabe,111J. P. Wessels,30,54U. Westerhoff,54J. Wiechula,81,112J. Wikne,18 M. Wilde,54G. Wilk,99A. Wilk,54M. C. S. Williams,94B. Windelband,81L. Xaplanteris Karampatsos,103H. Yang,12

S. Yano,39S. Yasnopolskiy,87J. Yi,83Z. Yin,40H. Yokoyama,111I.-K. Yoo,83J. Yoon,120W. Yu,52X. Yuan,40 I. Yushmanov,87C. Zach,34C. Zampolli,94,30S. Zaporozhets,59A. Zarochentsev,114P. Za´vada,49N. Zaviyalov,86 H. Zbroszczyk,115P. Zelnicek,30,51I. Zgura,50M. Zhalov,74X. Zhang,62,40F. Zhou,40D. Zhou,40Y. Zhou,45X. Zhu,40

A. Zichichi,19,9A. Zimmermann,81G. Zinovjev,2Y. Zoccarato,107and M. Zynovyev2 (ALICE Collaboration)

1Beneme´rita Universidad Auto´noma de Puebla, Puebla, Mexico 2Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine

3Budker Institute for Nuclear Physics, Novosibirsk, Russia 4California Polytechnic State University, San Luis Obispo, California, USA

5Centre de Calcul de l’IN2P3, Villeurbanne, France 6

Centro de Aplicaciones Tecnolo´gicas y Desarrollo Nuclear (CEADEN), Havana, Cuba 7Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain

8Centro de Investigacio´n y de Estudios Avanzados (CINVESTAV), Mexico City and Me´rida, Mexico 9Centro Fermi—Centro Studi e Ricerche e Museo Storico della Fisica ‘‘Enrico Fermi,’’ Rome, Italy

10Chicago State University, Chicago, USA 11China Institute of Atomic Energy, Beijing, China

(9)

12Commissariat a` l’Energie Atomique, IRFU, Saclay, France

13Departamento de Fı´sica de Partı´culas and IGFAE, Universidad de Santiago de Compostela, Santiago de Compostela, Spain 14Department of Physics, Aligarh Muslim University, Aligarh, India

15Department of Physics and Technology, University of Bergen, Bergen, Norway 16Department of Physics, Ohio State University, Columbus, Ohio, USA

17Department of Physics, Sejong University, Seoul, South Korea 18Department of Physics, University of Oslo, Oslo, Norway 19Dipartimento di Fisica dell’Universita` and Sezione INFN, Bologna, Italy

20

Dipartimento di Fisica dell’Universita` and Sezione INFN, Trieste, Italy 21Dipartimento di Fisica dell’Universita` and Sezione INFN, Cagliari, Italy

22Dipartimento di Fisica dell’Universita` and Sezione INFN, Padova, Italy 23Dipartimento di Fisica dell’Universita` ‘‘La Sapienza’’ and Sezione INFN, Rome, Italy 24Dipartimento di Fisica e Astronomia dell’Universita` and Sezione INFN, Catania, Italy 25Dipartimento di Fisica ‘‘E. R. Caianiello’’ dell’Universita` and Gruppo Collegato INFN, Salerno, Italy

26Dipartimento di Fisica Sperimentale dell’Universita` and Sezione INFN, Turin, Italy

27Dipartimento di Scienze e Tecnologie Avanzate dell’Universita` del Piemonte Orientale and Gruppo Collegato INFN, Alessandria, Italy

28Dipartimento Interateneo di Fisica ‘‘M. Merlin’’ and Sezione INFN, Bari, Italy 29Division of Experimental High Energy Physics, University of Lund, Lund, Sweden

30European Organization for Nuclear Research (CERN), Geneva, Switzerland 31Fachhochschule Ko¨ln, Ko¨ln, Germany

32Faculty of Engineering, Bergen University College, Bergen, Norway

33Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia

34Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic 35

Faculty of Science, P. J. Sˇafa´rik University, Kosˇice, Slovakia

36Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universita¨t Frankfurt, Frankfurt, Germany 37Gangneung-Wonju National University, Gangneung, South Korea

38Helsinki Institute of Physics (HIP) and University of Jyva¨skyla¨, Jyva¨skyla¨, Finland 39Hiroshima University, Hiroshima, Japan

40Hua-Zhong Normal University, Wuhan, China 41Indian Institute of Technology, Mumbai, India

42Institut de Physique Nucle´aire d’Orsay (IPNO), Universite´ Paris-Sud, CNRS-IN2P3, Orsay, France 43Institute for High Energy Physics, Protvino, Russia

44Institute for Nuclear Research, Academy of Sciences, Moscow, Russia

45Nikhef, National Institute for Subatomic Physics and Institute for Subatomic Physics of Utrecht University, Utrecht, The Netherlands 46Institute for Theoretical and Experimental Physics, Moscow, Russia

47Institute of Experimental Physics, Slovak Academy of Sciences, Kosˇice, Slovakia 48Institute of Physics, Bhubaneswar, India

49Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic 50Institute of Space Sciences (ISS), Bucharest, Romania

51Institut fu¨r Informatik, Johann Wolfgang Goethe-Universita¨t Frankfurt, Frankfurt, Germany 52Institut fu¨r Kernphysik, Johann Wolfgang Goethe-Universita¨t Frankfurt, Frankfurt, Germany

53Institut fu¨r Kernphysik, Technische Universita¨t Darmstadt, Darmstadt, Germany 54Institut fu¨r Kernphysik, Westfa¨lische Wilhelms-Universita¨t Mu¨nster, Mu¨nster, Germany 55Instituto de Ciencias Nucleares, Universidad Nacional Auto´noma de Me´xico, Mexico City, Mexico

56Instituto de Fı´sica, Universidad Nacional Auto´noma de Me´xico, Mexico City, Mexico 57Institut of Theoretical Physics, University of Wroclaw, Wroclaw, Poland 58

Institut Pluridisciplinaire Hubert Curien (IPHC), Universite´ de Strasbourg, CNRS-IN2P3, Strasbourg, France 59Joint Institute for Nuclear Research (JINR), Dubna, Russia

60KFKI Research Institute for Particle and Nuclear Physics, Hungarian Academy of Sciences, Budapest, Hungary 61Kirchhoff-Institut fu¨r Physik, Ruprecht-Karls-Universita¨t Heidelberg, Heidelberg, Germany

62Laboratoire de Physique Corpusculaire (LPC), Clermont Universite´, Universite´ Blaise Pascal, CNRS–IN2P3, Clermont-Ferrand, France

63Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Universite´ Joseph Fourier, CNRS-IN2P3, Institut Polytechnique de Grenoble, Grenoble, France

64Laboratori Nazionali di Frascati, INFN, Frascati, Italy 65

Laboratori Nazionali di Legnaro, INFN, Legnaro, Italy 66Lawrence Berkeley National Laboratory, Berkeley, California, USA 67Lawrence Livermore National Laboratory, Livermore, California, USA

68Moscow Engineering Physics Institute, Moscow, Russia

(10)

70Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark 71Nikhef, National Institute for Subatomic Physics, Amsterdam, The Netherlands

72Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rˇ ezˇ u Prahy, Czech Republic 73Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

74Petersburg Nuclear Physics Institute, Gatchina, Russia 75Physics Department, Creighton University, Omaha, Nebraska, USA

76Physics Department, Panjab University, Chandigarh, India 77Physics Department, University of Athens, Athens, Greece 78

Physics Department, University of Cape Town, iThemba LABS, Cape Town, South Africa 79Physics Department, University of Jammu, Jammu, India

80Physics Department, University of Rajasthan, Jaipur, India

81Physikalisches Institut, Ruprecht-Karls-Universita¨t Heidelberg, Heidelberg, Germany 82Purdue University, West Lafayette, Indiana, USA

83Pusan National University, Pusan, South Korea

84Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fu¨r Schwerionenforschung, Darmstadt, Germany 85Rudjer Bosˇkovic´ Institute, Zagreb, Croatia

86Russian Federal Nuclear Center (VNIIEF), Sarov, Russia 87Russian Research Centre, Kurchatov Institute, Moscow, Russia

88Saha Institute of Nuclear Physics, Kolkata, India

89School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom 90Seccio´n Fı´sica, Departamento de Ciencias, Pontificia Universidad Cato´lica del Peru´, Lima, Peru

91Sezione INFN, Cagliari, Italy 92Sezione INFN, Bari, Italy 93Sezione INFN, Turin, Italy 94

Sezione INFN, Bologna, Italy 95Sezione INFN, Catania, Italy 96Sezione INFN, Trieste, Italy

97Sezione INFN, Rome, Italy 98Sezione INFN, Padova, Italy

99Soltan Institute for Nuclear Studies, Warsaw, Poland

100SUBATECH, Ecole des Mines de Nantes, Universite´ de Nantes, CNRS-IN2P3, Nantes, France 101Technical University of Split FESB, Split, Croatia

102The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland 103The University of Texas at Austin, Physics Department, Austin, Texas, USA

104Universidad Auto´noma de Sinaloa, Culiaca´n, Mexico 105Universidade de Sa˜o Paulo (USP), Sa˜o Paulo, Brazil 106Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil

107Universite´ de Lyon, Universite´ Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, France 108University of Houston, Houston, Texas, USA

109University of Tennessee, Knoxville, Tennessee, USA 110University of Tokyo, Tokyo, Japan

111University of Tsukuba, Tsukuba, Japan

112Eberhard Karls Universita¨t Tu¨bingen, Tu¨bingen, Germany 113Variable Energy Cyclotron Centre, Kolkata, India

114V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia 115Warsaw University of Technology, Warsaw, Poland

116Wayne State University, Detroit, Michigan, USA 117

Yale University, New Haven, Connecticut, USA 118Yerevan Physics Institute, Yerevan, Armenia 119Yildiz Technical University, Istanbul, Turkey

120Yonsei University, Seoul, South Korea

121Zentrum fu¨r Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms, Germany

*Deceased.

Also at Dipartimento di Fisica dell’Universita, Udine, Italy.

Also at M. V. Lomonosov Moscow State University, D. V. Skobeltsyn Institute of Nuclear Physics, Moscow, Russia. §Also at ‘‘Vincˇa’’ Institute of Nuclear Sciences, Belgrade, Serbia.

Figura

FIG. 1 (color online). The dimuon invariant mass spectrum for 2 &lt; p t &lt; 3 GeV=c, 0 &lt; j cos HE j &lt; 0:15, together with the  re-sult of the fit
FIG. 2 (color online). The acceptance-corrected angular dis- dis-tributions for the J=c decay muons, for 2 &lt; p t &lt; 3 GeV=c
FIG. 3 (color online).   and   as a function of p t for inclusive J= c , measured in the HE (closed squares) and CS (open circles) frames
TABLE I. The values of   and   in the two reference frames. Statistical and systematic uncertainties are quoted separately.

Riferimenti

Documenti correlati

This dataset presents information on: WTP studies in coastal management, Italian beach characteristics and classifications, WTP and some demographic beach users’ statistics..

La riabilitazione respiratoria dovrebbe essere considerata imprescindibile per tutti i pazienti BPCO sintomatici e deve avere lo scopo di riportare questi pazienti ad

È, infatti, nella stessa caducità della creazione, ovvero nel suo continuo cadere e smarrirsi, che questa può essere pensata come finita ed al contempo eccedente

Un approfondimento del pensiero religioso di Colonna, difficile da cogliere nella sua adesione allo spiritualismo viterbese e pre-tridentino, si trova nella quarta sezione,

Ogni pubblicazione sulla teoria e la critica del fantastico italiano, individuata tra il 1980 e il 2015, trova la sua sistemazione in una delle cinque suddivisioni operate nel campo

A low lethality is also detectable in urban equatorials countries with high pollution rates (e.g., Singapore) [6] while the association is less strong in

Figure 2 shows the effect of the composite composition and electric field on the flash onset temperature for materials produced by manually mixing the powders.. As expected the