• Non ci sono risultati.

Multiplicity dependence of light (anti-)nuclei production in p–Pb collisions at sNN=5.02 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Multiplicity dependence of light (anti-)nuclei production in p–Pb collisions at sNN=5.02 TeV"

Copied!
13
0
0

Testo completo

(1)

.

ALICE

Collaboration



a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received9July2019

Receivedinrevisedform10October2019 Accepted18October2019

Availableonline23October2019 Editor: L.Rolandi

The measurementofthe deuteronand anti-deuteronproductioninthe rapidityrange−1<y<0 as afunction oftransverse momentum and event multiplicity inp–Pb collisions at√sNN = 5.02 TeV is presented. (Anti-)deuterons are identified via their specific energy lossdE/dx and via their time-of-flight. Their production in p–Pb collisions is compared to pp and Pb–Pb collisions and is discussed withinthe context ofthermal and coalescencemodels.The ratioofintegrated yields ofdeuteronsto protons(d/p)showsasignificantincreaseasafunctionofthecharged-particlemultiplicityoftheevent startingfromvaluessimilartothoseobservedinppcollisionsatlowmultiplicitiesandapproachingthose observedinPb–Pbcollisionsathighmultiplicities.Themeantransverseparticlemomentaareextracted from the deuteronspectra and the values are similar tothose obtained forp and  particles.Thus, deuteronspectrado notfollow massordering.Thisbehaviourisincontrasttothetrendobserved for non-compositeparticlesinp–Pbcollisions.Inaddition,theproductionoftherare3He and3He nuclei hasbeenstudied.Thespectrumcorrespondingtoallnon-singlediffractivep-Pbcollisionsisobtainedin the rapiditywindow−1<y<0 andthe pT-integrated yield dN/d y isextracted. Itis foundthat the yieldsofprotons,deuterons,and3He,normalisedbythespindegeneracy factor,followanexponential decreasewithmassnumber.

©2019PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

The energy densities reached in the collisions of ultra-relativistic particles lead to a significant production of complex (anti-)(hyper-)nuclei. The high yield of anti-quarks produced in thesereactions has led to the first observation ofthe anti-alpha particle [1] as well as of the anti-hyper-triton [2] by the STAR collaboration,andto detailedmeasurementsby theALICE collab-oration[3–6] at energiesreachedatthe CERNLHC.However, the productionmechanismisnotfullyunderstood.In amoregeneral context, these measurements also provide input for the back-ground determination in searches for anti-nuclei in space. Such an observation of anti-deuterons or 3He of cosmic origin could carryinformationontheexistenceoflargeamountsofanti-matter inouruniverseorprovideasignature oftheannihilationofdark matterparticles [7–11].

Recentdatainppandinheavy-ioncollisionsprovideevidence foraninterestingobservationregardingtheproductionmechanism of(anti-)nuclei [3,5,6,12,13]: in Pb–Pb interactions, the d/p ratio doesnot vary with the collision centrality and the value agrees

 E-mailaddress:alice-publications@cern.ch.

withexpectationsfromthermal-statisticalmodelswhichfeaturea common chemical freeze-out temperature of all hadrons around 156 MeV [3,14,15]. In inelastic pp collisions, the corresponding ratio is a factor 2.2 lower than in Pb–Pb collisions [3,12]. With respecttothesemeasurements,theresultsofdand3Heproduced inp–Pb collisionsat

sNN

=

5.02 TeV,beingasysteminbetween

thetwoextremesofppandPb–Pbcollisions,areofprominent in-terestandtheyarethesubjectofthisletter.Whiledeuteronshave been measured differentially in multiplicity,the 3He (3He) spec-trum was only obtained inclusively for all non-single diffractive eventsbecauseoftheirlowproductionrate.

Inadditiontotheevolutionoftheintegratedd/pratiofor var-iousmultiplicityclasses,thequestion whetherthetransverse mo-mentum distribution of deuterons is consistent with a collective radial expansion together with the non-composite hadrons is of particularinterest.Suchbehaviourhasbeenobservedforlight nu-clei inPb–Pb collisions [3,5]. Thepresence ofcollectiveeffects in p–Pb collisions at LHC energies has recently been supported by several experimental findings (see for instance [16–22] and re-cent reviews in [23,24]).These include a clear mass ordering of themeantransversemomenta oflightflavouredhadronsinp–Pb collisionsasexpectedfromhydrodynamicalmodels [18].

https://doi.org/10.1016/j.physletb.2019.135043

(2)

2. Analysis

The results presented here are based on a low pile-up p–Pb datasamplecollectedwiththeALICEdetectorduringtheLHC run-ningcampaignat

sNN

=

5.02 TeVin2013.Adetaileddescription

ofthedetectorisavailablein [25–29].Themaindetectorsusedin this analysis are the Inner Tracking System (ITS) [30], the Time Projection Chamber (TPC) [31], and the Time-Of-Flight detector (TOF) [32,33]. The two innermostlayers ofthe ITSconsist of Sil-iconPixelDetectors (SPD),followed bytwo layers ofSiliconDrift Detectors (SDD), andtwo layers of Silicon Strip Detectors (SSD). As the maintracking device, the TPCprovides full azimuthal ac-ceptance fortracks in the pseudo-rapidity region

|

η

lab

|

<

0.8. In

addition,itprovidesparticleidentificationviathemeasurementof thespecific energy lossdE/dx. The TOFarray is located atabout 3.7m fromthe beamlineandprovides particle identificationby measuringtheparticlespeedwiththetime-of-flighttechnique.In p-Pbcollisions, theoveralltime resolutionisabout85 psforhigh multiplicity events. In peripheral events,where multiplicities are similar topp, itdecreases to about120 psdueto aworse start-time(collision-time)resolution [34].Alldetectorsarepositionedin asolenoidalmagneticfieldofB

=

0.5 T.

Theeventsample usedfortheanalysispresentedinthisletter wascollectedexclusivelyinthebeamconfigurationwherethe pro-tontravelstowardsnegative

η

lab.Theminimum-biastriggersignal

andthe definitionofthemultiplicity classeswas providedbythe V0 detector consisting of two arrays of 32 scintillator tiles each covering the full azimuthwithin 2

.

8

<

η

lab

<

5

.

1 (V0A, Pb-beam

direction) and

3

.

7

<

η

lab

<

1

.

7 (V0C, p-beam direction). The

eventselectionwas performedina similarwaytothat described in Ref. [18]. A coincidence of signals in both V0A and V0C was requiredonlineinordertoremovebackgroundfromsingle diffrac-tive and electromagnetic events. In the offline analysis, further backgroundsuppressionwasachievedbyrequiringthatthearrival time ofthe signals inthe two neutronZero DegreeCalorimeters (ZDC), which are located

±

112.5 m from the interaction point, is compatible with a nominal p–Pb collision. The contamination frompile-up events was reducedto a negligible level (

<

1%) by rejecting eventsin which morethan one primary vertexwas re-constructedeitherfromSPDtrackletsorfromtracksreconstructed inthewholecentralbarrel.Thepositionofthereconstructed pri-mary vertex was required to be located within

±

10 cm of the nominalinteractionpointinthelongitudinaldirection.Intotal,an eventsample ofabout100million minimum-bias(MB)events af-terallselectionswasanalysed.Thecorrespondingintegrated lumi-nosity,Lint

=

NMB

/

σ

MB,where

σ

MB istheMBtriggercross-section

measuredwithvan-der-Meerscans,amountsto47.8

μb

−1 witha

relativeuncertaintyof3.7% [35].

The final results are given normalised to the total number of non-single diffractive (NSD) events. Therefore, a correction of 3

.

6%

±

3

.

1% [36] is applied to the minimum-bias results, which corresponds to the trigger andvertex reconstruction inefficiency forthisselection.Forthestudyofdandd, thesampleisdivided into five multiplicity classes, whichare definedas percentilesof theV0Asignal. Thissignalis proportionalto thecharged-particle multiplicity in the corresponding pseudo-rapidity region in the direction of the Pb-beam. Following the approach in [37], the multiplicity dependent results are normalized to the number of events Nev corresponding to the visible (triggered) cross-section.

The event sample is corrected for the vertex reconstruction effi-ciency. This correction is of the order of 4% for the lowest V0A multiplicity class (60-100%) and negligible (

<

1%) for the other multiplicity classes. The chosen selection and the corresponding charged-particlemultiplicityatmid-rapidityaresummarizedin Ta-ble1.

Table 1

Multiplicity intervals and the correspond-ing charged-particle multiplicities at mid-rapidity. The uncertainties reported for the

dNch/dηlab|lab|<0.5 arethesystematicones,

statistical uncertainties are negligible. Values aretakenfrom[18].

V0A Class dNch/dηlab|lab|<0.5

0–10% 40.6±0.9 10–20% 30.5±0.7 20–40% 23.2±0.5 40–60% 16.1±0.4 60–100% 7.1±0.2

In this analysis, the production of primary deuterons and

3He-nucleiandthatoftheirrespectiveanti-particlesaremeasured

in a rapidity window

1

<

y

<

0 in the centre-of-mass system. Since the energyper nucleonof the protonbeam ishigher than that of the Pb beam, the nucleon-nucleon system moves in the laboratoryframewitharapidity of-0.465.Potentialdifferencesof thespectralshapeornormalisationduetothelarger y-rangewith respect to themeasurement of

π

,K,andp [18] are found to be negligible forthe (anti-)deuteron and3He minimum-bias spectra

with respect to the overall statistical and systematic uncertain-ties. Inorder to selectprimary tracksof suitable quality, various trackselectioncriteriaareapplied.Atleast70clustersintheTPC and two hits in the ITS (out of which at least one in the SPD) are required.These selections guarantee a trackmomentum res-olution of2% inthe relevant pT-rangeanda dE/dx resolutionof

about 6% forminimum ionisingparticles. The maximumallowed Distance-of-Closest-Approach(DCA)totheprimarycollisionvertex is0.12 cminthetransverse (DCAxy)and1.0 cminthe

longitudi-nal(DCAz) plane.Furthermore,itisrequiredthatthe

χ

2 perTPC

clusterislessthan4andtracksofweak-decayproductswithkink topologyarerejected[29],astheycannotoriginatefromthetracks ofprimarynuclei.

Theparticleidentificationperformance oftheTPCandTOF de-tectors inp–Pb collisionsis shownin Fig.1. Forthemass deter-mination with the TOF detector, the contribution of tracks with a wrongly assigned TOF cluster is largely reduced by a 3σ pre-selectionintheTPCdE/dx,where

σ

correspondstotheTPCdE/dx resolution.Nevertheless,duetothesmallabundanceofdeuterons the background is still significant and it is removed using a fit to the squared mass distribution. An example of a fit for anti-deuterons withtransverse momenta 2

.

2 GeV

/

c

<

pT

<

2

.

4 GeV

/

c

isshownintherightpanelofFig.1.Thesquaredrestmassofthe deuteronhasbeensubtracted tosimplifythefittingfunction. The signal hasaGaussian shapewithanexponential tailontheright side.Thistailisnecessarytodescribethetime-signalshapeofthe TOF detector [33]. Forthe background,thesumof two exponen-tial functionsis used. One of the exponential functionsaccounts for themismatched tracks andthe other accounts forthe tailof theprotonpeak.For(anti-)3He nuclei,thedE

/

dx issufficientfora

clean identificationusingonlythistechniqueover theentire mo-mentum range1

.

5 GeV

/

c

<

pT

<

5 GeV

/

c astheatomicnumber

Z

=

2 for3Heleadstoaclearseparationfromotherparticles.

Thetrackingacceptance

×

efficiencydeterminationisbasedon a Monte-Carlo simulationusing theDPMJET eventgenerator [38] andafulldetectordescriptioninGEANT3 [39].Asdiscussedin [3], the hadronicinteraction of(anti-)nucleiwithdetectormaterial is notfullydescribedinGEANT3,thereforetwoadditionalcorrection factorsareapplied.Firstly,inordertoaccountforthematerial be-tween the collision vertex and the TPC, the trackreconstruction efficienciesextractedfromGEANT3arescaledtomatchthosefrom GEANT4 [40,41]. Secondly, fortracks which crossin addition the material between the TPC and the TOF detectors, a data-driven

(3)

Fig. 1. Energy lossdE/dx intheTPCandthecorrespondingexpectedenergylossfromaparametrizationoftheBethe-Blochcurve(left).Exampleofthefittothesquared TOFmassdifferencewhichshowsseparatelythesignalandthebackgroundfromtheexponentialtailofprotonsandfrommismatchedtracks(right).

Fig. 2. Tracking acceptance×efficiencycorrectionfor(anti-)deuterons(left)andfor3Heand3He (right)intheminimum-biasclass.Theefficienciesforanti-nucleiarelower

duetothelargercross-sectionforhadronicinteractions.

correction factorhas been evaluated by comparing the matching efficiencyof tracks to TOF hits in data andMonte Carlo simula-tion.SincetheTRDwasnotfullyinstalledin2013,thisstudywas repeatedfor regions in azimuthwith and without installed TRD modules.ThematchingefficienciesfortrackscrossingtheTRD ma-terialwere then scaledsuch that the correctedyield agrees with theone obtained fortracks that are not crossing anyTRD mate-rial.Thisprocedureresultsinafurtherreductionoftheacceptance

×

efficiencyof6% fordeuterons and11% foranti-deuterons. The acceptance and efficiency corrections are found to be indepen-dentoftheeventmultiplicityandareshowninFig.2forprimary deuterons andanti-deuterons, withand without requiring a TOF match,aswellasfor3He and3He.

The raw yields of deuterons and 3He also include secondary particles which stem from the interactions of primary particles withthe detector material.To subtract this contribution,a data-drivenapproachasin [3,18] isused.ThedistributionoftheDCAxy

isfitted withtwo distributions (called“templates” inthe follow-ing) obtained from Monte-Carlo simulations describing primary andsecondarydeuterons,respectively. Thefitisperformedinthe range

|

DCAxy

|

<

0

.

5 cmwhichallowsthecontributionfrom

mate-rialto be constrainedby theplateauof thedistribution atlarger distances (

|

DCAxy

|

>

0

.

15 cm). The contamination of secondaries

amounts to about 45% to 55% in the lowest pT-interval and

de-creasesexponentiallytowardshigherpTuntilitbecomesnegligible

(

<

1%)above2 GeV

/

c.Thelimitednumberof3He candidatetracks doesnotallow a backgroundsubtractionbased ontemplates,

in-steadabincountingprocedureintheaforementionedDCAxysignal

andbackgroundregionsisused.

The systematic uncertainties of the measurement are sum-marised for deuterons and 3He as well asfor their antiparticles inTable2.Fordeuterons,theuncertaintyrelatedtothesecondary correctionisestimatedbyrepeatingthetemplatefitprocedure un-der a variation of the DCAz cut. The corresponding uncertainty

for 3He nucleiis determinedby varying theranges in DCAxy for

thesignal andbackgroundregions inthebincountingprocedure. For d and 3He the systematic uncertainty on the cross-section

forhadronicinteractionisdeterminedbyasystematiccomparison ofdifferent propagationcodes(GEANT3 andGEANT4).The mate-rial between TPC and TOF needs to be considered only for the (anti-)deuteron spectrum and increases the uncertainty by addi-tional 3% and 5% for deuterons and anti-deuterons, respectively. This corresponds to the half of the observed discrepancy in the TPC-TOFmatchingefficiencies evaluatedindataandMonteCarlo. Forboth deuterons andanti-deuterons, theparticle identification procedure introduces only a smalluncertainty which slightly in-creasesathighpT andisestimatedbasedonthevariation ofthe

n

σ

-cutsinthe TPCdE/dx as well ason avariation of thesignal extractioninthe TOFwithdifferentfitfunctions. ThePID related uncertainties for 3He and 3He remain negligible over the entire

pT-range dueto the background-free identificationbased on the

TPCdE/dx.Feed-downfromweaklydecayinghyper-tritons(3H)is negligiblefordeuterons [3,4].Sinceonlyabout4-8%ofall 3

(4)

de-Table 2

Mainsourcesofsystematicuncertaintiesfordeuteronsand3He aswellastheiranti-particlesforlowandhighp T.

d d 3He 3He

pT(GeV/c) 0.9 2.9 0.9 2.9 2.2 5.0 1.8 5.0

Tracking (ITS-TPC matching) 5% 5% 5% 5% 6% 4% 6% 4% Secondaries material 1% negl. negl. negl. 20% 1% negl. negl. Secondaries weak decay negl. negl. negl. negl. 5% negl. 5% negl.

Material budget 3% 3% 3% 3% 3% 1% 3% 1%

Particle identification 1% 3% 1% 3% 3% 3% 3% 3%

Transport code 3% 3% 3% 3% 6% 6% 18% 11%

TPC-TOF matching 3% 3% 5% 5% – – – –

Total 7% 8% 8% 9% 23% 8% 20% 12%

Fig. 3. Transverse momentumdistributionsofdeuterons(left)andanti-deuterons(right)forvariousmultiplicityclasses.Themultiplicityclassdefinitionisbasedonthesignal amplitudeobservedintheV0AdetectorlocatedonthePb-side.Theverticalbarsrepresentthestatisticalerrors,theemptyboxesshowthesystematicuncertainty.Thelines representindividualfitsusingamT-exponentialfunction.

cayinginto3He passthetrackselection criteriaforprimary 3He,

theremainingcontamination hasnotbeensubtractedandthe un-certainty related to it was further investigated by a variation of theDCAxy-cutindataandafinaluncertaintyof5%isassigned.The

influenceofuncertaintiesinthematerialbudgetonthe reconstruc-tionefficiencyhasbeen studiedby simulatingeventsvaryingthe amount of material by

±

10%. The estimates of the uncertainties relatedto thetrackingandITS-TPCmatchingarebasedona vari-ationofthetrackcutsandare foundtobe approximately5%.The uncertainties related to tracking, transport code, material budget andTPC-TOFmatching arefullycorrelated acrossdifferent multi-plicityintervals.

3. Resultsanddiscussion 3.1. Spectraandyields

The transverse momentum spectra of deuterons and anti-deuterons inthe rapidity range

1

<

y

<

0 are presented in Fig.3forseveralmultiplicityclasses.The spectrashowa harden-ingwithincreasingeventmultiplicity.Thisbehaviourwas already observedforlower massparticles inp–Pb collisions[18].Forthe extractionof



pT



andpT-integratedyieldsdN/d y,thespectraare

fittedindividuallyusingamT-exponentialfunction[42].

The values obtained for dN/d y for (anti-)deuterons are sum-marized in Table 3. They have been calculated by summing up

Table 3

Integrated yieldsdN/d y of(anti-)deuterons. Thefirstvalue isthe statisticaland thesecondisthetotalsystematicuncertaintywhichincludesboththesystematic uncertaintyonthemeasuredspectraandtheuncertaintyofthe extrapolationto lowandhighpT.

Multiplicity classes dN/d y (d) dN/d y (d) 0-10% (2.86±0.03±0.30)×10−3 (2.83±0.03±0.35)×10−3 10-20% (2.08±0.02±0.22)×10−3 (1.94±0.03±0.24)×10−3 20-40% (1.43±0.01±0.15)×10−3 (1.43±0.02±0.17)×10−3 40-60% (8.93±0.08±0.93)×10−4 (9.06±0.15±1.09)×10−4 60-100% (2.89±0.05±0.30)×10−4 (3.02±0.07±0.36)×10−4

the pT-differentialyieldintheregionwherethespectrumis

mea-sured andby integratingthe fit resultin theunmeasured region at low and high transverse momenta. While the fraction of the extrapolatedyield athigh pT is negligible,thefractionatlow pT

ranges from23% at highto 38%at low multiplicities.The uncer-tainty introducedbythisextrapolationisestimatedby comparing theresultobtainedwiththemT-exponential fitto fitresultsfrom

several alternative functional forms (Boltzmann, Blast-wave [43], andpT-exponential).

Fig. 4 shows the d

/

d ratios as a function of pT for all

mul-tiplicityintervals.Theratiosarefoundtobe consistentwithunity withinuncertainties.Thisbehaviourisexpected,sincethermaland coalescence models predict that the d

/

d ratiois givenby

(

p

¯

/

p

)

2

(5)

Fig. 4. Anti-deuteron todeuteronproductionratioforthefivemultiplicityclasses. Allratiosarecompatiblewithunity,indicatedasadashedgreyline.Thevertical barsrepresentthestatisticalerrorswhiletheemptyboxesshowthetotalsystematic uncertainty.

(seeforinstance [15])andthe p

¯

/

p ratio measured inp–Pb colli-sionsisconsistentwithunityforallmultiplicityintervals [18].

Therareproductionof A

>

2 nucleionlyallowstheextraction ofminimum-biasspectrafor3He and3He withtheavailable statis-ticsandthusthe resultisnormalisedto allnon-singlediffractive (NSD) events. In total, 40 3He nuclei are observed, while about

29400tracks fromd are reconstructed in thesame data sample. The corresponding spectra are shown in Fig. 5 together with a

mT-exponentialfit whichisused fortheextraction ofthedN/d y

and



pT



ofthespectra.Thefitisperformedsuchthattheresiduals

toboththe3He and3He spectrumareminimisedsimultaneously. The fractionof the extrapolated yield corresponds to about 58%. Theuncertaintyintroduced bythisextrapolationisalsoestimated bycomparingtheresultobtainedwiththemT-exponentialfittofit

resultsfromseveralalternativefunctionalforms(Boltzmann, Blast-wave [43], and pT-exponential).A pT-integratedyield ofdN/d y

=

(

1

.

36

±

0

.

16

(

stat

)

±

0

.

52

(

syst

))

×

10−6 andan averagetransverse

momentum of



pT

 = (

1

.

78

±

0

.

11

(

stat

)

±

0

.

77

(

syst

))

GeV

/

c are

obtained.

Theyieldsofp,dand3He forNSDp–Pbeventsandnormalised

totheir spin degeneracyareshowninFig. 6asafunction ofthe massnumberA togetherwithresultsforinelasticppcollisionsand central Pb-Pb collisions. An exponential decrease with increasing

A isobserved in all cases,yet withdifferentslopes. The penalty factor,i.e.the reduction ofthe yield foreach additionalnucleon, isobtainedfromafittothedataandavalue of635

±

90 inp-Pb collisions isfound whichis significantly largerthan the factorof 359

±

41 whichwas observedforcentralPb–Pb collisions [3].The penaltyfactorobtainedfortheinelasticppcollisions[12] isfound tobe942

±

107.Suchanexponentialdecreaseofthe(anti-)nuclei yieldwithmassnumberhasalsobeenobservedatlowerincident energiesinheavy-ion[1,44–46] aswellasinp–Acollisions[47].

3.2.Coalescenceparameter

Inthetraditionalcoalescencemodel,deuteronsandother light nuclei are formed by protons and neutrons, which are close in

Fig. 5. Transverse momentumdistributionof3He and3He forallNSDcollisions

(NNSD).Theverticalbarsrepresentthestatisticalerrorswhiletheemptyboxesshow

thetotalsystematicuncertainty.Thelinerepresentsaχ2fitwitham

T-exponential

function(seetextfordetails).

Fig. 6. Production yielddN/d y normalisedbythespindegeneracyasafunctionof themassnumberforinelasticppcollisions,minimum-biasp-PbandcentralPb-Pb collisions[12,13,18,48,49].Theemptyboxesrepresentthetotalsystematic uncer-taintywhilethestatisticalerrorsareshownbytheverticalbars.Thelinesrepresent fitswithanexponentialfunction.

phasespace. Inthispicture,the deuteronmomentumspectraare relatedtothoseofitsconstituentnucleonsvia [50,51]

Ed d3Nd dp3d

=

B2



Ep d3Np dp3p



2

,

(1)

wherethemomentumofthedeuteronisgivenby pd

=

2pp.Since

theneutronspectraareexperimentallynotaccessible,theyare ap-proximated by the proton spectra. The value of B2 is computed

asa function of eventmultiplicity andtransverse momentum as the ratiobetweenthe deuteronyield measured at pT

=

pT,d and

the square of the proton yield at pT,p

=

0

.

5pT,d. The obtained

B2-valuesareshowninFig.7.Initssimplestimplementation,the

coalescencemodelforuncorrelatedparticleemissionfroma point-like sourcepredicts that theobserved B2-valuesare independent

of pTandofeventmultiplicity (called“simplecoalescence”inthe

following).Withinuncertaintiesandgiventhecurrentwidthofthe multiplicityclasses,theobservedpTdependenceisstillcompatible

withtheexpectedflatbehaviour(foradetaileddiscussionsee[6]). Moreover,adecreaseofthemeasured B2 parameterwith

increas-ingeventmultiplicityforafixed pTisobserved.Thiseffectiseven

(6)

explana-Fig. 7. Coalescence parameterB2asafunctionofpTfordifferentV0Amultiplicity

classes.Theverticallinesrepresentthestatisticalerrorsandtheemptyboxesshow thetotalsystematicuncertainty.

tionis anincreasing source volume,whichcan effectivelyreduce thecoalescenceprobability [7,51].

3.3. Meantransversemomenta

InFig.8 (left),themeanvaluesof thetransversemomenta of deuterons are compared with the corresponding results for

π

±, K±, p(p),

¯

and



(



) [18]. As for all other particles, the



pT



of

deuterons shows an increase with increasing event multiplicity, which reflects the observed hardening of the spectra. However, itis strikingthat deuterons violatethe massordering whichwas observed fornon-composite particles [18,52]:despite their much largermass,the



pT



valuesaresimilartothoseof



(



)andonly

slightlyhigherthanthoseofp(p).

¯

Note that simple coalescence models give a significantly dif-ferent prediction for the



pT



of deuterons with respect to

hy-drodynamicalmodels. This canbe best illustrated withtwo sim-plifying requirements which are approximately fulfilled in data. Firstly, thecoalescence parameter is assumedflatin pT and

sec-ondly the proton spectrum can be described by an exponential shape, i.e. C exp

(

pT

/

T

)

with two parameters C and T . In this

case,the shapeofthe deuteronspectrumcan beanalytically cal-culated based on the definition of B2. Due to the self-similarity

featureoftheexponentialfunction,

(

exp

(

x

/

a

))

a

=

exp

(

x

)

,the spec-tral shape of the proton andthe deuteron are then found to be identical: 1 2πpd T d2Nd d y dpd T

=

B2



1ppT d2Np d y dpTp



2

=

B2



C exp

(

p p T T

)



2

=

B2



C exp

(

p d T 2T

)



2

=

B2C2exp

(

pdT T

) .

(2)

Thus,thesame



pT



forboth particlesisexpectedandthe

be-haviour observed in p–Pb collisions is well described by simple coalescencemodels.Thisfindingcanbeevenfurthersubstantiated bydirectly calculatingthe



pT



ofdeuterons assuming aconstant

valueof B2 andusingthemeasuredprotonspectrumasinput.As

shownin Fig. 8 (right), in this case, a good agreement withthe dataisfoundconsideringthatalargefractionofthesystematic un-certaintyiscorrelatedamongdifferentmultiplicitybins.The Blast-Wave model [43] fails to describe the



pT



valuesfor deuterons

usingthecommonkineticfreeze-outparametersfrom [18],which describesimultaneouslythespectraofpions,kaons,andprotons.

Fig. 8. Mean pT ofvariousparticle speciesasa functionofthemean

charged-particle densityat mid-rapidityfor differentV0Amultiplicityclasses. Theempty boxesshowthetotalsystematicuncertaintywhiletheshadedboxesindicatethe contributionwhichisuncorrelatedacrossmultiplicityintervals(left).Comparison ofpTofprotonsanddeuteronswiththesimplecoalescenceandtheBlast-Wave

modelexpectations.TheshadedareasshowtheexpectedpTfordeuteronsfroma

simplecoalescencemodelassumingapT-independentB2aswellasthecalculated

pTforprotonsanddeuteronsfromtheBlast-Wavemodel [43] usingthekinetic

freeze-outparametersforpions,kaons,protonsandfrom [18] (right).

Fig. 9. Deuteron-over-proton ratioasafunctionofcharged-particlemultiplicityat mid-rapidityforpp,p–Pb andPb–Pb collisions[3,6,12].Theemptyboxesshowthe systematicuncertaintywhiletheverticallinesrepresentthestatisticaluncertainty.

3.4. Deuteron-over-protonratio

The deuteron-over-proton ratio is shown in Fig. 9 for three collision systems asa function of thecharged-particle densityat mid-rapidity.InPb–Pb collisionsithasbeenobservedthatthed/p ratiodoesnotvarywithcentralitywithin uncertainties(red sym-bols).Suchatrendisconsistentwithathermal-statisticalapproach andthe magnitudeof themeasured valuesagreewithfreeze-out temperatures intherangeof150-160 MeV [3]. Thed/p ratio ob-tainedininelasticppcollisionsincreaseswithmultiplicity [6].The resultsinp–Pb collisionsbridgethetwomeasurementsintermsof multiplicityandsystemsizeandshowanincreaseofthed/pratio with multiplicity.Here, the low (high) multiplicity value is com-patible with the resultfrom pp (Pb–Pb) collisions. Note that the experimental significanceofthisenhancementisfurther substan-tiated by considering only thepart ofthe systematicuncertainty whichisuncorrelatedacrossmultiplicityintervals.

A similar rise with multiplicity is observed for the ratios of the yieldsof multi-strangeparticles tothat ofpionsin p–Pb col-lisions [53]. In this case the canonical suppression due to exact strangenessconservationinsmallersystemsgivesaqualitative ex-planation [54]. An interpretation of the d/p ratio within thermal

(7)

inp–Pb collisionsat sNN

=

5.02TeV hasbeen studiedat

mid-rapidity. The results on deuteron production in p–Pb collisions exhibit a continuous evolution withmultiplicity betweenpp and Pb–Pb collisions.The productionof complexnucleishowsan ex-ponential decrease with mass (number). The penalty factor (de-creaseofyieldforeach additionalnucleon) islargerthantheone observedincentralPb–Pbcollisionsandsmallerthantheone mea-suredinpp collisions.The transversemomentum distributionsof deuteronsbecomeharderwithincreasingmultiplicity.Two intrigu-ingobservationsthathavebeenrecentlyreportedbyALICE[6] in highmultiplicitypp collisionsareconfirmedinthepresentpaper. Firstly,the



pT



valuesofdeuteronsarecomparabletothoseofthe

muchlighter



baryonsandthusdo notfollowa massordering. Thisbehaviourisobservedforallmultiplicityintervalsanditisin contrastto the expectationfrom simple hydrodynamical models. Theseobservationsmadeinp–Pb collisionssupportacoalescence mechanism, whileinPb–Pb collisions the deuteronseems to fol-lowthecollectiveexpansionofthefireball.Secondly,thed/pratio rises stronglywithmultiplicity, whilethis ratioremains approxi-matelyconstant as a function of multiplicity in Pb–Pb collisions, whereitsvalueagreeswiththermal-modelpredictions.

Acknowledgements

The ALICECollaboration wouldlike to thank all its engineers andtechniciansfortheirinvaluablecontributionstothe construc-tion of the experiment and the CERN accelerator teams for the outstandingperformance of the LHC complex. The ALICE Collab-oration gratefully acknowledges the resources and support pro-videdbyallGridcentresandtheWorldwideLHCComputingGrid (WLCG) collaboration. The ALICECollaboration acknowledges the followingfundingagenciesfortheir support inbuildingand run-ningtheALICEdetector:A.I.AlikhanyanNationalScience Labora-tory(YerevanPhysicsInstitute)Foundation (ANSL),State Commit-teeofScienceandWorldFederationofScientists(WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung,Austria;MinistryofCommunications andHigh Tech-nologies, National Nuclear Research Center, Azerbaijan; Conselho NacionaldeDesenvolvimentoCientíficoeTecnológico(CNPq), Uni-versidadeFederal doRioGrandedo Sul(UFRGS), Financiadorade EstudoseProjetos(Finep)andFundaçãodeAmparoàPesquisado Estadode São Paulo(FAPESP),Brazil; MinistryofScience & Tech-nology of China (MSTC), National Natural Science Foundation of China (NSFC) andMinistry ofEducation ofChina (MOEC), China; Croatian Science Foundation and Ministryof Science and Educa-tion,Croatia;CentrodeAplicacionesTecnológicasyDesarrollo Nu-clear(CEADEN), Cubaenergía, Cuba; Ministryof Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish CouncilforIndependentResearch|NaturalSciences,theCarlsberg FoundationandDanishNationalResearchFoundation(DNRF), Den-mark;HelsinkiInstitute ofPhysics (HIP),Finland; Commissariatà

e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucle-are (INFN), Italy; Institute forInnovative Science andTechnology, Nagasaki Institute ofApplied Science (IIST),Japan Societyfor the PromotionofScience(JSPS)KAKENHIandJapaneseMinistryof Ed-ucation, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through FondodeCooperación InternacionalenCienciayTecnología (FON-CICYT)andDirección GeneraldeAsuntos delPersonalAcademico (DGAPA), Mexico; NederlandseOrganisatievoor Wetenschappelijk Onderzoek(NWO), Netherlands; TheResearch CouncilofNorway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Uni-versidad Católica del Perú, Peru; Ministry of Science andHigher Education andNationalScienceCentre, Poland;Korea Institute of Science andTechnology InformationandNationalResearch Foun-dation of Korea (NRF), Republic of Korea; Ministry of Education andScientificResearch,InstituteofAtomicPhysicsandMinistryof ResearchandInnovationandInstituteofAtomicPhysics,Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, National Research Centre KurchatovInstitute,RussianScienceFoundationandRussian Foun-dation for Basic Research,Russia; Ministry of Education, Science, ResearchandSportofthe Slovak Republic,Slovakia; National Re-searchFoundationofSouthAfrica,SouthAfrica;SwedishResearch Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden;EuropeanOrganizationforNuclearResearch,Switzerland; National Science and Technology Development Agency (NSDTA), SuranareeUniversityofTechnology(SUT)andOfficeoftheHigher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic EnergyAgency (TAEK), Turkey;NationalAcademy ofSciences ofUkraine, Ukraine;Science andTechnology Facilities Council (STFC), United Kingdom; National Science Foundation of theUnitedStatesofAmerica(NSF) andUnitedStatesDepartment of Energy, Office of Nuclear Physics (DOE NP), United States of America.

References

[1]STARCollaboration,H.Agakishiev,etal.,Observationoftheantimatter helium-4nucleus,Nature473(2011)353,arXiv:1103.3312 [nucl-ex].

[2]STARCollaboration,B.I.Abelev,etal.,Observationofanantimatter hypernu-cleus,Science328(2010)58–62,arXiv:1003.2030 [nucl-ex].

[3]ALICECollaboration,J.Adam,etal.,Productionoflightnucleiandanti-nucleiin ppandPb-PbcollisionsatenergiesavailableattheCERNLargeHadronCollider, Phys.Rev.C93 (2)(2016)024917,arXiv:1506.08951 [nucl-ex].

[4]ALICECollaboration,J.Adam,etal.,3H and

3

¯H productioninPb-Pbcollisions at√sNN=2.76TeV,Phys.Lett.B754(2016)360–372,arXiv:1506.08453 [nucl

-ex].

[5]ALICECollaboration,S.Acharya,etal.,Measurementofdeuteronspectraand ellipticflowinPb–Pbcollisionsat√sNN=2.76TeVattheLHC,Eur.Phys.J.

C77 (10)(2017)658,arXiv:1707.07304 [nucl-ex].

[6]ALICE Collaboration, S. Acharya, et al., Multiplicity dependence of (anti-) deuteronproductioninppcollisionsat√s=7TeV,Phys.Lett.B794(2019) 50–63,arXiv:1902.09290 [nucl-ex].

(8)

[7]K.Blum,K.C.Y.Ng,R.Sato,M.Takimoto,Cosmicrays,antihelium,andanold navyspotlight,Phys.Rev.D96 (10)(2017)103021,arXiv:1704.05431 [astro-ph. HE].

[8]V.Poulin,P.Salati,I.Cholis,M.Kamionkowski,J.Silk,WheredotheAMS-02 antiheliumeventscomefrom?,Phys.Rev.D99 (2)(2019)023016,arXiv:1808. 08961 [astro-ph.HE].

[9]N.Tomassetti,A.Oliva,Productionofcosmic-rayantinucleiintheGalaxyand backgroundfordarkmattersearches,PoSEPS-HEP2017(2017)620,arXiv:1712. 03177 [astro-ph.HE].

[10]M.Korsmeier,F.Donato,N.Fornengo,Prospectstoverifyapossibledark mat-terhintincosmicantiprotonswithantideuteronsandantihelium,Phys.Rev. D97 (10)(2018)103011,arXiv:1711.08465 [astro-ph.HE].

[11]Y.Cui,J.D.Mason,L.Randall,Generalanalysisofantideuteronsearchesfordark matter,J.HighEnergyPhys.1011(2010)017,arXiv:1006.0983 [hep-ph].

[12]ALICECollaboration, S.Acharya, etal., Productionofdeuterons, tritons,3He

nucleiandtheirantinucleiinppcollisionsat√s=0.9,2.76and7TeV,Phys. Rev.C97 (2)(2018)024615,arXiv:1709.08522 [nucl-ex].

[13]ALICECollaboration, S.Acharya,et al.,Productionof4Heand 4He inPb-Pb

collisionsat√sNN=2.76TeVattheLHC,Nucl.Phys.A971(2018)1–20,arXiv:

1710.07531 [nucl-ex].

[14]A.Andronic,P.Braun-Munzinger,J.Stachel,H.Stoecker,Productionoflight nu-clei,hypernucleiandtheirantiparticlesinrelativisticnuclearcollisions,Phys. Lett.B697(2011)203–207,arXiv:1010.2995 [nucl-th].

[15]J.Cleymans,S.Kabana,I.Kraus,H.Oeschler,K.Redlich,etal.,Antimatter pro-ductioninproton-protonandheavy-ioncollisionsatultrarelativisticenergies, Phys.Rev.C84(2011)054916,arXiv:1105.3719 [hep-ph].

[16]ALICECollaboration,B.Abelev,etal.,Long-rangeangularcorrelationsonthe nearandawaysideinp-Pbcollisionsat√sN N=5.02 TeV,Phys.Lett.B719

(2013)29–41,arXiv:1212.2001 [nucl-ex].

[17]ALICECollaboration,B.Abelev,etal.,Long-rangeangularcorrelationsofπ,K andpinp-Pbcollisionsat√sNN=5.02TeV,Phys.Lett.B726(2013)164–177,

arXiv:1307.3237 [nucl-ex].

[18]ALICECollaboration,B.Abelev,etal.,Multiplicitydependenceofpion,kaon, protonandlambdaproductioninp-Pbcollisionsat√sN N =5.02TeV,Phys.

Lett.B728(2014)25–38,arXiv:1307.6796 [nucl-ex].

[19]CMSCollaboration,S.Chatrchyan,etal.,Observationoflong-rangenear-side angular correlations inproton-leadcollisions at the LHC,Phys. Lett. B718 (2013)795–814,arXiv:1210.5482 [nucl-ex].

[20]ATLAS Collaboration,G. Aad,et al.,Observation ofassociatednear-sideand away-sidelong-rangecorrelationsin√sN N =5.02TeVproton-leadcollisions

withtheATLASdetector,Phys.Rev.Lett.110 (18)(2013)182302,arXiv:1212. 5198 [hep-ex].

[21]ATLASCollaboration,G.Aad,etal.,MeasurementwiththeATLASdetectorof multi-particleazimuthalcorrelationsinp+Pbcollisionsat√sN N =5.02TeV,

Phys.Lett.B725(2013)60–78,arXiv:1303.2084 [hep-ex].

[22]CMSCollaboration,S.Chatrchyan,etal.,Multiplicityandtransversemomentum dependenceoftwo- andfour-particlecorrelationsinpPbandPbPbcollisions, Phys.Lett.B724(2013)213–240,arXiv:1305.0609 [nucl-ex].

[23]C.Loizides,ExperimentaloverviewonsmallcollisionsystemsattheLHC,Nucl. Phys.A956(2016)200–207,arXiv:1602.09138 [nucl-ex].

[24]J.L.Nagle,W.A.Zajc,Smallsystemcollectivityinrelativistichadronicand nu-clearcollisions,Annu.Rev.Nucl.Part.Sci.68(2018)211–235,arXiv:1801.03477 [nucl-ex].

[25]ALICECollaboration,B.Alessandro,etal.,ALICE:physicsperformancereport, volumeII,J.Phys.G32(2006)1295–2040.

[26]ALICECollaboration,P.Cortese,etal.,ALICE:physicsperformancereport, vol-umeI,J.Phys.G30(2004)1517–1763.

[27]ALICECollaboration,K.Aamodt,etal.,TheALICEexperimentattheCERNLHC, JINST3(2008)S08002.

[28]ALICECollaboration,K.Aamodt,etal.,Midrapidityantiproton-to-protonratioin ppcollisionsat√s=0.9 and7 TeVmeasuredbytheALICEexperiment,Phys. Rev.Lett.105(2010)072002,arXiv:1006.5432 [hep-ex].

[29]ALICECollaboration,B.Abelev,etal.,PerformanceoftheALICEexperimentat theCERNLHC,Int.J.Mod.Phys.A29(2014)1430044,arXiv:1402.4476 [nucl -ex].

[30]ALICE Collaboration,K. Aamodt,et al.,Alignmentofthe ALICEInner Track-ingSystemwith cosmic-raytracks,JINST5(2010)P03003, arXiv:1001.0502 [physics.ins-det].

[31]J.Alme,etal.,TheALICETPC,alarge3-dimensionaltrackingdevicewithfast readoutforultra-highmultiplicityevents,Nucl.Instrum.Meth.A622(2010) 316–367,arXiv:1001.1950 [physics.ins-det].

[32]A.Akindinov,A.Alici,P.Antonioli,S.Arcelli,M.Basile,etal.,Results ofthe ALICEtime-of-flightdetectorfromthe2009cosmic-raydatataking,Eur.Phys. J.C68(2010)601–607.

[33]A.Akindinov,etal.,PerformanceoftheALICETime-Of-Flightdetectoratthe LHC,Eur.Phys.J.Plus128(2013)44.

[34]ALICECollaboration,J.Adam,etal.,Determinationoftheeventcollisiontime withtheALICEdetectorattheLHC,Eur.Phys.J.Plus132 (2)(2017)99,arXiv: 1610.03055 [physics.ins-det].

[35]ALICECollaboration,B.Abelev,etal.,Measurementofvisiblecrosssectionsin proton-leadcollisionsat √sNN =5.02TeVinvanderMeerscanswith the

ALICEdetector,JINST9 (11)(2014)P11003,arXiv:1405.1849 [nucl-ex].

[36]ALICECollaboration,B.Abelev,etal.,Pseudorapiditydensityofcharged parti-clesinp +Pbcollisionsat√sN N=5.02 TeV,Phys.Rev.Lett.110 (3)(2013)

032301,arXiv:1210.3615 [nucl-ex].

[37]ALICECollaboration,J.Adam,etal.,Multiplicitydependenceofchargedpion, kaon,and(anti)protonproductionatlargetransversemomentuminp-Pb col-lisionsat√sNN=5.02TeV,Phys.Lett.B760(2016)720–735,arXiv:1601.03658

[nucl-ex].

[38]S.Roesler,R.Engel,J.Ranft,TheMonteCarloeventgeneratorDPMJET-III,arXiv: hep-ph/0012252 [hep-ph].

[39]R.Brun,F.Bruyant,F.Carminati,S.Giani,M.Maire,A.McPherson,G.Patrick,L. Urban,GEANTDetectorDescriptionandSimulationTool,CERNReportW5013, 1994.

[40]GEANT4Collaboration,S.Agostinelli,etal.,GEANT4:asimulationtoolkit,Nucl. Instrum.Meth.A506(2003)250–303.

[41]V. Uzhinsky, J. Apostolakis, A. Galoyan, G. Folger, V. Grichine, et al., Antinucleus-nucleuscrosssectionsimplementedinGeant4,Phys.Lett.B705 (2011)235–239.

[42]R. Hagedorn, Statistical thermodynamics of strong interactions at high-energies,NuovoCim.Suppl.3(1965)147–186.

[43]E.Schnedermann,J.Sollfrank,U.W.Heinz,Thermalphenomenologyofhadrons from200-A/GeVS+Scollisions,Phys.Rev.C48(1993)2462–2475,arXiv:nucl -th/9307020.

[44]E814Collaboration,J.Barrette,etal.,Productionoflightnucleiinrelativistic heavyioncollisions,Phys.Rev.C50(1994)1077–1084.

[45]P.Braun-Munzinger,J.Stachel,Productionofstrangeclustersandstrange mat-terinnucleus-nucleuscollisions at theAGS, J.Phys. G21(1995) L17–L20, arXiv:nucl-th/9412035 [nucl-th].

[46]NA52Collaboration,R.Arsenescu,etal.,Aninvestigationoftheanti-nucleiand nucleiproductionmechanisminPb+Pbcollisionsat158-A-GeV,NewJ.Phys. 5(2003)150.

[47]Yu.M.Antipov,etal.,Observationofanti-he-3,Yad.Fiz.12(1970)311–322.

[48]ALICECollaboration,B.Abelev,etal.,Centralitydependenceofπ,K,p produc-tioninPb-Pbcollisionsat√sN N =2.76TeV,Phys.Rev.C88(2013)044910,

arXiv:1303.0737 [hep-ex].

[49]ALICECollaboration,J. Adam,et al.,Measurementofpion,kaonand proton productioninproton–protoncollisionsat√s=7 TeV,Eur.Phys.J.C75 (5) (2015)226,arXiv:1504.00024 [nucl-ex].

[50]S.Butler,C.Pearson,Deuteronsfromhigh-energyprotonbombardmentof mat-ter,Phys.Rev.129(1963)836–842.

[51]R.Scheibl,U.W.Heinz,Coalescenceandflowinultrarelativisticheavyion col-lisions,Phys.Rev.C59(1999)1585–1602,arXiv:nucl-th/9809092 [nucl-th].

[52]ALICECollaboration,J.Adam,etal.,ProductionofK∗(892)0and

φ

(1020)in

p–Pbcollisionsat√sNN=5.02TeV,Eur.Phys.J.C76 (5)(2016)245,arXiv:

1601.07868 [nucl-ex].

[53]ALICECollaboration,J.Adam,et al.,Multi-strangebaryonproductioninp-Pb collisionsat√sNN=5.02 TeV,Phys.Lett.B758(2016)389–401,arXiv:1512.

07227 [nucl-ex].

[54]ALICECollaboration,S.Acharya,etal.,Multiplicitydependenceoflight-flavor hadronproductioninppcollisionsat√s=7TeV,Phys.Rev.C99 (2)(2019) 024906,arXiv:1807.11321 [nucl-ex].

[55]V.Vovchenko,B.Dönigus,H.Stoecker,Multiplicitydependenceoflightnuclei productionatLHCenergiesinthecanonicalstatisticalmodel,Phys.Lett.B785 (2018)171–174,arXiv:1808.05245 [hep-ph].

ALICECollaboration

S. Acharya

141

,

D. Adamová

93

,

S.P. Adhya

141

,

A. Adler

73

,

J. Adolfsson

79

,

M.M. Aggarwal

98

,

G. Aglieri Rinella

34

,

M. Agnello

31

,

N. Agrawal

48

,

10

,

Z. Ahammed

141

,

S. Ahmad

17

,

S.U. Ahn

75

,

A. Akindinov

90

,

M. Al-Turany

105

,

S.N. Alam

141

,

D.S.D. Albuquerque

122

,

D. Aleksandrov

86

,

B. Alessandro

58

,

H.M. Alfanda

6

,

R. Alfaro Molina

71

,

B. Ali

17

,

Y. Ali

15

,

A. Alici

10

,

53

,

27

,

A. Alkin

2

,

(9)

L. Bianchi

125

,

26

,

N. Bianchi

51

,

J. Bielˇcík

37

,

J. Bielˇcíková

93

,

A. Bilandzic

117

,

103

,

G. Biro

145

,

R. Biswas

3

,

S. Biswas

3

,

J.T. Blair

119

,

D. Blau

86

,

C. Blume

68

,

G. Boca

139

,

F. Bock

94

,

34

,

A. Bogdanov

91

,

L. Boldizsár

145

,

A. Bolozdynya

91

,

M. Bombara

38

,

G. Bonomi

140

,

H. Borel

137

,

A. Borissov

144

,

91

,

M. Borri

127

,

H. Bossi

146

,

E. Botta

26

,

L. Bratrud

68

,

P. Braun-Munzinger

105

,

M. Bregant

121

,

T.A. Broker

68

,

M. Broz

37

,

E.J. Brucken

43

,

E. Bruna

58

,

G.E. Bruno

33

,

104

,

M.D. Buckland

127

,

D. Budnikov

107

,

H. Buesching

68

,

S. Bufalino

31

,

O. Bugnon

114

,

P. Buhler

113

,

P. Buncic

34

,

Z. Buthelezi

72

,

J.B. Butt

15

,

J.T. Buxton

95

,

D. Caffarri

88

,

A. Caliva

105

,

E. Calvo Villar

110

,

R.S. Camacho

44

,

P. Camerini

25

,

A.A. Capon

113

,

F. Carnesecchi

10

,

J. Castillo Castellanos

137

,

A.J. Castro

130

,

E.A.R. Casula

54

,

F. Catalano

31

,

C. Ceballos Sanchez

52

,

P. Chakraborty

48

,

S. Chandra

141

,

B. Chang

126

,

W. Chang

6

,

S. Chapeland

34

,

M. Chartier

127

,

S. Chattopadhyay

141

,

S. Chattopadhyay

108

,

A. Chauvin

24

,

C. Cheshkov

135

,

B. Cheynis

135

,

V. Chibante Barroso

34

,

D.D. Chinellato

122

,

S. Cho

60

,

P. Chochula

34

,

T. Chowdhury

134

,

P. Christakoglou

88

,

C.H. Christensen

87

,

P. Christiansen

79

,

T. Chujo

133

,

C. Cicalo

54

,

L. Cifarelli

10

,

27

,

F. Cindolo

53

,

J. Cleymans

124

,

F. Colamaria

52

,

D. Colella

52

,

A. Collu

78

,

M. Colocci

27

,

M. Concas

58

,

ii

,

G. Conesa Balbastre

77

,

Z. Conesa del Valle

61

,

G. Contin

59

,

127

,

J.G. Contreras

37

,

T.M. Cormier

94

,

Y. Corrales Morales

58

,

26

,

P. Cortese

32

,

M.R. Cosentino

123

,

F. Costa

34

,

S. Costanza

139

,

J. Crkovská

61

,

P. Crochet

134

,

E. Cuautle

69

,

L. Cunqueiro

94

,

D. Dabrowski

142

,

T. Dahms

103

,

117

,

A. Dainese

56

,

F.P.A. Damas

137

,

114

,

S. Dani

65

,

M.C. Danisch

102

,

A. Danu

67

,

D. Das

108

,

I. Das

108

,

P. Das

3

,

S. Das

3

,

A. Dash

84

,

S. Dash

48

,

A. Dashi

103

,

S. De

84

,

49

,

A. De Caro

30

,

G. de Cataldo

52

,

C. de Conti

121

,

J. de Cuveland

39

,

A. De Falco

24

,

D. De Gruttola

10

,

N. De Marco

58

,

S. De Pasquale

30

,

R.D. De Souza

122

,

S. Deb

49

,

H.F. Degenhardt

121

,

K.R. Deja

142

,

A. Deloff

83

,

S. Delsanto

131

,

26

,

P. Dhankher

48

,

D. Di Bari

33

,

A. Di Mauro

34

,

R.A. Diaz

8

,

T. Dietel

124

,

P. Dillenseger

68

,

Y. Ding

6

,

R. Divià

34

,

Ø. Djuvsland

22

,

U. Dmitrieva

62

,

A. Dobrin

34

,

67

,

B. Dönigus

68

,

O. Dordic

21

,

A.K. Dubey

141

,

A. Dubla

105

,

S. Dudi

98

,

M. Dukhishyam

84

,

P. Dupieux

134

,

R.J. Ehlers

146

,

D. Elia

52

,

H. Engel

73

,

E. Epple

146

,

B. Erazmus

114

,

F. Erhardt

97

,

A. Erokhin

112

,

M.R. Ersdal

22

,

B. Espagnon

61

,

G. Eulisse

34

,

J. Eum

18

,

D. Evans

109

,

S. Evdokimov

89

,

L. Fabbietti

117

,

103

,

M. Faggin

29

,

J. Faivre

77

,

A. Fantoni

51

,

M. Fasel

94

,

P. Fecchio

31

,

A. Feliciello

58

,

G. Feofilov

112

,

A. Fernández Téllez

44

,

A. Ferrero

137

,

A. Ferretti

26

,

A. Festanti

34

,

V.J.G. Feuillard

102

,

J. Figiel

118

,

S. Filchagin

107

,

D. Finogeev

62

,

F.M. Fionda

22

,

G. Fiorenza

52

,

F. Flor

125

,

S. Foertsch

72

,

P. Foka

105

,

S. Fokin

86

,

E. Fragiacomo

59

,

U. Frankenfeld

105

,

G.G. Fronze

26

,

U. Fuchs

34

,

C. Furget

77

,

A. Furs

62

,

M. Fusco Girard

30

,

J.J. Gaardhøje

87

,

M. Gagliardi

26

,

A.M. Gago

110

,

A. Gal

136

,

C.D. Galvan

120

,

P. Ganoti

82

,

C. Garabatos

105

,

E. Garcia-Solis

11

,

K. Garg

28

,

C. Gargiulo

34

,

A. Garibli

85

,

K. Garner

144

,

P. Gasik

103

,

117

,

E.F. Gauger

119

,

M.B. Gay Ducati

70

,

M. Germain

114

,

J. Ghosh

108

,

P. Ghosh

141

,

S.K. Ghosh

3

,

P. Gianotti

51

,

P. Giubellino

105

,

58

,

P. Giubilato

29

,

P. Glässel

102

,

D.M. Goméz Coral

71

,

A. Gomez Ramirez

73

,

V. Gonzalez

105

,

P. González-Zamora

44

,

S. Gorbunov

39

,

L. Görlich

118

,

S. Gotovac

35

,

V. Grabski

71

,

L.K. Graczykowski

142

,

K.L. Graham

109

,

L. Greiner

78

,

A. Grelli

63

,

C. Grigoras

34

,

V. Grigoriev

91

,

A. Grigoryan

1

,

S. Grigoryan

74

,

O.S. Groettvik

22

,

J.M. Gronefeld

105

,

F. Grosa

31

,

J.F. Grosse-Oetringhaus

34

,

R. Grosso

105

,

R. Guernane

77

,

B. Guerzoni

27

,

M. Guittiere

114

,

K. Gulbrandsen

87

,

T. Gunji

132

,

A. Gupta

99

,

R. Gupta

99

,

I.B. Guzman

44

,

R. Haake

34

,

146

,

M.K. Habib

105

,

C. Hadjidakis

61

,

H. Hamagaki

80

,

G. Hamar

145

,

M. Hamid

6

,

R. Hannigan

119

,

M.R. Haque

63

,

A. Harlenderova

105

,

J.W. Harris

146

,

A. Harton

11

,

J.A. Hasenbichler

34

,

H. Hassan

77

,

D. Hatzifotiadou

10

,

53

,

P. Hauer

42

,

S. Hayashi

132

,

S.T. Heckel

68

,

E. Hellbär

68

,

H. Helstrup

36

,

A. Herghelegiu

47

,

(10)

C. Hills

127

,

B. Hippolyte

136

,

B. Hohlweger

103

,

D. Horak

37

,

S. Hornung

105

,

R. Hosokawa

133

,

P. Hristov

34

,

C. Huang

61

,

C. Hughes

130

,

P. Huhn

68

,

T.J. Humanic

95

,

H. Hushnud

108

,

L.A. Husova

144

,

N. Hussain

41

,

S.A. Hussain

15

,

T. Hussain

17

,

D. Hutter

39

,

D.S. Hwang

19

,

J.P. Iddon

127

,

34

,

R. Ilkaev

107

,

M. Inaba

133

,

M. Ippolitov

86

,

M.S. Islam

108

,

M. Ivanov

105

,

V. Ivanov

96

,

V. Izucheev

89

,

B. Jacak

78

,

N. Jacazio

27

,

P.M. Jacobs

78

,

M.B. Jadhav

48

,

S. Jadlovska

116

,

J. Jadlovsky

116

,

S. Jaelani

63

,

C. Jahnke

121

,

M.J. Jakubowska

142

,

M.A. Janik

142

,

M. Jercic

97

,

O. Jevons

109

,

R.T. Jimenez Bustamante

105

,

M. Jin

125

,

F. Jonas

144

,

94

,

P.G. Jones

109

,

A. Jusko

109

,

P. Kalinak

64

,

A. Kalweit

34

,

J.H. Kang

147

,

V. Kaplin

91

,

S. Kar

6

,

A. Karasu Uysal

76

,

O. Karavichev

62

,

T. Karavicheva

62

,

P. Karczmarczyk

34

,

E. Karpechev

62

,

U. Kebschull

73

,

R. Keidel

46

,

M. Keil

34

,

B. Ketzer

42

,

Z. Khabanova

88

,

A.M. Khan

6

,

S. Khan

17

,

S.A. Khan

141

,

A. Khanzadeev

96

,

Y. Kharlov

89

,

A. Khatun

17

,

A. Khuntia

118

,

49

,

B. Kileng

36

,

B. Kim

60

,

B. Kim

133

,

D. Kim

147

,

D.J. Kim

126

,

E.J. Kim

13

,

H. Kim

147

,

J. Kim

147

,

J.S. Kim

40

,

J. Kim

102

,

J. Kim

147

,

J. Kim

13

,

M. Kim

102

,

S. Kim

19

,

T. Kim

147

,

T. Kim

147

,

S. Kirsch

39

,

I. Kisel

39

,

S. Kiselev

90

,

A. Kisiel

142

,

J.L. Klay

5

,

C. Klein

68

,

J. Klein

58

,

S. Klein

78

,

C. Klein-Bösing

144

,

S. Klewin

102

,

A. Kluge

34

,

M.L. Knichel

34

,

A.G. Knospe

125

,

C. Kobdaj

115

,

M.K. Köhler

102

,

T. Kollegger

105

,

A. Kondratyev

74

,

N. Kondratyeva

91

,

E. Kondratyuk

89

,

P.J. Konopka

34

,

L. Koska

116

,

O. Kovalenko

83

,

V. Kovalenko

112

,

M. Kowalski

118

,

I. Králik

64

,

A. Kravˇcáková

38

,

L. Kreis

105

,

M. Krivda

109

,

64

,

F. Krizek

93

,

K. Krizkova Gajdosova

37

,

M. Krüger

68

,

E. Kryshen

96

,

M. Krzewicki

39

,

A.M. Kubera

95

,

V. Kuˇcera

60

,

C. Kuhn

136

,

P.G. Kuijer

88

,

L. Kumar

98

,

S. Kumar

48

,

S. Kundu

84

,

P. Kurashvili

83

,

A. Kurepin

62

,

A.B. Kurepin

62

,

S. Kushpil

93

,

J. Kvapil

109

,

M.J. Kweon

60

,

J.Y. Kwon

60

,

Y. Kwon

147

,

S.L. La Pointe

39

,

P. La Rocca

28

,

Y.S. Lai

78

,

R. Langoy

129

,

K. Lapidus

34

,

146

,

A. Lardeux

21

,

P. Larionov

51

,

E. Laudi

34

,

R. Lavicka

37

,

T. Lazareva

112

,

R. Lea

25

,

L. Leardini

102

,

S. Lee

147

,

F. Lehas

88

,

S. Lehner

113

,

J. Lehrbach

39

,

R.C. Lemmon

92

,

I. León Monzón

120

,

E.D. Lesser

20

,

M. Lettrich

34

,

P. Lévai

145

,

X. Li

12

,

X.L. Li

6

,

J. Lien

129

,

R. Lietava

109

,

B. Lim

18

,

S. Lindal

21

,

V. Lindenstruth

39

,

S.W. Lindsay

127

,

C. Lippmann

105

,

M.A. Lisa

95

,

V. Litichevskyi

43

,

A. Liu

78

,

S. Liu

95

,

W.J. Llope

143

,

I.M. Lofnes

22

,

V. Loginov

91

,

C. Loizides

94

,

P. Loncar

35

,

X. Lopez

134

,

E. López Torres

8

,

P. Luettig

68

,

J.R. Luhder

144

,

M. Lunardon

29

,

G. Luparello

59

,

M. Lupi

73

,

A. Maevskaya

62

,

M. Mager

34

,

S.M. Mahmood

21

,

T. Mahmoud

42

,

A. Maire

136

,

R.D. Majka

146

,

M. Malaev

96

,

Q.W. Malik

21

,

L. Malinina

74

,

iii

,

D. Mal’Kevich

90

,

P. Malzacher

105

,

A. Mamonov

107

,

V. Manko

86

,

F. Manso

134

,

V. Manzari

52

,

Y. Mao

6

,

M. Marchisone

135

,

J. Mareš

66

,

G.V. Margagliotti

25

,

A. Margotti

53

,

J. Margutti

63

,

A. Marín

105

,

C. Markert

119

,

M. Marquard

68

,

N.A. Martin

102

,

P. Martinengo

34

,

J.L. Martinez

125

,

M.I. Martínez

44

,

G. Martínez García

114

,

M. Martinez Pedreira

34

,

S. Masciocchi

105

,

M. Masera

26

,

A. Masoni

54

,

L. Massacrier

61

,

E. Masson

114

,

A. Mastroserio

138

,

A.M. Mathis

103

,

117

,

P.F.T. Matuoka

121

,

A. Matyja

118

,

C. Mayer

118

,

M. Mazzilli

33

,

M.A. Mazzoni

57

,

A.F. Mechler

68

,

F. Meddi

23

,

Y. Melikyan

91

,

A. Menchaca-Rocha

71

,

E. Meninno

30

,

M. Meres

14

,

S. Mhlanga

124

,

Y. Miake

133

,

L. Micheletti

26

,

M.M. Mieskolainen

43

,

D.L. Mihaylov

103

,

K. Mikhaylov

90

,

74

,

A. Mischke

63

,

i

,

A.N. Mishra

69

,

D. Mi´skowiec

105

,

C.M. Mitu

67

,

A. Modak

3

,

N. Mohammadi

34

,

A.P. Mohanty

63

,

B. Mohanty

84

,

M. Mohisin Khan

17

,

iv

,

M. Mondal

141

,

M.M. Mondal

65

,

C. Mordasini

103

,

D.A. Moreira De Godoy

144

,

L.A.P. Moreno

44

,

S. Moretto

29

,

A. Morreale

114

,

A. Morsch

34

,

T. Mrnjavac

34

,

V. Muccifora

51

,

E. Mudnic

35

,

D. Mühlheim

144

,

S. Muhuri

141

,

J.D. Mulligan

78

,

146

,

M.G. Munhoz

121

,

K. Münning

42

,

R.H. Munzer

68

,

H. Murakami

132

,

S. Murray

72

,

L. Musa

34

,

J. Musinsky

64

,

C.J. Myers

125

,

J.W. Myrcha

142

,

B. Naik

48

,

R. Nair

83

,

B.K. Nandi

48

,

R. Nania

53

,

10

,

E. Nappi

52

,

M.U. Naru

15

,

A.F. Nassirpour

79

,

H. Natal da Luz

121

,

C. Nattrass

130

,

R. Nayak

48

,

T.K. Nayak

141

,

84

,

S. Nazarenko

107

,

R.A. Negrao De Oliveira

68

,

L. Nellen

69

,

S.V. Nesbo

36

,

G. Neskovic

39

,

B.S. Nielsen

87

,

S. Nikolaev

86

,

S. Nikulin

86

,

V. Nikulin

96

,

F. Noferini

10

,

53

,

P. Nomokonov

74

,

G. Nooren

63

,

J. Norman

77

,

P. Nowakowski

142

,

A. Nyanin

86

,

J. Nystrand

22

,

M. Ogino

80

,

A. Ohlson

102

,

J. Oleniacz

142

,

A.C. Oliveira Da Silva

121

,

M.H. Oliver

146

,

C. Oppedisano

58

,

R. Orava

43

,

A. Ortiz Velasquez

69

,

A. Oskarsson

79

,

J. Otwinowski

118

,

K. Oyama

80

,

Y. Pachmayer

102

,

V. Pacik

87

,

D. Pagano

140

,

G. Pai ´c

69

,

P. Palni

6

,

J. Pan

143

,

A.K. Pandey

48

,

S. Panebianco

137

,

V. Papikyan

1

,

P. Pareek

49

,

J. Park

60

,

J.E. Parkkila

126

,

S. Parmar

98

,

A. Passfeld

144

,

S.P. Pathak

125

,

R.N. Patra

141

,

B. Paul

24

,

58

,

H. Pei

6

,

T. Peitzmann

63

,

X. Peng

6

,

L.G. Pereira

70

,

H. Pereira Da Costa

137

,

D. Peresunko

86

,

G.M. Perez

8

,

E. Perez Lezama

68

,

V. Peskov

68

,

Y. Pestov

4

,

V. Petráˇcek

37

,

M. Petrovici

47

,

R.P. Pezzi

70

,

S. Piano

59

,

M. Pikna

14

,

P. Pillot

114

,

L.O.D.L. Pimentel

87

,

O. Pinazza

53

,

34

,

L. Pinsky

125

,

S. Pisano

51

,

D.B. Piyarathna

125

,

M. Płosko ´n

78

,

M. Planinic

97

,

F. Pliquett

68

,

J. Pluta

142

,

S. Pochybova

145

,

Figura

Fig. 2. Tracking  acceptance × efficiency correction for (anti-)deuterons (left) and for 3 He and 3 He (right) in the minimum-bias class
Fig. 3. Transverse  momentum distributions of deuterons (left) and anti-deuterons (right) for various multiplicity classes
Fig. 5. Transverse  momentum distribution of 3 He and 3 He for all NSD collisions
Fig. 8. Mean  p T of various particle species as a function of the mean charged-

Riferimenti

Documenti correlati

Similarly, carriers of both the ‘risk’ alleles (DRD2 rs1076560 T allele and AKT1 rs2494732 C allele), compared with the other groups, have the lowest probability of psychotic

Mentre la progressività femminista dagli anni Settanta in poi si andava consolidan- do con la rappresentazione di nuovi modelli identitari, la Milo – apparentemente esclusa dalle

Longuenesse correctly observes that Hermann Cohen is the first thinker (see below, 204–) who “charges Kant with psychologistic confusion for attributing to sensation an

The content of GYY4137 in the sca ffolds did not have an impact on the viability of the tested cells. To assess this, cells were seeded on the top of the different scaffolds and

Specialty section: This article was submitted to Clinical and Health Psychology, a section of the journal Frontiers in Psychology Received: 14 August 2018 Accepted: 15 August

This disadvantage, may be overcome in a dynamic environment (physiological conditions), where it is possible to obtain a drug release system ensuring an effective

In this paper, we propose to integrate photonic and plasmonic nanoresonators to take advantage of the high quality factor of the photonic cavity and the extreme light confinement of

When the malnourished children were analyzed according to the new scheme proposed for underweight (Figure 1) or the scheme previously proposed for over- weight [4], it was found