• Non ci sono risultati.

Ecosystem services classification: A systems ecology perspective of the cascade framework

N/A
N/A
Protected

Academic year: 2021

Condividi "Ecosystem services classification: A systems ecology perspective of the cascade framework"

Copied!
11
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Ecological

Indicators

j ou rn a l h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e /e c o l i n d

Original

Articles

Ecosystem

services

classification:

A

systems

ecology

perspective

of

the

cascade

framework

Alessandra

La

Notte

a,∗

,

Dalia

D’Amato

b,∗

,

Hanna

Mäkinen

c

,

Maria

Luisa

Paracchini

a

,

Camino

Liquete

a

,

Benis

Egoh

d,e

,

Davide

Geneletti

f

,

Neville

D.

Crossman

g

aEuropeanCommission-JointResearchCentre,DirectorateDSustainableResources,ViaEnricoFermi2749,21027Ispra,VA,Italy bUniversityofHelsinki,DepartmentofForestSciences,Latokartanonkaari7,Helsinki,00014,Finland

cLappeenrantaUniversityofTechnology,SchoolofEnergySystems,SustainabilityScience,Saimaankatu11,15140Lahti,Finland dCouncilforScientificandIndustrialResearch,NaturalResourcesandTheEnvironment,POBox320,Stellenbosch7599,SouthAfrica eSchoolofAgricultural,EarthandEnvironmentalSciences,UniversityofKwaZulu-Natal,27PrivateBagX01,Scottsville3209,SouthAfrica fUniversityofTrento,DepartmentofCivil,EnvironmentalandMechanicalEngineering,ViaMesiano77,38123Trento,Italy

gCSIROLandandWater,WaiteCampus,Adelaide,SouthAustralia,5064,Australia

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received18April2016 Receivedinrevisedform 17November2016 Accepted18November2016 Availableonline9December2016 Keywords:

Systemsecology Ecosystemfunctioning Cascadeframework Ecologicaltheory

Ecosystemserviceclassification

a

b

s

t

r

a

c

t

Ecosystemservicesresearchfacesseveralchallengesstemmingfromthepluralityofinterpretationsof classificationsandterminologies.Inthispaperweidentifytwomainchallengeswithcurrentecosystem servicesclassificationsystems:i)theinconsistencyacrossconcepts,terminologyanddefinitions,and;ii) themixupofprocessesandend-statebenefits,orflowsandassets.Althoughdifferentecosystemservice definitionsandinterpretationscanbevaluableforenrichingtheresearchlandscape,itisnecessaryto addresstheexistingambiguitytoimprovecomparabilityamongecosystem-service-basedapproaches. Usingthecascadeframeworkasareference,andSystemsEcologyasatheoreticalunderpinning,we aimtoaddresstheambiguityacrosstypologies.Thecascadeframeworklinksecologicalprocesseswith elementsofhumanwell-beingfollowingapatternsimilartoaproductionchain.SystemsEcologyisa long-establisheddisciplinewhichprovidesinsightintocomplexrelationshipsbetweenpeopleandthe environment.Wepresentarefreshedconceptualizationofecosystemserviceswhichcansupport ecosys-temserviceassessmenttechniquesandmeasurement.Wecombinethenotionsofbiomass,information andinteractionfromsystemecology,withtheecosystemservicesconceptualizationtoimprove defini-tionsandclarifyterminology.Wearguethatecosystemservicesshouldbedefinedastheinteractions(i.e. processes)oftheecosystemthatproduceachangeinhumanwell-being,whileecosystemcomponentsor goods,i.e.countableasbiomassunits,areonlyproxiesintheassessmentofsuchchanges.Furthermore, SystemsEcologycansupportare-interpretationoftheecosystemservicesconceptualizationandrelated appliedresearch,wheremoreemphasisisneededontheunderpinningcomplexityoftheecological system.

©2016TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Ecosystem services is now widely used among scientists

and policymakers tohighlight the importanceof the

environ-ment (including biodiversity) in sustaining human livelihoods

(Convention on Biological Diversity, 2010, 1998; Costanza and Kubiszewski,2012;Maesetal.,2016).Animportantmilestoneof

ecosystemserviceresearchwastheMillenniumEcosystem

Assess-∗ Correspondingauthors.

E-mailaddresses:alessandra.la-notte@jrc.ec.europa.eu(A.LaNotte),

dalia.damato@helsinki.fi(D.D’Amato).

ment (MA, 2005)which made prominentthe idea that human

well-being depends on ecosystems,and that suchlinkages can

betrackedandframedthroughthenotionofecosystemservices.

TheMAfoundthatmorethan60%ofecosystemservicesisbeing

degradedortransformedendangeringfuturehumanwell-being.

Ecosystemservicesresearchhassinceprogressedatdifferent

levels—fromtheoreticalconceptualizationtopracticalapplications

(seeBraatanddeGroot,2012;Egohetal.,2012;Seppeltetal.,2011; Potschinetal.,2016forareview).Thisworkhasbeensupportedby

severalinternationalinitiativessuchasTheEconomicsof

Ecosys-tem and Biodiversity(TEEB, 2010), the UK National Ecosystem

Assessment(UKNEA,2011)andseveralEuropeanUnionresearch

http://dx.doi.org/10.1016/j.ecolind.2016.11.030

(2)

projects.1Inaddition,someorganizationshavesupportedthis

pro-cesswithmodelingtoolssuchastheUSNaturalCapitalProject

withtheIntegrated ValuationofEcosystemServicesand

Trade-offs(InVEST)tool.Theprivatesectorhavealsoadoptedtheconcept

throughinitiativessuchastheNaturalCapitalCoalition(NCC),the

WorldBank’sWealthAccountingandtheValuationofEcosystem

Services(WAVES),theaccountingsystemdevelopedbytheLondon

Group,whichisalsobeingadoptedbytheUnitedNations

Environ-mentalProgram(UNEP).

However,therehasbeeninconsistencyindevelopinga

frame-work within which such research and policy assessments are

carriedout.TheheMA(2005)andsubsequentecosystemservices

literature(BoydandBanzhaf,2007; Fisheretal., 2009;

Haines-YoungandPotschin,2012;LandersandNahlik,2013;Staubetal., 2011;Wallace,2007)havedevelopedmanydifferentconceptual

andempiricalframeworksandassessmentofchangesin

ecosys-tems,theirconsequencesforhumans,andactionsforsustainable

useof these ecosystems(Albert et al., 2015). The existence of

numerousecosystemserviceconceptualizationsandclassification

systemshasledtoapluralityintheinterpretationofecosystem

servicesandrelatedterminologyanddefinitionswhenitcomesto

applications(Boeremaetal.,2016).Largedifferencesin

interpreta-tionarefoundinthemeaningofbiophysicalstructure,ecological

functions,intermediateservicesandfinalservices(e.g.Landersand

Nahlik,2013;Mononenetal.,2016;Spangenbergetal.,2014;UK NEA,2011;TEEB,2010).Theconsequenceofsuchdifferencesisthe

ecosystemserviceclassificationsystemshavepoorcorrespondence

ofserviceswithbenefitsandblurreddistinctionsbetween

interme-diateandfinalservices.Amongthese,theCommonInternational

ClassificationforEcosystemServices(CICES),proposedbythe

Euro-pean Environment Agency, hasbecome an important frame of

referenceforecosystemservicesresearch(Maesetal.,2014).CICES

andmostecosystemservicesliteraturearebasedonandinfluenced

bythecascadeframeworkproposedbyHaines-Young&Potschin

in2010(Haines-YoungandPotschin,2010;Potschinand Haines-Young,2016).Thepurposeofthecascadeframeworkisinfactto

showthepathwayofecosystemservicesfromecologicalstructures

andprocessestohumanwell-being.

In this context, theneed to develop a framework to assess

ecosystemservices isa priorityin ecosystemservices research.

Althoughindividualinterpretationsenrichtheresearchlandscape,

theambiguitymustbeaddressedsothatamorerigorous

frame-workforecosystemservicescanbedevelopedandadopted.Such

a framework would improve comparability among

ecosystem-service-based approaches and would provide a standardized

approachforecosystemassessmentsatglobalandnationalscales.

Thefurtherevolutionofecosystemservicesconceptsand

frame-workscoulddrawfromthefield ofsystemsecology whichcan

provideinsightsintoourunderstandingofthedifferentaspectsof

ecosystemfunctioningthatcontributestoecosystemservices.This

interdisciplinaryfieldofsystemsecologyadoptsaholisticapproach

tothestudyofecologicalandhumansystems.Conceptsfrom

eco-logicaltheoryhavebeenalreadydiscussedinpreviousliterature

inrelationtoecosystemservices,e.g.ecologicalintegrityand

com-plexity,resilience(Kremen,2005;Brand,2008).Ourpaperaims

tosystematicallyadoptkeyconceptsfromsystemsecologyto

re-defineecosystemservicesandtherelatedcascadeframework.The

contributionofourpaperistopresentarefreshed

conceptualiza-tionofecosystemservicesthroughthelensofsystemsecology.

1e.g.RUBICODE(RationalizingBiodiversityConservationinDynamic

Ecosys-tems),SCALES(SecuringtheConservationofbiodiversityacrossAdministrative Levelsandspatial,temporal,andEcologicalScales),OpenNESS(Operationalization ofNaturalCapitalandEcosystemServices)andESMERALDA(EnhancingecoSysteM sERvicesmAppingforpoLicyandDecisionmAking)

Wefirstlyidentifythemainchallengesassociatedwiththe

var-iousinterpretationsofthecascadeframework(Section2.1)andof

theexistingclassificationsystemswhosestructureandmeaning

doesdependonthechosentheoreticalframework(Section2.2).

Secondly,weintroducekeyconceptsfromthedisciplineofsystems

ecology(Section3)toaddresstheidentifiedchallenges(Section4).

Wefinallyconcludebydiscussingthecontributionofourrefreshed

conceptualizationofecosystemservices(Section5).

2. Currentchallengesinecosystemservicesresearch

2.1. Challengeswiththeuseoftheecosystemservicescascade

The cascade framework proposed by Haines-Young and

Potschin(2010)linksnaturalsystemstoelementsofhuman

well-being, following a pattern similar to a production chain: from

ecologicalstructuresandprocessesgeneratedbyecosystems,tothe

servicesandbenefitseventuallyderivedbyhumans.Theadvantage

ofthisframework istoeffectivelycommunicatesocietal

depen-denceonecosystems.

Challenges arise when applying this cascade framework in

practice,duetothesimultaneouspresenceintheframeworkof

bio-centeredandhuman-centeredspheres.Thismeansthatecosystem

servicesassessmentsinclude:

• observationsfroma bio-centredor holisticapproach-i.e.

bio-physical structures and processes/functions belonging to the

ecologicalsphereandwhichareconsideredasawhole,

• observationsfromareductionist orhuman-centred

approach-i.e.ecosystemserviceswhichareprojectedtowardsthehuman

end-usesideindividually.

Thischallengeisevidentwhenwetrytomeasureecosystem

services,whicharecategorizedandaccountedforindividually.2

Inaddition,differentdefinitionsofecosystemservicesandin

particular oftheelements inthe cascadeframework are found

intheliterature:biophysicalstructure,process,function,service,

benefit.3Asanexample,Table1summarizesthedefinitions

pro-videdinrecentecosystemservicesstudies.Forinstance,ecosystem

structure is often poorlydistinguishedfrom processes. Wallace

(2007,p.237)proposesthat‘animportantdistinction[between

thetwo]isthattheformeraregenerallytangibleentitiesdescribed

intermsofamount,whilethelatterare[...]generallydescribedin

termsofrates’.

Furthermore,thewordfunctionisgenerallyused

interchange-ablywithecologicalprocessand/orecosystemservice.According

toJax(2005),theterm‘function’isoftenusedtooambiguously.

Ecosystemservicesaregenerallydefinedas theecosystem

pro-cessesconsideredusefultohumans(MA,2005;TEEB, 2010).In

the same light, some studies(ref. Table1) that have assessed,

mappedorvaluedecosystemservices,useservicesand benefits

assynonyms. Benefitsarein somecasesconsideredastangible

naturalresourcesderived fromprovisioningservices(e.g.crops,

wood,water),orsomeregulatingservices(e.g.cleanwaterfor

mul-tipleusesprovidedbywaterpurification).Benefits,however,can

alsobeintangible(e.g.recreationopportunitiesofferedbynature).

2Notethatsomeauthors,e.g.Mononenetal.(2016)havesuggestedtohighlight

theprocess-likenatureofecosystemservicesdeliveryassocio-ecologicalsystems, thusmaintainingtheholisticapproachonthefocus.

3Thecascademodeldoesindeedinclude,after‘benefit’,alsothe‘value’stepthat

assignstobenefitsaquantificationinmonetaryterms.Theeconomicvaluationof ecosystemservicesisafieldofresearchandapplicationsthatdoesnotaffectthe specificconceptualanalysisproposedinthispaper.Inordertokeepfocusedonthe mainobjectivesofthepaper,wethuschoosenottoincludethe‘value’boxatthis stage.

(3)

Table1

Definitionsandexamplesofecosystemservicesterminologyaccordingtoselectedpeer-reviewedliterature.

Author& proposed application

Biophysicalstructure Process Function Ecosystemservices Good Benefit

Batemanetal. (2011)

e.g.animals,birds, plantsandtheir connections,etc.

e.g.nutrientcycling Primaryecological processes Flowofservices (outcomeofstructure andprocesses) providedbyecological assetsinsome assessmentperiod. Anyobjector constructwhich generateshuman wellbeing(physical andnon).

Thechangeinhuman well-beinggeneratedbya good(use-valueandnon). Thesamegoodcan generatedifferentvalues, dependingonthecontext.

Boydand Banzhaf(2007)

Seedefinitionfor ‘process’ Biological,chemical, andphysical interactionsbetween ecosystem components.Functions andprocessesarenot end-products;theyare intermediatetothe productionoffinal ecosystemservices.

Seedefinitionfor ‘process’

Theuseofecological assetoversometime period.

Thingsdirectly enjoyedor consumedby households.

Abenefite.g.recreation, arisesfromthejointuseof finalecosystemservices andconventionalgoods andservices.

Fisheretal. (2009)

Seedefinitionfor ‘ecosystemservices’

Seedefinitionfor ‘ecosystemservices’

Seedefinitionfor ‘ecosystemservices’

Theyareecologicalin nature,inthat aestheticvalues, culturalcontentment andrecreationarenot ecosystemservices. Ecosystemservicesare ecologicalcomponents, functionsand/or processes,aslongas therearehuman beneficiaries.

na Abenefithasanexplicit impactonchangesin humanwellfare,likemore food,betterhiking,less flooding.Forexample, aesthethicvalues,cultural contentmentand recreationarebenefitand notjustafunctionofthe ecosystem,butinclude otherinputslikehuman capital,builtcapital,etc.

Maesetal. (2016)

Thearchitectureofan ecosystemasaresultof theinteraction betweentheabiotic, physicalenvironment andthebiotic communities,in particularvegetation

Anychangeorreaction whichoccurswithin ecosystems,physical, chemicalorbiological. Ecosystemprocesses includedecomposition, production,nutrient cycling,andfluxesof nutrientsandenergy

Subsetofthe interactionsbetween biophysicalstructures, biodiversityand ecosystemprocesses thatunderpinthe capacityofan ecosystemtoprovide ecosystemservices

Thedirectandindirect contributionsof ecosystemstohuman wellbeing(TEEB,2010). Theactuallyused service. Theconcept ’ecosystemgoods andservices’is synonymouswith ecosystemservices. Positivechangein wellbeingfromthe fulfilmentofneedsand wants(TEEB,2010) Müllerand Burkhard (2012) Biophysicalstructures andprocesses (ecosystemproperties) arelinkedinthe cascadecomponentof ecosystemfunctions. Theyareunderstoodas thebasicproducersof ecosystemservices.

Seedefinitionfor ‘biophysicalstrucuture’

Ecologicalintegrity Directandindirect contributionsof ecosystemstructures andfunctions

na intendedassocial, economicandpersonal well-being

Mononenetal. (2016)

Biophysicalstructures thatcreatethebasisfor functioningofthe ecosystem.Spatial perspective. na Functioningof ecosystemthatis neededtoproduce ecosystemservices. Temporalperspective.

na Theusedshareof thepotentialof ecosystemservices. Beneftscanbealso non-material.

Economic,social,health (physicalorspiritual)and intrinsicvalueofthe benefit. Spanenberg etal.(2014) Biophysicalstructure orprocessincludes habitattype

Seedefinitionfor ‘biophysicalstrucuture’

e.g.woodproduction Collectingor harvestingwood(that isthehumanactivityof withdrawingthe naturalasset)

Contributionto aspectsof well-beingsuchas healthandsafety

Willingnesstopayfor morewoodlandor harvestableproducts.

TEEB(2010) Biophysicalstructure orprocess=vegetation coverorNetPrimary Productivity

seeBiophysical structure

Thepotentialthat ecosystemshaveto deliveraservicewhich inturndependson ecologicalstructure andprocesses.

Conceptualizationsof the“usefulthings” ecosystems“do”for people,directlyand indirectly

na Welfaregainsgeneratedby ecosystemservices

Wallace(2007) na Thecomplex interactions(events, recreationsor operations)among bioticandabiotic elementsof

ecosystemsthatleadto adefiniteresult.

Seedefinitionfor ‘process’

Benefitsthatpeople obtainfrom ecosystems;the outcomessought throughecosystem management. na Preferredend-statesof existence,includingthose requiredforhuman survivalandreproductive success,whichtaken togethercircumscribe humanwell-being.These excludeintrinsicvalue.

(4)

Haines-YoungandPotschin(2009,p.17)proposea‘pragmaticway

forward’,statingthat‘themainissueistoensuretherigorofthe

outputsfromouranalysisandnotbecomepreoccupiedwith

def-initions,henceeffortsshouldbedirectedto:achievingconsistent

valuationandnodoublecounting’.

Moreunifiedandshareddefinitions,however,canbehelpfulin

ensuringtherigorofpracticalassessments,andallowadegreeof

comparabilityamongstudies.Inparticular,itisimportantto

dis-tinguishbetweenservice,process,andbenefit.BraatanddeGroot

(2012)arguedthatecosystemservicescontain‘theproduct

com-ponent(traditionallycalled“goods”)’,buttheysuggestthat‘inthe

nextstageofdevelopmentoftheconcept,thedistinctionbetween

goodsandservicesshouldbere-established’.Whenreferringto

thecascadeframework,theterminologyincludesbenefitsrather

thangoods.Thechallengeofseparatingservicesfromgoodsand/or

benefitsisfurtherexploredinthenextsection.

2.2. Challengesinthecurrentecosystemservicesclassifications

Anyapplicationofanecosystemservice-basedapproachstarts

withchoosing the servicestobe assessed (and valued)from a

listofservices,i.eaclassification system.Classificationsystems

areusually based ona theoretical framework whoseprinciples

and conceptsare reflected inthemeaning andstructure ofthe

itemspresented. It is thusimportant toexplore themain

clas-sification systems, in order to highlight the embeddednotions

theystate.Forexample, theMillenniumEcosystemAssessment

(2005)wasthefirsttoattempttogroupecosystemservicesinto

fourcategories:provisioningservices(e.g.food,fibers,fuel,genetic

resources);regulatingservices(e.g.,waterpurificationand

regula-tion,climateregulation,extremeeventsanddiseasemitigation);

supportingservices(e.g.,primaryproductionandnutrientcycling);

andculturalservices(e.g.,eco-tourismandrecreation,aesthetic

andspiritualvalues).Thiscategorizationprovidedasoundbasisto

launchecosystemservicesresearchandapplications,butitdoesnot

constituteapropertaxonomy.Inthecascadeframework

(Haines-YoungandPotschin,2012),supportingservicesareconsidereda

‘function’ratherthana‘service’.FollowingtheMA,theTEEB

clas-sification(2010)alsoexplicitlyreferredtothecascadeframework

butrefinedthedistinctionbetweenservicesandbenefits.Theidea

ofsupportingservicesinTEEBwasnotfurtherdeveloped.Instead

anew‘habitatservices’groupwasintroduced,including

‘mainte-nanceoflifecycles’and‘maintenanceofgeneticdiversity’

Sincesomeecosystemservicecategoriesoverlap,thereisarisk

of double countingin valuation,which therefore requiresclear

separationbetweenintermediateandfinalservice.TheUS

Environ-mentalProtectionAgencyhasproposedadditionalclassifications

toavoiddouble counting.Theseinclude FinalEcosystemGoods

andServicesClassificationSystem(FEGS-CS)(LandersandNahlik,

2013)andtheNationalEcosystemServicesClassificationSystem

(NESCS)(Rhodes,2015).In bothclassificationsystemsthemain

focusisonbenefitsandbeneficiaries.Thisisinlinewiththestudy

byBoydandBanzhaf(2007)thatsuggesttoaccountfor

‘compo-nentsofnaturedirectlyenjoyed,consumedorusedtoyieldhuman

well-being’.FEGS-CSclassificationproposestwocriteriatodefine

goodsandservices:i)thepotentialgoodorserviceisvaluedbya

beneficiary,and;ii)thepotentialgoodorserviceisconnectedtoat

leastthehydrosphereandlithosphere.InFEGS-CSprocessessuchas

photosynthesisorcarbonsequestrationarelabeledalltogetheras

‘ecosystemstructuralcomponents’andconsideredasintermediate

goodsandservices.Theseareexcludedbecausetheyarenotdirectly

usedbyhumans.Similarly,NESCSclassificationrepresentsdistinct

pathwaysthroughwhichfinalecosystemservicesenterhuman

sys-tems.Thisclassificationapproachfocusesonendcategoriesofuses

andusers,andisalignedwiththeNorthAmericanationalaccounts

classificationsystem.NESCSemphasizestheconnectionbetween

the‘end-productofnature’andthehuman‘directuses’astangible

andintangiblebenefits.

CICESisoneofthemostpopularclassificationscurrentlyand

is beingusedbyscientists and policymakersaroundtheglobe

but particularlyfromEurope.Similartothe TEEBclassification,

CICESdoesnotincludetheMA(2005)‘supportingservices’,but

mergestheTEEB(2010)‘habitatservices’withregulatingservices,

inacategorycalled‘regulatingandmaintenanceservices’.

Com-paredtoFEGS-CSandNESCS,CICESdoespromoteacleardistinction

betweenecosystemservicesandecosystembenefits.Inthelatest

versionofthecascadeframeworkthatunderpinsCICES(Potschin

andHaines-Young,2016),ecosystemservicesareexplicitly

indi-catedasfinal services,whilebiophysicalstructure andfunction

areindicatedassupportingorintermediateservices.Final

ecosys-temservicesarethecontributionsthatecosystemsmaketohuman

well-beingasflows.Ecosystemgoodsandbenefitsarecreatedor

derivedbypeoplefromfinalecosystemservices.

ThedifferencesbetweenFEGS-CSandCICESaresubtleandare

explainedwiththeassistanceofFig.1:a)thecascadeframework

thatconstitutesthetheoreticalbackgroundofCICES,and;b)the

conceptualframeworkoftheFEGS-CS.FEGS-CSplacesemphasis

onthebenefits,beneficiariesandthesocio-economicsystem,while

CICESplacesgreateremphasisontheecologicalsystem.Infactwe

needtoaddanadditionalbox(i.e.assets/commodities)inthe

cas-cadeframeworktohaveamoreconsistentviewofthetwomodels.

Inthisadditionalboxthebenefitsenterintoaproductionprocess

thatmakesitamarketablegood,aneconomicasset,a

commod-ity.Althoughecosystemservicesareidentifiedconsideringhuman

needsanddemand,wechooseinFig.1atohavethesocio-economic

systemsstartingatthe‘benefit’boxbecauseatthisstagethereal

usecantakeplaceandbecausethisistheonlywaytoconsistently

comparethetwotheoreticalframeworks.Bycomparingthesetwo

classificationstoeach otherand tothe cascadeframework, we

observethatFEGS-CSclassificationregardsdifferentbenefitsrather

thanecosystemservices.

Themostappropriateclassificationsystemshouldbechosen

basedonitsfit-for-purpose(Heinketal.,2015;Spangenbergand

Settele,2010),i.e.whethertheecosystemserviceanalysisintends

tofocusmoreonecologicalsystems(e.g.consideringimpactson

andpressuresfromthesocio-economicside)oronsocio-economic

systems(e.g.thebenefitsderivedbysociety).Itishowever

impor-tanttobeawareoftheexistinglimitationsofeachclassification

system.

3. Thenatureofecosystemservices:asystemsecology perspective

Inthetheoryofsystemsecology,Jørgensen(2012)proposed

threefundamentalnotionsasthebasisofecologicalsystems:1)

biomass,2)interactionand3)informationinecologicalnetworks.

In this section we argue that ecosystem services have in fact

beenconceptualizedaseither(bio)mass,informationorinteraction

(Fig.2).Weadoptthefollowingdefinitionsofthesekeyconcepts.

Biomass is biological material derived from living or dead

organisms.Thequalityaspectofbiomassisalsorelevant,e.g.

basedonproteinsynthesisandevolution.

Interactionoccursinanetworkascomponentshaveaneffect

upononeanother.Interactionsarethereforetherelationships

betweenandamongbioticandabioticcomponents,sometimes

characterizedbyatemporalpattern;suchrelationshipscanbe

bi-ormulti-directional,asopposedtotheunidirectionalcausal

effectofinformation.Inecologicalnetworks,interactionsmight

resultinemergentpropertiesofthesystem.Emerging

(5)

Fig.1. AcomparisonofCICESandFEGSclassifications.

Fig.2. Aschematicrepresentationofbiomass,information,interaction.

of thecomponents alone, because the latter do not exhibit

suchpropertiesthemselves(Edsonetal.,1981;Odum,1977).

Social behaviourin animalsisanexample,suchas‘the

abil-ityoflargepopulationsofsimple,identicalunits(forexample,

spinmagnets)toself-organize,formpatterns,storeinformation,

andreach“collectivedecisions”(ParrishandEdelstein-Keshet,

1999).Interactionsinanecologicalnetworkcanalsobedefined

asecologicalprocesses.

Informationcanbeconsideredasub-categoryofinteraction;

informationis“conveyedorrepresentedbyaparticular

arrange-mentorsequenceofthings,includingforexample,genetically

transmitted information” (Oxford Dictionary Online, 2014).

Information can influence (intentionally or not) the

forma-tion ortransformation of other patterns.Organismsinteract

withtheirenvironment notjust byexchangingmaterial and

energyastraditionallyviewedinEcology,butalsoby

exchang-inginformation (Dusenbery,1992).Theprocess ofacquiring

informationinvolvesamechanisticphaseofinformation

cap-turebyareceptor,suchasasensoryorgan,andafunctional

phaseofinformationde-codification.Thisistheabilityto

recog-nizeandprocessthatinformationas‘knowledge’(Guilfordand

Dawkins,1991).Consequently,exchangeofinformationoccurs

betweentwo(ormore)organismswhenthe‘receiver’

organ-ism(s)is abletocaptureand processtheinformation ofthe

‘sender’.Whileinformationplaysaroleinthegenerationofall

ecosystemservices(e.g.geneticinformation),inthisarticlewe

specificallydefineinformationastheonehumansreceiveand

process.

Anorganismexpressesandconveysbiomass,informationand

interactionsviaitsgenotypeand/orphenotype(Fig.2).Werefer

heretotheextendedphenotype(Dawkins,1982),whichincludes

(6)

bio-Fig.3. Thenatureofbiomass,informationandinteractioninSystemsEcology,and thehumanunderstandingandmastershipoftheseconcepts.

chemicalandphysiological processes,etc.)aswellasproperties

externaltothebody(phenology,behaviour,productsofbehaviour).

Forexample,thesilkproducedbythesilkworm(Bombyxmori)is

essentiallybiomass,derivedfromitschrysalisduringthe

meta-morphosis.Therefore,theecosystemservice(inthiscasethesilk

producedbythesilkworm)isnotadirectproductofitsbodymass,

butratheranexpressionofitsphenotype.

Based on the given definitions of biomass, information and

interaction,wecanexaminethecurrentclassificationof

ecosys-tem services.Most provisioning services are conceptualized as

(bio)masse.g.food,fiber,water(deGrootetal.,2002;MA,2005;

TEEB, 2010). Genetic resources represent an exception among

provisioningservices,sinceweconsiderthemasinformation.In

fact,the genotypeor phenotypeofan organismcancontribute

to develop drugs or to bioengineering. Regulating services are

basedoninteractions amongbiotic andabioticelementsofthe

ecosystems:forexamplewaterpurificationderivesfromthe

over-allmechanicalandchemicalcapacityofabioticsoil,soilbiotaand

vegetationtotrapand‘convert’sediments,nutrients,pollutantsor

pathogens.Culturalservicesderivefrominformation.Forexample,

we are able toreceive the information from an amenity

land-scapegiventhehumanabilitytoperceive(receptor)andappreciate

beauty(decodificationandinterpretation).Thisinformationmight

influencehumans,forexampletriggeringinspiration,a

physiolog-icalrelaxation,asenseoffulfilment,oraspiritualexperience.

Drawingfromthermo-dynamics,Jørgensen(2012,chapter13)

proposesthefollowingideas:growthofmatterislimitedbyenergy

inputandavailabilityofinorganicelements.Thegrowthof

infor-mationandinteractionsinnetworksisdrivenbyevolution(thus

linkedtodiversity)andhaspotentialtoexpand(Faithetal.,2010)

(Fig.3):informationandinteractionshaveoverallincreasedinthe

historyoflivingorganisms.Unlikematterandenergy,information

andinteractionscandisappearwithouttracewhenthematerial

support(biomass)isdestroyed.4 Thus,biomass,informationand

interactionsarecharacterizedbyincreasingcomplexityand

oper-ateatdifferenthierarchicallevels.Biodiversityisatthebasisofthis

complexity:themorediversity,themoreinformationand

interac-tions.TheverydefinitionofBiodiversity(ConventiononBiological

Diversity,1992)referstothehierarchicalorganizationofall

organ-isms aswellasthefunctional characteristicsof each level.The

processesatoneleveloforganizationdeterminetheconditionsin

thenextlevel,whilehigherlevelsregulateandcontrollowerlevels

byfeedback.Forexample,speciesdiversityinfluencesecosystem

propertiesandfunctioning,andviceversa.Ithastobenotedthat

4NotethatgeneticinformationisstoredinDNAandtransmittedacross

genera-tions.

thisisanartificialcategorization,sinceinnaturethehierarchyis

notclearlydefined,butmorefluid.

4. Refreshingtheconceptualapproachtoecosystem services

4.1. Re-definingthecascadeframeworkbasedonsystemecology

Basedonthedefinitionsabove,weaddressthechallengesin

ecosystemservicesresearchidentifiedinsection2.Wecombine

thenotionsofbiomass,informationandinteractionwith

ecosys-temservicesconceptualizationtoimprovedefinitionsandclarify

terminology.WerecallPalmerandFebria(2012)toshowthe

link-agesthroughthecascadechain:thecomponentsofanecosystem

(thatrepresentthestructure)interactwithdynamicbiophysical

processes(thatarefunctions)toproducegoodsandservicesthat

peoplerelyon.Weargue thatecosystemservicesshould

exclu-sively beconsideredas theinteractions of theecosystemsthat

producea changeinhumanwell-being (Table 2).Wetherefore

proposethatecosystemservicesarenotindividualecosystem

com-ponents or goods.In addition,while allecosystem servicesare

derived fromecologicalprocesses(orsocio-ecologicalprocesses

Mononenetal.,2016)notallprocessesproduceecosystem

ser-vices.Someprocessesmaynotbeofusetohumans,butthisdoes

notnegate theirimportance.Ecosystemfunctionandecological

processesareconsideredhereassynonyms.

Duetotheutilitarian natureofecosystem services,research

and policytend toemphasize end-use benefitsrather than the

underpinningecosystemstructuresandprocesses(see‘Traditional

understanding of the cascade framework’ in Fig. 4). We

pro-poseamodified cascadeframeworktoshiftperspectivetoward

ecosystems(see‘systemsecologyre-interpretationofthecascade

framework’inFig.4).InFig.4werepresenttheflowfroman

eco-logicalperspective.Theelementsofthecascadearenot‘equal’.Itis

thusnotenoughtoestablishacausalsequenceamongtheelements

ofthecascadebecausetheinherentcomplexityofeachstagemust

behighlighted.

Toacknowledgethiscomplexity,thehierarchicalorganization

isacrucialconceptinsystemsecology.Hierarchicallevelsinclude

atoms,cells,organs,species,populations,ecosystems,landscape,

regionsandtheecosphere(Jørgensen,2012).Eachlevelintegrates

thefunctionsofthelowerlevel.5Whenweconsiderthehierarchy

fromaverticalperspective,eachlevelisconstrainedfromtheupper

levelandfromthelowerlevel.However,thereisalsoahorizontal

perspective.Thereiscooperationamongthecomponents,which

createsnetworks,whereinteractionstakeplace.

Inmanyrepresentationsofthecascadeframeworknatural

cap-italisconsideredasexamplesof benefits(reported asassetsor

commoditiesdependingonthedegreeofhumaninterventionin

theproductionprocess).Naturalcapital,suchasfiberandfood,are

biomass.Fromavertical(hierarchical)perspectivethese

compo-nentsrepresentalowerlevel,whilepopulationsoforganismsarea

higherlevel.Populationsinturnrepresentsalowerlevelcompared

totheecosystem.Differentlevelsinteractbetweeneachother

verti-cally.Inaddition,interactionsamongbioticandabioticcomponents

existalsoathorizontallevel.Verticalandhorizontalinteractions

constitutetheservice.

Based on the hierarchicalorganization drawn from systems

ecology, it is possibleto highlight the differencebetween

ser-5Forexample:atcelllevelontheonehandtheintegratedcellprocesses

deter-minethefunctionalityoftheorgans,ontheotherhandorganscontrolthefinal biochemicalresultsofcells;atthelevelofpopulationsontheonehandthe individ-ualsandtheirinteractionsdeterminethepropertiesofthepopulations,andonthe otherhandpopulationdeterminesthelivingframeworkfortheindividuals.

(7)

Table2

Proposeddefinitionsofthecascadeframeworkterminology.

Term Definition Examplesa

Biophysicalstructureb Thesettingforecosystemcomponents(bioticandabiotic).

Thisalsorelatestotheecologicalpattern

Foresttreecover Inlandwaterbodies Processorfunction Anecologicalinteractionamongcomponentsinan

ecosystemovertime.Processesmaygenerateseveral ecosystemservices.

Netprimaryproduction Carboncycling Nutrientcycling Ecosystemservice Aflowgeneratedbytheecosystemincludingecological

interactionsandinformationwhichareusefultohuman beings.Wethereforeproposethatecosystemservicesdo notincludeecosystemcomponentsorgoods,i.e.countable as(bio)massunit.Inaddition,ecosystemservices sometimesrequirehumaninput,whichdoesnot necessarilymeanhuman-madeconstructslikelabour, industrialprocessing,benchesorfishingroads.a

Generationofmaterialfromplants Carbonsequestration

Waterpurification

Aestheticbeautyoflandscape

Good Countableasa(bio)massunit,itisavehicleforecosystem serviceenjoyment.

Woodbiomass

AmountofCO2retainedfromtheatmosphere

Amountofpollutantsretainedfromwaterbodies Peopleenjoyingoutdoorrecreationactivities Benefit Whatisgeneratedbytheserviceandleadstoachangein

humanwell-being.

Availabilityofwoodformultipleuses

Healthierairtobreath/climatechangemitigation Availabilityofcleanerwater(insteadofwaterpollutedby economicactivities)

aExampleofhumaninputincludesexistenceofahumanbeingwithhis/hersensoryandperceptionalexperiences.

b Existingliteratureoftenusesthetermecologicalstructureasasynonymforbiophysicalstructure.Wehoweverpreferthelaterterm,becauseitalsoincludesnon-vegetated

structures,suchasdunes,aquifersorRockyMountains.

viceandbenefits.Aserviceisaprocessandisdeterminedbythe

horizontalandverticalnetworkingactivity.Benefitsare

individ-ualcomponents,countableas abiomass unit,and a vehiclefor

ecosystemserviceenjoyment(Matthiesetal.,2016).Inthecurrent

cascadeframework,greatemphasisisconvergingonthebenefit,

becausethis ismostrelevanttohumans.Itisnotourintention

todownplaytheimportanceofbenefits(andthusthe‘humans’

roleinco-producingecosystemservices).We,however,arguefor

ashiftofperspectivefroma‘twodimensional’toa‘telescopic’

cas-cadeframeworkwhichemphasizestheecologicaldimensionsand

complexreality.

Theimplicationsofahierarchicalorganizationareinlinewith

the understanding of ecosystems at the basis of the cascade

framework:upperlevelschangemoreslowlythanlowerlevels.

Variationsanddisturbancesofupperlevelsmayaffectthelower

levels;theotherwayround, however, isless frequent,because

lowerleveldisturbancesaremitigatedatupperlevel(Jørgensen,

2012).6Forexample,assuminganinitialhealthystateofthe

ecosys-tem,whenasinglecomponentofthepopulationisremoved(e.g.

atreefromaforestoroneanimalfromapopulation),the

regen-erationcapacityisnotaffected,thefunctioningoftheecosystem

ismaintainedatahealthystate.Whenaclear-cuttakesplaceor

thespeciesbecomerareorextinct,thentheentirehabitatwillbe

affected(e.g.theforestwillnotbethereanymoreandthefoodchain

willchange).

Anyassessmentandvaluationintendedtoprovideasustainable

policyforthemediumandlongtermcannotignorethe

ecologi-calsystemsideofthecascade.Theexistenceofthesocialsystem

isguaranteedbytheproperfunctioningoftheecologicalsystem.

Thevalueoftheecologicalsystemisintrinsic,andtheapproachis

holistic,bio-centricandpositivist.Theecosystemservices

narra-tiveispartofthehumansystemwhosevalueisutilitarian,andits

approachreductionistandhuman-centered.

6 Amalfunctionofonelevelcanbeeliminatedbyreplacingafewcomponentson

thelowerlevel.e.gcells,organsandspeciescanbereplacedtobetterfitthenew emergentconditions.Thus,thehigherthelevelis,thelessvulnerableitbecomes.

4.2. Comparingthereneweddefinitionofecosystemservicesto

CICESclassification

Weproceedbycomparingtheconceptsintroducedfromsystem

ecologytotheCICESclassificationandthecascadeframework.In

Table3welistthecorrespondencebetweenCICESclassesandour

terminology.Thisanalysisdoesnotintendtoaddanewlevelof

complicationtotheecosystemservicesconceptualization.Rather

itaimsatclarifyingthedifferencebetweenecosystemservicesand

benefitsandtoimproveconsistencyintheclassificationof

ecosys-temservices.

AmongthelistofecosystemservicesproposedbyCICES,someof

themdonotmeettherequirementsforourdefinitionofecosystem

services(i.e.processes)(Table3).For example, allCICES

provi-sioningservicesarebenefits(i.e.biomass).Provisioningservices

includeforexamplecultivatedcrops.However,theecosystem

ser-viceisinfacttheprocesstogeneratecropsandplants,ratherthan

thecropsandplantsthemselves.Theuseofthebenefitasaproxy

fortheserviceisacommonpractice,butitmightresultindouble

counting.Thus,theresultingbenefitfrome.g.regulatingservices

shouldbearticulatedclearly,sothatoverlapswithprovisioning

servicesare known.Forexample,benefitsfrompollinationmay

overlapwithcultivatedcrops;waterflowmaintenancemay

over-lapwithwatersupplied;ormaintainingnurserypopulationsand

habitatsmayoverlapwithfood(fish)provisioning(Liqueteetal.,

2016a).Whenperformingthetrade-offassessment,wedonot

sug-gestignoringregulatingservices,butrathertocarefullyconsider

betweenprovisioningandregulatingservices.

In CICES the list of services (in particular regulating

ser-vices)sometimesincludesfunctionsandbiophysicalstructures.For

instance,‘chemicalcondition’isapropertyorcomponentofthe

sys-temandnotaprocess.Itisthuspartofthebiophysicalstructure.

Theecologicalinteractionsamongcomponents,suchas

‘hydrologi-calcycle’and‘ventilationandtranspiration’areprocessesthattake

placewithintheecosystem,andnottheflowofanindividual

ser-vicethatproducesadirectchangeinhumanwell-being.Differently

(8)

Table3

Classificationofecosystemservices(CICES)includingthenatureofecosystemservices,thecascadeframeworkstep,theSystemsEcologycategory,themostlogic/common assessmenttechniqueandtheirdegreeofcomplexity.

ListofecosystemservicesaccordingtoCICES Cascade frameworkstep

SystemsEcology category

Assessmenttechnique

Provisioning Cultivatedcrops Benefit Biomass Statisticaldatasets

Wildplants,algaeandtheiroutputs Benefit Biomass Statisticaldatasets

Wildanimalsandtheiroutputs Benefit Biomass Statisticaldatasets

Plantsandalgaefromin-situaquaculture Benefit Biomass Statisticaldatasets

Animalsfromin-situaquaculture Benefit Biomass Statisticaldatasets

Materialsfromplants,algaeandanimalsfor agriculturaluse

Benefit Biomass Statisticaldatasets

Geneticmaterialsfromallbiota Benefit Biomass/information Statisticaldatasets

Rearedanimalsandtheiroutputs Benefit Biomass Statisticaldatasets

Surfacewaterfordrinking Benefit Biomass Statisticaldatasets

Groundwaterfordrinking Benefit Biomass Statisticaldatasets

Fibersandothermaterialsfromplants,algae andanimalsfordirectuseorprocessing

Benefit Biomass Statisticaldatasets

Surfacewaterfornon-drinkingpurposes Benefit Mass Mainlystatisticaldatasets

Groundwaterfornon-drinkingpurposes Benefit Mass Mainlystatisticaldatasets

Plant-basedresources Benefit Biomass Statisticaldatasets

Animal-basedresources Benefit Biomass Mainlystatisticaldatasets

Animal-basedenergy Benefit Biomass Mainlystatisticaldatasets

Regulatingand maintenance

Bio-remediationbymicro-organisms,algae, plants,andanimals

Service Interaction Biophysicalmodelsand/or

measures Filtration/sequestration/storage/accumulation

bymicro-organisms,algae,plants,andanimals

Service Interaction Biophysicalmodelsand/or

measures Filtration/sequestration/storage/accumulation

byecosystems

Service Interaction Biophysicalmodelsand/or

measures

Mediationofsmell/noise/visualimpacts Service Interaction Biophysicalmodelsand/or measures

Dilutionbyatmosphere,freshwaterand marineecosystems

Function

Hydrologicalcycle Function

Waterflowmaintenance Service Interaction Biophysicalmodels

Massstabilizationandcontroloferosionrates Service Interaction Biophysicalmodels Globalclimateregulationbyreductionof

greenhousegasconcentrations

Service Interaction Biophysicalmodels

Microandregionalclimateregulation Service Interaction Biophysicalmodels

Bufferingandattenuationofmassflows Service Interaction Biophysicalmodelsand/or measures;Geospatialmodels

Floodprotection Service Interaction Biophysicalmodelsand/or

measures;Geospatialmodels

Stormprotection Service Interaction Biophysicalmodelsand/or

measures;Geospatialmodels

Pollinationandseeddispersal Service Interaction Biophysicalmodelsand/or

measures;Geospatialmodels Maintainingnurserypopulationsandhabitats Service Interaction Biophysicalmodelsand/or

measures;Complexindicators integratedwithgeospatialmodels

Pestanddiseasecontrol Service Interaction Biophysicalmodelsand/or

measures;Geospatialmodels Ventilationandtranspiration Function

Weatheringprocesses Function

Decompositionandfixingprocesses Function

Chemicalconditionoffreshwaters Biophysicalstructure Chemicalconditionofsaltwaters Biophysicalstructure Cultural Experientialuseofplants,animalsand

land-/seascapesindifferentenvironmental settings

Service Information Geospatialmodels/complex

indicators Physicaluseofland-/seascapesindifferent

environmentalsettings

Service Information Geospatialmodels/complex

indicators

Aesthetic Service Information Geospatialmodels/complex

indicators

Education Service Information Complexindicators

Heritage,cultural Service Information Complexindicators

Entertainment Service Information Complexindicators

Scientific Service Information Complexindicators

Symbolic Service Information Complexindicators

Sacredand/orreligious Service Information Complexindicators

Existence Value

Bequest Value

Theattemptistodevelopthesameexamplesthroughoutthe‘terminologychain’toshowthattheyareindeeddifferentstageofthesameprocess.E.g.todifferentiatethe carboncyclingasfunctionfromcarbonsequestrationasservicefromCO2tonswill(ifever)bethetaskofthebiophysicalmodel,i.e.onlyoneofthosestageswillbemapped andassessed,itwilldependonthetechniqueusedtoassess(modelorindicatororstatistics).

(9)

Fig.4. Froma2Dtoatelescopiccascadeframework(a)Traditionalunderstandingofthecascadeframeworkwithemphasisonend-usebenefits;(b)SystemsEcology re-interpretationofthecascadeframework,withemphasisontheunderpinningcomplexityoftheecologicalsystem.

service7:theyarewhatallowstheserviceflowtobegenerated(cf.

Mononenetal.,2016).InCICESexistenceandbequestvaluesare

listedasservices:whenattemptingamonetaryvaluation,existence

andbequestnon-usevaluesareconceptsthatfacilitatethechoice

ofthevaluationtechniquetobeadopted,buttheyarenot

them-selvesecosystemservices.Systemsecologytheorycanthusprovide

guidancefor ecosystemserviceassessments: Table3 presentsa

newclassificationapproachfor ecosystemservicesassessments.

InTable3weattempttotrackcorrespondencewiththedifferent

typologiesofmodelingtechniques.Byreferringtothesystems

ecol-ogycategoriesofbiomass,interactionandinformationwecould

statehowcomplexthelevelofmodelingshouldbe.

Whenecosystemservicesareidentifiedasbiomass,

measure-mentwillrequirethecollectionofenvironmentalstatistics and

inventories.Thisisthecaseformanyprovisioningservices,where

7 ThisisthereasonwhyinTable3whatcorrespondsto‘Biophysicalstructure’and

‘Function’isnotclassifiedintermsofSystemsEcologycategory,andAssessment techniquearethusreportedasgreycells.

data is usually extracted fromagriculture and forestry

statisti-caldatabasesandinventories,orfrommarkettransactions,rather

thanbiophysicalprocesses.Simpleandavailableindicatorscanbe

used,suchasland-useandland-coverdata,biodiversity

monitor-ingmaps,ornationalforestinventories.Inthiscase,ratherthan

assessingtheservice itself,thebenefit is usedasproxy forthe

ecosystemservice.Thisismostrelevanttoprovisioningservices

andthecurrentpracticeofassessment.

Whenecosystemservicesareidentifiedasinteraction,then

eco-logicalmodelingormonitoringisneeded.Tocorrectlyassessthe

service,thenatureoftheprocessshouldbeunderstood,described

analyticallyandmeasured.Thisisthecaseforsomeregulating

ser-vices(i.e.allthoseservicesthatdirectlyinvolvebiogeochemical

cycles)whereprocess-basedmodeling wouldbetterfitthe

pur-pose,becausethemodelshouldbeabletorepresent/replicatethe

ecosystemfunctioning(e.g.Liqueteetal.,2016b).Thereare,

how-ever,casesinwhichspatialmodelingandstatisticalmodelingcould

servetheassessmentpurpose.Inspatialmodelingalgorithmsbased

onspatialfeaturesareusedand/ordifferentindicatorsarelinked

(10)

exam-pleZulianetal.,2013).Instatisticalmodelsecosystemservicesare

estimatedbasedonknownexplanatoryvariablessuchassoils,

cli-mate,etc.,usingastatisticalrelation.Thiscanbethecaseforthose

servicesin whichthemorphologicalfeatures doplayan

impor-tantrole(e.g.stormandfloodprotection,soilerosionprotection)

orthepresenceofspeciesdeterminesthe‘amount’oftheservice

(e.g.maintainingnurserypopulationsandhabitats).

When theecosystem services are identified as information,

theassessment techniquemight requirecalculationof spatially

explicit, complex indicators. Information does not require

bio-physicalmodeling,butspatialmodelingcouldbeused.Allcultural

services involve information, and they are generally assessed

throughquestionnairesandmentalmodels.Insomecases(e.g.

out-doorrecreation)thespatialcomponentcouldplayanimportant

roleintermsofdistance;inothercasesitmayjustbeamatterof

linkingdifferentindicatorstomakethemspatiallyexplicit.

5. Discussionandconclusion:advantagesofapplyingthe revisedconceptualframework

Thetiminginclarifyingandoperationalizeecosystemservices

classificationandmeasurementshasneverbeenmorecritical.As

ecosystemservicesbecomeintegratedintopolicyinstruments,the

needtostandardizedefinitionsisessentialformonitoringand

com-paringpolicyoutcomesfollowingdifferentscalesofinvestment

(Bennett etal.,2015;Guerryet al.,2015).Our intentionin this

articleistoprovidesomeclaritytoaddressissuesrelatedto

ecosys-temservicesdefinitionandconceptualizationhighlightedbyothers

(Boyd and Banzaf,2007; Fisherand Turner,2008; Fisheret al., 2009;Wallace,2007).Drawingfromsystemsecology,weadopt

thekeyconceptsofbiomass,interactionandinformation,including

theideaofdifferentlevelsofcomplexityamongthese(Jørgensen,

2012).Inthisstudy,wehaveusedourunderstandingfromsystems

ecologytoapplyittotheecosystemservicesconceptualization.We

believethattheconceptsfromsystemecologycansupportamore

consistentdefinitionofecosystemservicesandotherelementsof

thecascadeframeworkdevelopedbyHaines-YoungandPotschin

(2010).

Thecascadeframeworkandrelatedecosystemservices

defini-tionisoftenapproachedwithanemphasisonservicesandbenefits.

Severalauthors have identified the need todelineate between

directandindirectecosystemservices(intermediateandfinal)for

thesake of economic valuation and natural capital accounting,

where only benefitsfromfinal services canbe aggregated(e.g.

Fisheret al.,2009; Heinket al.,2015).Thisapproach mitigates

therisk ofdoublecounting,butitmightbeoverlyreductionist.

Furthermore,distinctionsbetweenecosystemcapacityandactual

supplyoruseoftheecosystemserviceshasbeenproposed(Albert

etal.,2015;Burkhardetal.,2014;Villamagnaetal.,2013).By

con-sideringcomplexity andtheverticalandhorizontalhierarchical

organizationofecosystems,weproposearevisitedinterpretation

ofthecascade frameworkasthree-dimensional.Moreemphasis

isattributedtothecorrectfunctioningofthecomplexsystemthat

generatesindividualecosystemservicesandassociatedbenefitsfor

humans.

Tofurtherdeveloptheconceptofecosystemserviceswe

pro-posethatecosystem servicesarenot thebenefits,butgenerate

benefitsasanoutput,oftenexpressedintermsofbiomass.Aservice

impliesthatthereisexchangeofinformationand/orinteraction.

Goods are thus interpreted as material vehicles for ecosystem

service enjoyment. We also propose that ecosystem functions

arenot services,but ecologicalprocessesthat act atecosystem

leveland generateflowsofservices.Functionsshouldbe

main-tained toensure a sustainable flow of services. It is important

toacknowledgethatfunctionsshouldbeconceivedwithamore

holisticandbio-centricapproachcomparedtoecosystemservices,

which canbe individuallyidentified and assessed.We also call

forgreaterattentiontowardecosystemsciencesforunderstanding

long-termecosystemintegrityandecosystemfunctioning,andthus

theresilienceofanecosystemagainsthumandrivendisturbances,

inordertosecurethevitalecosystemservicesandsustainableuse

ofnaturalresources(Currie,2011;Mülleretal.,2010).Theconcepts

ofresiliencescience(resilience,adaptabilityandvulnerability)in

relationtoecosystemservicesrepresentanimportantareafor

fur-therstudies(Brand,2008;Mülleretal.,2010).Forsuchpurposes,

ourclarificationcouldbeadvantageous.

Adoptingamorecomprehensiveviewonthedefinitionsinthe

cascadeframeworkgivesincreasedrigortocriticalecosystem

ser-vicesissuessuchasthetechniquestomap andassess services.

For example,EUmember statesneedconsistentdefinitionsand

measurementsforeasycomparisonofecosystemservicesstatus,

gainorlossacrosscountries.Followingtheadoptionofthe

analyt-icalframework,includingaconceptualmodelandtwotypologies,

fortheEU,Maesetal.(2016)presentedafirsttestofthe

frame-workandanassessmentofexistingindicatorstomap(orquantify)

ecosystemservicesatthenationalscale(seealsoMaesetal.,2014).

Theserecentstudies,aswellasthatbyEgohetal.(2012),showthat

nationalstatisticspresentthebestdataoptionsformapping

pro-visioningecosystemservicessuchasagriculturalproduction.This

approach,wherebenefitsgenerated(biomass)areusedasaproxy

oftheservice,ishighlysimplified.Theunitofassessmentisthe

benefitandnottheservice.Choosingaproxysuchasbiomassas

representativeofacertainserviceiscommonpractice,whereasa

modelthatsimulatesthegenerationofthegood/resource,which

involvestheinteractionfunctioning,isoftenleftout.Wesuggest

thatthisapproachisnotfullyconsistentwiththetheoretical

frame-work.However,it isacceptablein thiscase becausebiomassis

conditionedbyecologicalstructureandfunctioning.

Wehopetheinsightintosystemsecologyprovidedinthisarticle

willoffersomegroundforreflection,fuelingfurtheradvancement

oftheclassification,conceptualization andoperationalizationof

ecosystem services.Considering thegrowinginterest innatural

capitalaccounting,8itisimportanttoestablishaconsistent

con-ceptualgroundtohighlightthedifferencebetweenintermediate

functioningwithintheecosystem(function),finalflows(services)

and assets(benefits)and theirrespectivedegreeofcomplexity.

Giventheneedforeconomicvaluationofecosystemservices,it

isimportanttochoosetheappropriatevaluationtechniqueswhich

explicitlytargettherealobjectofvaluationandthusavoidto

con-sider thesingle,simple assetbeingequal tothemorecomplex

servicethatgeneratesthatasset.

References

Albert,C.,Galler,C.,Hermes,J.,Neuendorf,F.,vonHaaren,C.,Lovett,A.,2015. Applyingecosystemservicesindicatorsinlandscapeplanningand

management:theES-in-Planningframework.Ecol.Indic.60,100–113,http:// dx.doi.org/10.1016/j.ecolind.2015.03.029.

Bateman,I.J.,Mace,G.M.,Fezzi,C.,Atkinson,G.,Turner,K.,2011.Economicanalysis forecosystemserviceassessments.Environ.Resour.Econ.48,177–218.

Bennett,E.M.,Cramer,W.,Begossi,A.,Cundill,G.,Díaz,S.,Egoh,B.N.,

Geijzendorffer,I.R.,Krug,C.B.,Lavorel,S.,Lazos,E.,Lebel,L.,Martín-López,B., Meyfroidt,P.,Mooney,H.A.,Nel,J.L.,Pascual,U.,Payet,K.,Harguindeguy,N.P., Peterson,G.D.,Prieur-Richard,A.H.,Reyers,B.,Roebeling,P.,Seppelt,R.,Solan, M.,Tschakert,P.,Tscharntke,T.,Turner,B.L.,Verburg,P.H.,Viglizzo,E.F.,White, P.C.L.,Woodward,G.,2015.Linkingbiodiversity,ecosystemservices,and humanwell-being:threechallengesfordesigningresearchforsustainability. Curr.Opin.Environ.Sustain.14,76–85.

8Ref.http://unstats.un.org/unsd/envaccounting/eeaproject/default.asp, http:// ec.europa.eu/environment/nature/capitalaccounting/indexen.htm, http://www. naturalcapitalcommittee.org/,and http://www.wavespartnership.org/en/natural-capital-accounting.

(11)

Boerema,A.,Rebelo,A.J.,Bodi,M.B.,Esler,K.J.,Meire,P.,2016.Areecosystem servicesadequatelyquantified?J.Appl.Ecol., http://dx.doi.org/10.1111/1365-2664.12696.

Boyd,J.,Banzhaf,S.,2007.Whatareecosystemservices?Theneedforstandardized environmentalaccountingunits.Ecol.Econ.63,616–626.

Braat,L.C.,deGroot,R.,2012.Theecosystemservicesagenda:bridgingtheworlds ofnaturalscienceandeconomicsconservationanddevelopment,andpublic andprivatepolicy.Ecosyst.Serv.1,4–15.

Brand,F.,2008.Criticalnaturalcapitalrevisited:ecologicalresilienceand sustainabledevelopment.Ecol.Econ.68,605–612,http://dx.doi.org/10.1016/j. ecolecon.2008.09.013.

Burkhard,B.,Kandziora,M.,Hou,Y.,Müller,F.,2014.Ecosystemservicepotentials, flowsanddemands-conceptsforspatiallocalisation,indicationand quantification.Landsc34,1–32,http://dx.doi.org/10.3097/LO.201434. ConventiononBiologicalDiversity,1992.UnitedNations.https://www.cbd.int/

doc/legal/cbd-en.pdf.

ConventiononBiologicalDiversity,1998.Reportontheworkingofecosystem approach.UNEPconferenceofthepartiestotheConventiononBiological Diversity.

ConventiononBiologicalDiversity,2010.ConventiononBiologicalDiversity.COP DecisionX/2.

Costanza,R.,Kubiszewski,I.,2012.Theauthorshipstructureofecosystemservices asatransdisciplinaryfieldofscholarship.Ecosyst.Serv.1,16–25.

Currie,W.S.,2011.TansleyreviewUnitsofnatureorprocessesacrossscales?The ecosystemconceptatage75.N.Phytol.,21–34.

Dawkins,R.,1982.TheExtendedPhenotype.OxfordUniversityPressInc.,New York.

deGroot,RudolfS.,Wilson,MatthewA.,Boumans,RoelofM.J.,2002.Atypologyfor theclassification,descriptionandvaluationofecosystemfunctions,goodsand services.Ecol.Econ.41(3),393–408.

Dusenbery,B.,1992.SensoryEcology:HowOrganismsAcquireandRespondto Information.

Edson,M.M.,Foin,T.C.,Knapp,C.M.,1981.Emergentpropertiesandecological research.Am.Nat.118,593–596.

Egoh,B.,Drakou,E.G.,Dunbar,M.B.,Maes,J.,Willemen,L.,2012.Indicatorsfor MappingEcosystemServices:AReview.PublicationsOfficeoftheEuropean Union,Luxembourg.

Faith,D.P.,Magallón,S.,Hendry,A.P.,Conti,E.,Yahara,T.,Donoghue,M.J.,2010.

Evosystemservices:anevolutionaryperspectiveonthelinksbetween biodiversityandhumanwell-being.Curr.Opin.Environ.Sustain.2(1–2), 66–74.

Fisher,B.,Turner,R.K.,2008.Ecosystemservices:classificationforvaluation.Biol. Conserv.141,1167–1169.

Fisher,B.,Turner,R.K.,Morling,P.,2009.Definingandclassifyingecosystem servicesfordecisionmaking.Ecol.Econ.68,643–653.

Guerry,A.D.,Polasky,S.,Lubchenco,J.,Chaplin-Kramer,R.,Daily,G.C.,Griffin,R., Ruckelshaus,M.,Bateman,I.J.,Duraiappah,A.,Elmqvist,T.,Feldman,M.W., Folke,C.,Hoekstra,J.,Kareiva,P.M.,Keeler,B.L.,Li,S.,McKenzie,E.,Ouyang,Z., Reyers,B.,Ricketts,T.H.,Rockström,J.,Tallis,H.,Vira,B.,2015.Naturalcapital andecosystemservicesinformingdecisions:frompromisetopractice.PNAS 112,7348–7355.

Guilford,T.,Dawkins,M.S.,1991.Receiverpsychologyandtheevolutionofanimal signals.Anim.Behav.42,1–14.

Haines-Young,R.,Potschin,M.,2009.MethodologiesforDefiningandAssessing EcosystemServices.FinalReport.JNCC.

Haines-Young,R.,Potschin,M.,2010.Thelinksbetweenbiodiversity,ecosystem servicesandhumanwell-being.In:Raffaelli,D.,Frid,C.(Eds.),Ecosystem Ecology:ANewSynthesis,BESEcologicalReviewsSeries.CUP,Cambridge.

Heink,U.,Hauck,J.,Jax,K.,Sukopp,U.,2015.Requirementsfortheselectionof ecosystemserviceindicators—thecaseofMAESindicators.Ecol.Indic.61, 18–26.

Jørgensen,S.,2012.IntroductiontoSystemsEcology.CRCPress.

Jax,K.,2005.Functionandfunctioninginecology:whatdoesitmean?Oikos111, 641–648.

Kremen,C.,2005.Managingecosystemservices:whatdoweneedtoknowabout theirecology?Ecol.Lett.8,468–479.

Landers,D.H.,Nahlik,A.M.,2013.Finalecosystemgoodsandservicesclassification system(FEGS-CS),inAnonymousEPAUnitedStatesEnvironmentalProtection Agency.ReportNumberEPA/600/R-13/ORD-004914.

Liquete,C.,Cid,N.,Lanzanova,D.,Grizzetti,B.,Reynaud,A.,2016a.Perspectiveson thelinkbetweenecosystemservicesandbiodiversity:theassessmentofthe nurseryfunction.Ecol.Indic.63,249–257.

Liquete,C.,Piroddi,C.,Macías,D.,Druon,J.-N.,Zulian,G.,2016b.Ecosystem servicessustainabilityintheMediterraneanSea:assessmentofstatusand trendsusingmultiplemodellingapproaches.Sci.Rep.6,34162.

Müller,F.,Burkhard,B.,2012.Theindicatorsideofecosystemservices.Ecosyst. Serv.1,26–30.

Müller,F.,Burkhard,B.,Kroll,F.,2010.Resilience,integrityandecosystem dynamics:bridgingecosystemtheoryandmanagement.In:Otto,J.-C.,Dikau, R.(Eds.),Landform—Structure,Evolution,ProcessControl,LectureNotesin EarthSciences115.Springer-Verlag,Berlin,Heidelberg,pp.221–242,http://dx. doi.org/10.1007/978-3-540-75761-0.

MA,2005.MillenniumEcosystemAssessment.WorldResourcesInstitute, Washington,DC.

Maes,J.,Teller,A.,Erhard,M.,Murphy,P.,Paracchini,M.,Barredo,J.,Grizzetti,B., Cardoso,A.,Somma,F.,Petersen,J.,2014.MappingandAssessmentof EcosystemsandTheirServices—IndicatorsforEcosystemAssessmentsUnder Action5oftheEUBiodiversityStrategyto2020.EuropeanCommission,ISBN, pp.978–992.

Maes,J.,Liquete,C.,Teller,A.,Erhard,M.,Paracchini,M.L.,Barredo,J.I.,Grizzetti,B., Cardoso,A.,Somma,F.,Petersen,J.,2016.Anindicatorframeworkforassessing ecosystemservicesinsupportoftheEUBiodiversityStrategyto2020.Ecosyst. Serv.17,14–23.

Matthies,B.,D’Amato,D.,Berghäll,S.,Ekholm,T.,Hoen,H.,Holopainen,J., Korhonen,J.,Lähtinen,J.,Mattila,O.,Toppinen,A.,Valsta,L.,Wang,L., Yousefpour,R.,2016.AnEcosystemService-DominantLogic?Integratingthe ecosystemserviceapproachandtheservice-dominantlogic.J.Clean.Prod.124, 51–64.

Mononen,L.,Auvinen,A.P.,Ahokumpu,A.L.,Rönka,M.,Aarras,N.,Tolvanen,G., Kamppinen,M.,Viirret,E.,Kumpula,T.,Vihervaara,P.,2016.National ecosystemserviceindicators:measuresofsocial-ecologicalsustainability.Ecol. Indic.1,26–37.

Odum,E.P.,1977.Theemergenceofecologyasanewintegrativediscipline. Science195,1289–1293.

OxfordDictionaryonline,2014.www.oxforddictionaries.com.

Palmer,M.A.,Febria,C.M.,2012.Theheartbeatofecosystems.Science(80-)336, 1393–1394,http://dx.doi.org/10.1126/science.1223250.

Parrish,J.K.,Edelstein-Keshet,L.,1999.Complexity,pattern,andevolutionary trade-offsinanimalaggregation.Science284,99–101.

Potschin,M.,Haines-Young,R.,2016.Definingandmeasuringecosystemservices. In:Potschin,M.,Haines-Young,R.,Fish,R.,Turner,R.K.(Eds.),Routledge HandbookofEcosystemServices.Routledge,Taylor&FrancisGroup,London; NewYork,p.2016.

Potschin,M.,Haines-Young,R.,Fish,R.,Turner,R.K.,2016.RoutledgeHandbookof EcosystemServices.Routledge,Taylor&FrancisGroup,London;NewYork.

Rhodes,C.,2015.Nationalecosystemservicesclassificationsystem.http://unstats. un.org/unsd/envaccounting/seeaRev/meeting2013/EG13-BG-13.pdf. Seppelt,R.,Dormann,C.F.,Eppink,F.V.,Lautenbach,S.,Schmidt,S.,2011.A

quantitativereviewofecosystemservicestudies:approaches,shortcomings andtheroadahead.J.Appl.Ecol.48,630–636.

Spangenberg,J.H.,vonHaaren,C.,Settele,J.,2014.Theecosystemservicecascade: Furtherdevelopingthemetaphor.Integratingsocietalprocessesto

accommodatesocialprocessesandplanning,andthecaseofbioenergy.Ecol. Econ.104,22–32.

Spangenberg,J.H.,Settele,J.,2010.Preciselyincorrect?Monetisingthevalueof ecosystemservices.Ecol.Compl.7,327–337.

Staub,C.,Ott,W.,Heusi,F.,Klingler,G.,Jenny,A.,Hacki,M.,Hauser,A.,2011.

IndicatorsforEcosystemGoodsandServices:Framework,Methodologyand RecommendationsforaWelfare-relatedEnvironmentalReporting EnvironmentalStudiesNo.1102.FederalOfficefortheEnvironment,Bern, Switzerland.

TEEB,2010.TheEconomicsofEcosystemsandBiodiversity.Ecologicaland EconomicFoundations,RoutledgeAbingdon,UK(410p.).

UKNEA,2011.UKNationalEcosystemAssessment:TechnicalReport. UNEP-WCMC.

Villamagna,A.M.,Angermeier,P.L.,Bennett,E.M.,2013.Capacity,pressure, demand,andflow:aconceptualframeworkforanalyzingecosystemservice provisionanddelivery.Ecol.Compl.15,114–121,http://dx.doi.org/10.1016/j. ecocom.2013.07.004.

Wallace,K.J.,2007.Classificationofecosystemservices:problemsandsolutions. Biol.Cons.139,235–246.

Zulian,G.,Maes,J.,Paracchini,M.L.,2013.Linkinglandcoverdataandcropyields formappingandassessmentofpollinationservicesineurope.Land2(3), 472–492,http://dx.doi.org/10.3390/land2030472.

Riferimenti

Documenti correlati

2 - The Nemunas River Delta, in Lithuania, provides many ecosystem services to the people of the area, including food, fuel, transportation, climate regulation,

The assessment of coherent processing requires a knowledge of the spectrum of the target and clutter in the CUT, as well as their amplitude statistics. There are many

The reduction in keys benzenoids emission (e.g., benzaldehyde, generally involved in indirect defenses), upon TPS9 and TPS12 silencing could be explained through the regulation of

Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the

Iposmia-Anosmia: lieve transitoria (rinite allergica, infezione virale); intermittente (patologia della mucosa: polipi nasali, rinosinusite infettiva o raramente malattie

Whilst this performance is inferior to a full custom LC solution, the array-based design exceeds significantly the performance levels obtainable from a ring oscillator

Yet, carbon stocks are crucial both for climate mitigation, by compensating carbon emissions and tackling climate change trends, as well as for restoring soil functions,