• Non ci sono risultati.

Measurements of t t ̄ spin correlations and top-quark polarization using dilepton final states in pp collisions at s =7TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Measurements of t t ̄ spin correlations and top-quark polarization using dilepton final states in pp collisions at s =7TeV"

Copied!
16
0
0

Testo completo

(1)

Measurements of

t¯t Spin Correlations and Top-Quark Polarization

Using Dilepton Final States in

pp Collisions at

p

ffiffi

s

¼ 7 TeV

S. Chatrchyan et al.* (CMS Collaboration)

(Received 15 November 2013; published 5 May 2014)

Spin correlations and polarization in the top quark–antiquark system are measured using dilepton final states produced in pp collisions at the LHC at pffiffiffis¼ 7 TeV. The data correspond to an integrated luminosity of5.0 fb−1collected with the CMS detector. The measurements are performed using events with two oppositely charged leptons (electrons or muons), a significant imbalance in transverse momentum, and two or more jets, where at least one of the jets is identified as originating from a b quark. The spin correlations and polarization are measured through asymmetries in angular distributions of the two selected leptons, unfolded to the parton level. All measurements are found to be in agreement with predictions of the standard model.

DOI:10.1103/PhysRevLett.112.182001 PACS numbers: 14.65.Ha, 13.85.-t, 13.88.+e

Measurements of spin correlations and polarization in the top quark–antiquark (t¯t) system provide direct access to the properties of the bare top quark, as well as a test of the validity of perturbative quantum chromodynamics in the t¯t production process [1]. Such measurements are of particular interest given the anomalies in the t¯t forward-backward production asymmetry observed at the Tevatron

[2,3]. The top-quark lifetime has been measured as

3.29þ0.90

−0.63×10−25s[4], much shorter than the spin

decor-relation time scale of mt=Λ2QCD≈ 10−21s[5], where mtis

the top-quark mass, measured as173.20  0.87 GeV [6], andΛQCD is the QCD scale parameter. Consequently, the information about the spin of the top quark at production is transferred directly to its decay products and can be accessed from their angular distributions. In the standard model (SM), top quarks are produced with a small amount of polarization arising from electroweak corrections to the QCD-dominated production process. For models beyond the SM, couplings of the top quark to new particles can alter both the polarization of the top quark and the amount of spin correlation in the t¯t system [7–9].

At the Large Hadron Collider (LHC), top quarks are produced abundantly, mainly in pairs. For low t¯t invariant masses, the production is dominated by the fusion of pairs of gluons with the same helicities, resulting in the creation of top-quark pairs with antiparallel spins. At larger invari-ant masses, the domininvari-ant production is via the fusion of gluons with opposite helicities, resulting in t¯t pairs with parallel spins. These have the same configuration as t¯t events produced via q ¯q annihilation[5].

In the decay t¯t → lþνbl−¯ν ¯b, in the laboratory frame, the difference in azimuthal angles of the charged leptons (Δϕlþl−) is sensitive to t¯t spin correlations and can be

measured precisely without reconstructing the full event kinematics[5]. The top-quark spin can also be studied using θ⋆

l, which is the angle of a charged lepton in the rest frame of

its parent top quark or antiquark, measured in the helicity frame (i.e., relative to the direction of the parent quark in the t¯t center-of-momentum frame). The CDF, D0, and ATLAS spin correlation and polarization measurements used tem-plate fits to angular distributions and observed results consistent with SM expectations[10–15]. In this analysis, the measurements are made using angular asymmetry variables unfolded to the parton level, allowing direct comparisons between the data and theoretical predictions. The top-quark polarization P in the helicity basis is given by P ¼ 2AP, where the asymmetry variable APis defined as

AP ¼

N½cosðθ⋆lÞ > 0 − N½cosðθ⋆lÞ < 0

N½cosðθ⋆lÞ > 0 þ N½cosðθ⋆lÞ < 0.

Here the number of events N is counted using the θ⋆l measurements of both positively and negatively charged leptons (θ⋆lþ andθ⋆l−), assuming CP invariance.

For t¯t spin correlations, the variable

AΔϕ¼NðΔϕl

þl− > π=2Þ − NðΔϕlþl− < π=2Þ

NðΔϕlþl− > π=2Þ þ NðΔϕlþl− < π=2Þ

provides excellent discrimination between correlated and uncorrelated t and ¯t spins, while the variable

Ac1c2¼

Nðc1c2> 0Þ − Nðc1c2< 0Þ

Nðc1c2> 0Þ þ Nðc1c2< 0Þ;

where c1¼ cosðθ⋆lþÞ and c2¼ cosðθ⋆l−Þ, provides a direct

measure of the spin correlation coefficient Chel using the

* Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published articles title, journal citation, and DOI.

(2)

helicity angles of the two leptons in each event: Chel¼

−4Ac1c2 [16].

The results presented in this Letter are based on data that correspond to an integrated luminosity of 5.0 fb−1 of proton-proton (pp) collisions atpffiffiffis¼ 7 TeV, provided by the LHC and recorded by the Compact Muon Solenoid (CMS) detector in 2011.

The central feature of the CMS apparatus is a super-conducting solenoid, 13 m in length and 6 m in diameter, which provides an axial magnetic field of 3.8 T. The bore of the solenoid is equipped with a variety of particle detection systems. Charged-particle trajectories are measured with silicon pixel and strip trackers covering the pseudorapidity regionjηj < 2.5, where η ¼ − ln½tan θ=2, with θ the polar angle of the trajectory of the particle with respect to the counterclockwise-beam direction. A crystal electromag-netic calorimeter and a brass and scintillator sampling hadron calorimeter surround the inner tracking volume and provide high-resolution measurements of energy used to reconstruct electrons, photons, and particle jets. The calorimetry covers the regionjηj < 5.0, thereby providing reliable measurements of momentum imbalance in the plane transverse to the beams. Muons are measured in gas-ionization detectors embedded in the steel flux return yoke of the solenoid. A trigger system selects the most interesting collisions for analysis. A more detailed descrip-tion of the CMS detector is given in Ref. [17].

For this analysis, pp collisions are selected using triggers that require the presence of at least two leptons with large transverse momentum (pT). Electron candidates [18]are reconstructed by associating tracks from the inner tracker with energy clusters in the electromagnetic calo-rimeter. Muon candidates [19] are reconstructed by com-bining information from the outer muon detector with the tracks reconstructed by the inner tracker. Additional lepton identification criteria are applied for both lepton flavors in order to reject hadronic jets that are misidentified as leptons

[18,19]. Both electrons and muons are required to be

isolated from other activity in the event. This is achieved by imposing a maximum value of 0.15 on the ratio of the scalar sum of supplementary track pT and calorimeter

transverse energy deposits within a cone offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ΔR ≡ ðΔηÞ2þ ðΔϕÞ2

p

< 0.3 around the lepton candidate direc-tion, to the transverse momentum of the candidate [20].

Event selection is applied to reject events other than those from t¯t production in the dilepton final state. Events are required to have exactly two opposite-sign, isolated leptons (eþe−, eμ, orμþμ−). The electrons (muons) are required to have pT> 20 GeV and to lie within jηj < 2.5

(2.4). The reconstructed lepton trajectories must be con-sistent with a common interaction vertex. Events with an eþe−orμþμ−pair with invariant mass in the Z-boson mass “window” (between 76 and 106 GeV) or below 20 GeV are removed to suppress Z=γ⋆and heavy-flavor resonance production.

The jets and the momentum imbalance in each event are reconstructed using a particle-flow technique [21]. The anti-kTclustering algorithm[22]with a distance parameter

of 0.5 is used for jet clustering. Corrections are applied to the energies of the reconstructed jets, based on the results of simulations and studies using exclusive dijet andγ þ jets data [23]. At least two jets with pT> 30 GeV and

jηj < 2.5, separated by ΔR > 0.4 from leptons passing the analysis selection, are required in each event. At least one of these jets must be consistent with the decay of heavy-flavor hadrons (a “b jet”), identified by the com-bined secondary vertex b-tagging algorithm [24]. The algorithm is based on the reconstruction of a secondary decay vertex, and gives a b-tagging efficiency of about 70% (depending on jet pT andη) with misidentification

prob-abilities of approximately 1.5% and 20% for jets originat-ing from light partons (u, d, and s quarks, and gluons) and c quarks, respectively. The missing transverse energy EmissT

is defined as the magnitude of the momentum imbalance, which is the negative of the vector sum of the momenta of all reconstructed particles in the plane transverse to the beam. The Emiss

T in the event is required to exceed 40 GeV

in events with same-flavor leptons, to further suppress the Z=γ⋆þ jets background.

Simulated t¯t events are generated usingMC@NLO 3.41 [25], with mt¼ 172.5 GeV, and showered and fragmented

using HERWIG6.520[26]. Simulations with different values of mtand the factorization and renormalization scales are

produced in order to evaluate the associated systematic uncertainties.

The dilepton t¯t selection classifies events with τ leptons as signal only when the τ decays leptonically. Other t¯t topologies, such as the leptonþ jets and all-hadronic decays, are classified as background. The background samples of W þ jets, Z=γ⋆þ jets, diboson, and single-top-quark events are generated usingMADGRAPH[27]orPOWHEG [28], and showered and fragmented usingPYTHIA6.4.22[29].

Next-to-leading order (NLO) cross sections are used for all back-ground samples.

For both signal and background events, multiple pp interactions in the same or nearby bunch crossings (pileup) are simulated using PYTHIA and superimposed on the hard

collision. Events are then simulated using a GEANT4-based

model[30]of the CMS detector, and finally reconstructed and analyzed with the same software used to process collision data. The trigger efficiency for dilepton events that pass the analysis selection criteria is determined using a tag-and-probe method as in Ref. [31]. For the eþe−, eμ, and μþμchannels this gives p

T- andη-dependent efficiencies

of approximately 100%, 95%, and 90%, respectively[32]. These efficiencies are used to weight the simulated events to account for the trigger requirement. The lepton selection efficiencies (reconstruction, identification, and isolation) are consistent between data and the simulation [31,33]. To account for the difference between the b-tagging

(3)

efficiencies in data and the simulation[24], data-to-simulation scale factors are applied for each jet in the simulated events. CMS studies[34] have shown that the top-quark pT distribution in data is softer than in the NLO

simu-lation. Reweighting the top-quark pTin the simulation to

match the data improves the modeling of the lepton and jet pTdistributions, and is applied to theMC@NLOt¯t sample

used in this Letter. Because of the dependence of the spin correlations on the t¯t invariant mass, and thus the top-quark pT, the pT reweighting increases the fraction of

top-quark pairs with antiparallel spins in the simulation. The simulation is used only for the unfolding, which is primarily sensitive to changes in acceptance, where the effect of the pT reweighting largely cancels in the ratio.

Still, the top-quark pT spectrum modeling is one of the

largest sources of uncertainty.

After all weights are applied, a total of 740 background events are expected. There are 9824 events observed in the data, and the remaining 9084 events are assumed to be signal (dileptonic t¯t). The average acceptance for signal events is 18%, and describes the fraction of all produced signal events that are expected to be selected.

While theΔϕlþl− measurement relies purely on leptonic information, the measurements based on θ⋆l require the reconstruction of the entire t¯t system. Each event has two neutrinos, and there is also ambiguity in combining b jets with leptons, resulting in up to eight possible solutions for the t¯t system. The analytical matrix weighting technique

[20] is used to find the most probable solution, assuming mt¼ 172.5 GeV. In events with only one b-tagged jet, the

second b jet is assumed to be the untagged jet with the largest pT. Solutions are assigned a weight, based on

the probability of observing such a configuration, and the t¯t kinematic quantities are taken from the solution with the largest weight. To improve the efficiency of the technique in the presence of mismeasured jets, the solution for each event is integrated over parametrized jet and EmissT resolution

functions. Despite this step,≈14% of the events still provide no analytic solutions, for both the data and the simulation. These events are not used in the measurement ofθ⋆l, which is accounted for as an additional event selection requirement. The backgrounds from Z=γ⋆þ jets production and events with a jet misidentified as a lepton are estimated using both control data samples and simulation. The results agree within their uncertainties. The Z=γ⋆þ jets background outside the Z-boson mass window is estimated using the ratio of simulated events inside the window to the number outside the window to scale the observed event yield inside the window [20]. The contribution in this region from other processes, where the two leptons do not come from a Z boson, is estimated from eμ data and subtracted prior to performing the scaling. The background with at least one misidentified lepton (nondileptonic t¯t, W þ jets, and multijet events) is estimated from control samples in data using a parametrization of the probability for a jet to be misidentified

as a lepton, determined using events collected with jet triggers of different energy thresholds. For both electrons and muons, an associated“loose” lepton candidate is defined based on relaxed isolation requirements [35]. The lepton misidentification rates are parametrized as a function of lepton pT and η, and are applied as weights to events

containing exactly one lepton candidate and one or more loose lepton candidates.

The simulation is chosen as the method to predict the background event yields and shapes, with systematic uncertainties based on comparisons with the estimates using data. The backgrounds from single-top-quark and diboson events are estimated from simulation, found in agreement with data in recent CMS measurements[36,37]. The measured distributions are distorted from the true underlying distributions by the limited acceptance of the detector and the finite resolution of the measurements. An unfolding procedure is applied to correct the data for these effects, which yields the parton-level distributions of the variables under study, where the full covariance matrix is used to evaluate the uncertainties and bin-to-bin correlations. The background-subtracted measured distribution ~b is related to the underlying parton-level distribution~x by the matrix equation ~b ¼ SA~x, where A is a diagonal matrix describing the acceptance in each bin of the measured distribution and S is a smearing matrix describing the migration of events between bins due to the reconstruction techniques and finite detector resolution. The A and S matrices are modeled using theMC@NLOt¯t simulation,

and the results are available in graphical form in the Supplemental Material [38].

A regularized unfolding algorithm is employed using the singular value decomposition method [39]. The effects of large statistical fluctuations in the algorithm are greatly reduced by introducing a regularization term in the unfolding procedure. The unfolding procedure is validated using pseu-doexperiments by verifying the pull distributions and linearity for the observables under study.

Various systematic uncertainties affect the measurements. These are mainly related to the performance of the detector and the modeling of the signal and background processes. The uncertainty due to the jet energy scale corrections affects the analytical matrix weighting technique t¯t sol-utions as well as the event selection. It is estimated by varying the jet energy scale of jets within their uncertainties (typically 1%–2%)[23], with propagation to the Emiss

T . The

uncertainty in the lepton energy scale, which affects mainly the lepton pT distributions, is estimated by varying the

energy scale of electrons by 0.5% (the uncertainty in muon energies is negligible), as estimated from comparisons between data and simulated Z-boson events.

The uncertainty in the background subtraction is ob-tained by varying the normalization of each background component by 50% for single-top-quark and diboson

(4)

production and by 100% for the backgrounds from Z=γ⋆þ jets production and from misidentified leptons.

The t¯t modeling and simulation uncertainties are evalu-ated by rederiving the A and S matrices using simulevalu-ated events with variations in the parameter of interest: the factorization and renormalization scales are together varied up and down by a factor of 2; the top-quark mass is varied by1 GeV around mt¼ 172.5 GeV; the parton distribu-tion funcdistribu-tions are varied using the PDF4LHC prescription [40]; the jet energy resolution is varied by 5%–10%,

depending on the η of the jet [23]; the simulated pileup multiplicity distribution is changed within its uncertainty; and the scale factors between data and the simulation for the b-tagging efficiency, trigger efficiency, and lepton selection efficiency are varied by their uncertainties. In the simulated t¯t events, the τ spin is not propagated correctly to its decay products. This affects the angular distributions of the electrons and muons coming from τ decays. The corresponding systematic effect is estimated by reweighting the τ decay distributions to reproduce the SM expectations. A 100% systematic uncertainty is applied to the top-quark pT reweighting, since the origin of the

effect is not yet fully understood, and the resulting system-atic uncertainty is quoted separately.

Finally, the results of the unfolding linearity tests are used to estimate the systematic uncertainty in the unfolding procedure. The contributions to the total systematic uncer-tainty (from their sum in quadrature) for each asymmetry variable are presented in Table I.

The background-subtracted and unfolded distributions for Δϕlþl−, cosðθl⋆þÞ cosðθ⋆l−Þ, and cosðθ⋆lÞ are shown in

Fig.1, normalized to unit area so that they represent parton-level differential cross sections in each variable. The data are compared to the predictions of theMC@NLOt¯t sample

(radians) -l + l φ ∆ 0 0.5 1 1.5 2 2.5 3 )- l + l φ∆ /d(σ dσ 1/ 0.2 0.25 0.3 0.35 0.4 0.45 0.5 (Data-bkg.) unfolded Syst. uncertainty MC@NLO parton level ) t m = µ (SM, Si G. -Bernreuther & Z. W. ) t m = µ (uncorrelated, Si G. -Bernreuther & Z. W. = 7 TeV s at -1 CMS, 5.0 fb ) * -l θ ) cos( *+ l θ cos( -1 -0.5 0 0.5 1 ))*- l θ ) cos(*+ l θ /d(cos(σ dσ 1/ 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 (Data-bkg.) unfolded Syst. uncertainty MC@NLO parton level ) t m = µ (SM, Si G. -Bernreuther & Z. W. ) t m = µ (uncorrelated, Si G. -Bernreuther & Z. W. = 7 TeV s at -1 CMS, 5.0 fb ) * l θ cos( -1 -0.5 0 0.5 1 ))*l θ /d(cos(σ dσ 1/ 0.35 0.4 0.45 0.5 0.55 0.6 0.65 ) unfolded kg. b -Data ( Syst. uncertainty MC@NLO parton level = 7 TeV

s at

-1

CMS, 5.0 fb

FIG. 1 (color online). Background-subtracted and unfolded differential cross sections for Δϕlþl−, cosðθ⋆lþÞ cosðθ⋆l−Þ, and

cosðθ⋆lÞ. The error bars represent statistical uncertainties only, while the systematic uncertainty band is represented by the hatched area. The bin contents are correlated due to the unfolding. TABLE I. Systematic uncertainties in the background-subtracted

and unfolded values of AΔϕ, Ac1c2, and AP.

Asymmetry variable AΔϕ Ac1c2 AP

Jet energy scale 0.002 0.012 0.009

Lepton energy scale 0.001 0.001 0.001

Background 0.003 0.001 0.006

Fact. and renorm. scales 0.001 0.010 0.004

Top-quark mass 0.001 0.003 0.005

Parton distribution functions 0.002 0.002 0.001 Jet energy resolution <0.001 <0.001 <0.001

Pileup 0.002 0.002 0.004

b-tagging scale factor <0.001 <0.001 0.001 Lepton selection <0.001 <0.001 <0.001

τ decay polarization 0.001 0.002 0.001

Unfolding 0.004 0.020 0.002

Total systematic uncertainty 0.006 0.025 0.014 Top pT reweighting uncertainty 0.012 0.010 0.008

(5)

and to NLO calculations for t¯t production with and without spin correlations[16,41].

The asymmetries determined from the unfolded distri-butions are also parton-level quantities, and are measured to be AΔϕ¼0.1130.0100.0060.012, Ac1c2¼−0.021

0.0230.0250.010, and AP¼0.0050.0130.014

0.008, where the uncertainties are statistical, systematic, and from top-quark pT reweighting, respectively. These

results are compared to the simulated and theoretical[16,41]

values in Table II. The AΔϕ result indicates the presence

of t¯t spin correlations, and strongly disfavors the uncorre-lated case.

In summary, this Letter presents measurements related to t¯t spin correlations and the top-quark polarization in the t¯t dilepton final states (eþe−, eμ, and μþμ−), using asymmetry distributions unfolded to the parton level. The results are in agreement with the standard model predic-tions for all three measured variables.

We would like to thank Professor W. Bernreuther and Professor Z.-G. Si for calculating the theoretical predictions of Fig. 1 and Table II for this Letter. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staff at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna);

MON, RosAtom, RAS, and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.).

[1] A. Quadt,Eur. Phys. J. C 48, 835 (2006).

[2] V. M. Abazov et al. (D0 Collaboration),Phys. Rev. Lett. 100, 142002 (2008).

[3] T. Aaltonen et al. (CDF Collaboration),Phys. Rev. D 87, 092002 (2013).

[4] V. M. Abazov et al. (D0 Collaboration),Phys. Rev. D 85, 091104 (2012).

[5] G. Mahlon and S. J. Parke,Phys. Rev. D 81, 074024 (2010). [6] T. Aaltonen et al. (CDF and D0 Collaborations),Phys. Rev. D 86, 092003 (2012); T. Aaltonen et al. updated in arXiv:1305.3929.

[7] D. Krohn, T. Liu, J. Shelton, and L.-T. Wang,Phys. Rev. D 84, 074034 (2011).

[8] S. Fajfer, J. F. Kamenik, and B. Melic,J. High Energy Phys. 08 (2012) 114.

[9] J. A. Aguilar-Saavedra and M. Perez-Victoria, J. Phys. Conf. Ser. 447, 012015 (2013).

[10] T. Aaltonen et al. (CDF Collaboration),Phys. Rev. D 83, 031104 (2011).

[11] V. M. Abazov et al. (D0 Collaboration),Phys. Rev. Lett. 107, 032001 (2011).

[12] V. M. Abazov et al. (D0 Collaboration),Phys. Lett. B 702, 16 (2011).

[13] ATLAS Collaboration,Phys. Rev. Lett. 108, 212001 (2012). [14] V. M. Abazov et al. (D0 Collaboration),Phys. Rev. D 87,

011103 (2013).

[15] ATLAS Collaboration,Phys. Rev. Lett. 111, 232002 (2013). [16] W. Bernreuther and Z.-G. Si,Phys. Lett. B 725, 115 (2013). [17] CMS Collaboration,JINST 3, S08004 (2008).

[18] CMS Collaboration, Report No. CMS-PAS-EGM-10-004, http://cdsweb.cern.ch/record/1299116.

[19] CMS Collaboration,JINST 7, P10002 (2012).

[20] CMS Collaboration,J. High Energy Phys. 07 (2011) 049. [21] CMS Collaboration, Report No. CMS-PAS-PFT-10-002,

http://cdsweb.cern.ch/record/1279341.

[22] M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy Phys. 04 (2008) 063.

[23] CMS Collaboration,JINST 6, P11002 (2011). [24] CMS Collaboration,JINST 8, P04013 (2013).

TABLE II. Parton-level asymmetries. The uncertainties in the unfolded results are statistical, systematic, and the additional uncertainty from the top-quark pT reweighting. The uncertainties in the simulated results are statistical only, while the uncertainties in the NLO

calculations for correlated and uncorrelated t¯t spins come from scale variations up and down by a factor of 2. The prediction for Ac1c2is

exactly zero in the absence of spin correlations by construction.

Asymmetry Data (unfolded) MC@TNLO NLO (SM, correlated) NLO (uncorrelated)

AΔϕ 0.113  0.010  0.006  0.012 0.110  0.001 0.115þ0.014−0.016 0.210þ0.013−0.008

Ac1c2 −0.021  0.023  0.025  0.010 −0.078  0.001 −0.078  0.006 0

(6)

[25] S. Frixione and B. R. Webber, J. High Energy Phys. 06 (2002) 029.

[26] G. Corcella, I. G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M. H. Seymour, and B. R. Webber,J. High Energy Phys. 01 (2001) 010.

[27] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer,J. High Energy Phys. 06 (2011) 128.

[28] S. Frixione, P. Nason, and C. Oleari,J. High Energy Phys. 11 (2007) 070.

[29] T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026.

[30] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003). [31] CMS Collaboration,J. High Energy Phys. 10 (2011) 007. [32] CMS Collaboration,Phys. Lett. B 716, 103 (2012).

[33] CMS Collaboration,J. High Energy Phys. 11 (2012) 067. [34] CMS Collaboration,Eur. Phys. J. C 73, 2339 (2013). [35] CMS Collaboration,J. High Energy Phys. 06 (2011) 077. [36] CMS Collaboration,J. High Energy Phys. 12 (2012) 035. [37] CMS Collaboration,Eur. Phys. J. C 73, 2283 (2013). [38] See Supplemental Material athttp://link.aps.org/supplemental/

10.1103/PhysRevLett.112.182001for graphical depictions of the matrices used in the unfolding.

[39] A. Hoecker and V. Kartvelishvili,Nucl. Instrum. Methods Phys. Res., Sect. A 372, 469 (1996).

[40] M. Botje, J. Butterworth, A. Cooper-Sarkar, A. de Roeck, J. Feltesse, S. Forte, A. Glazov, J. Huston, R. McNulty, T. Sjöstrand, and R. Thorne,arXiv:1101.0538.

[41] W. Bernreuther and Z.-G. Si, Nucl. Phys. B837, 90 (2010).

S. Chatrchyan,1 V. Khachatryan,1 A. M. Sirunyan,1 A. Tumasyan,1 W. Adam,2 T. Bergauer,2 M. Dragicevic,2 J. Erö,2 C. Fabjan,2,bM. Friedl,2R. Frühwirth,2,bV. M. Ghete,2C. Hartl,2N. Hörmann,2J. Hrubec,2M. Jeitler,2,bW. Kiesenhofer,2

V. Knünz,2 M. Krammer,2,bI. Krätschmer,2 D. Liko,2 I. Mikulec,2D. Rabady,2,c B. Rahbaran,2H. Rohringer,2 R. Schöfbeck,2 J. Strauss,2 A. Taurok,2 W. Treberer-Treberspurg,2 W. Waltenberger,2 C.-E. Wulz,2,b V. Mossolov,3 N. Shumeiko,3J. Suarez Gonzalez,3S. Alderweireldt,4M. Bansal,4S. Bansal,4T. Cornelis,4E. A. De Wolf,4X. Janssen,4 A. Knutsson,4S. Luyckx,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4H. Van Haevermaet,4P. Van Mechelen,4 N. Van Remortel,4 A. Van Spilbeeck,4 F. Blekman,5 S. Blyweert,5 J. D’Hondt,5 N. Heracleous,5 A. Kalogeropoulos,5

J. Keaveney,5 T. J. Kim,5S. Lowette,5 M. Maes,5 A. Olbrechts,5 D. Strom,5 S. Tavernier,5W. Van Doninck,5 P. Van Mulders,5G. P. Van Onsem,5I. Villella,5C. Caillol,6B. Clerbaux,6G. De Lentdecker,6L. Favart,6A. P. R. Gay,6 T. Hreus,6 A. Léonard,6 P. E. Marage,6 A. Mohammadi,6 L. Perniè,6 T. Reis,6 T. Seva,6 L. Thomas,6 C. Vander Velde,6 P. Vanlaer,6J. Wang,6V. Adler,7K. Beernaert,7L. Benucci,7A. Cimmino,7S. Costantini,7S. Dildick,7G. Garcia,7B. Klein,7 J. Lellouch,7 J. Mccartin,7A. A. Ocampo Rios,7 D. Ryckbosch,7 M. Sigamani,7 N. Strobbe,7 F. Thyssen,7M. Tytgat,7

S. Walsh,7 E. Yazgan,7N. Zaganidis,7 S. Basegmez,8 C. Beluffi,8,dG. Bruno,8 R. Castello,8 A. Caudron,8 L. Ceard,8 G. G. Da Silveira,8C. Delaere,8T. du Pree,8D. Favart,8L. Forthomme,8A. Giammanco,8,eJ. Hollar,8P. Jez,8M. Komm,8 V. Lemaitre,8 J. Liao,8 O. Militaru,8 C. Nuttens,8 D. Pagano,8 A. Pin,8 K. Piotrzkowski,8A. Popov,8,f L. Quertenmont,8 M. Selvaggi,8M. Vidal Marono,8J. M. Vizan Garcia,8N. Beliy,9T. Caebergs,9E. Daubie,9G. H. Hammad,9G. A. Alves,10

M. Correa Martins Junior,10T. Martins,10 M. E. Pol,10M. H. G. Souza,10W. L. Aldá Júnior,11W. Carvalho,11 J. Chinellato,11,gA. Custódio,11E. M. Da Costa,11D. De Jesus Damiao,11C. De Oliveira Martins,11S. Fonseca De Souza,11 H. Malbouisson,11M. Malek,11D. Matos Figueiredo,11L. Mundim,11H. Nogima,11W. L. Prado Da Silva,11J. Santaolalla,11

A. Santoro,11 A. Sznajder,11E. J. Tonelli Manganote,11,gA. Vilela Pereira,11C. A. Bernardes,12bF. A. Dias,12a,h T. R. Fernandez Perez Tomei,12aE. M. Gregores,12bC. Lagana,12aP. G. Mercadante,12bS. F. Novaes,12aSandra S. Padula,12a

V. Genchev,13,cP. Iaydjiev,13,c A. Marinov,13S. Piperov,13M. Rodozov,13G. Sultanov,13M. Vutova,13A. Dimitrov,14 I. Glushkov,14R. Hadjiiska,14V. Kozhuharov,14L. Litov,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15 H. S. Chen,15M. Chen,15R. Du,15C. H. Jiang,15D. Liang,15S. Liang,15X. Meng,15R. Plestina,15,iJ. Tao,15X. Wang,15 Z. Wang,15C. Asawatangtrakuldee,16Y. Ban,16Y. Guo,16Q. Li,16W. Li,16S. Liu,16Y. Mao,16S. J. Qian,16D. Wang,16

L. Zhang,16 W. Zou,16C. Avila,17C. A. Carrillo Montoya,17L. F. Chaparro Sierra,17C. Florez,17J. P. Gomez,17 B. Gomez Moreno,17J. C. Sanabria,17 N. Godinovic,18D. Lelas,18 D. Polic,18I. Puljak,18Z. Antunovic,19 M. Kovac,19 V. Brigljevic,20K. Kadija,20J. Luetic,20D. Mekterovic,20S. Morovic,20L. Tikvica,20A. Attikis,21G. Mavromanolakis,21 J. Mousa,21C. Nicolaou,21F. Ptochos,21P. A. Razis,21 M. Finger,22M. Finger Jr.,22A. A. Abdelalim,23,jY. Assran,23,k S. Elgammal,23,jA. Ellithi Kamel,23,lM. A. Mahmoud,23,m A. Radi,23,n,o M. Kadastik,24M. Müntel,24M. Murumaa,24 M. Raidal,24L. Rebane,24A. Tiko,24P. Eerola,25G. Fedi,25M. Voutilainen,25J. Härkönen,26V. Karimäki,26R. Kinnunen,26

M. J. Kortelainen,26T. Lampén,26K. Lassila-Perini,26S. Lehti,26T. Lindén,26P. Luukka,26T. Mäenpää,26T. Peltola,26 E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26L. Wendland,26T. Tuuva,27M. Besancon,28F. Couderc,28M. Dejardin,28

(7)

D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28S. Ganjour,28A. Givernaud,28P. Gras,28G. Hamel de Monchenault,28 P. Jarry,28E. Locci,28 J. Malcles,28A. Nayak,28J. Rander,28A. Rosowsky,28 M. Titov,28S. Baffioni,29 F. Beaudette,29

P. Busson,29C. Charlot,29N. Daci,29T. Dahms,29M. Dalchenko,29L. Dobrzynski,29A. Florent,29

R. Granier de Cassagnac,29M. Haguenauer,29P. Miné,29C. Mironov,29I. N. Naranjo,29M. Nguyen,29C. Ochando,29 P. Paganini,29D. Sabes,29 R. Salerno,29Y. Sirois,29C. Veelken,29Y. Yilmaz,29A. Zabi,29J.-L. Agram,30,p J. Andrea,30

D. Bloch,30J.-M. Brom,30E. C. Chabert,30C. Collard,30E. Conte,30,pF. Drouhin,30,pJ.-C. Fontaine,30,p D. Gelé,30 U. Goerlach,30C. Goetzmann,30P. Juillot,30A.-C. Le Bihan,30P. Van Hove,30S. Gadrat,31S. Beauceron,32N. Beaupere,32 G. Boudoul,32S. Brochet,32J. Chasserat,32R. Chierici,32D. Contardo,32P. Depasse,32H. El Mamouni,32J. Fan,32J. Fay,32 S. Gascon,32M. Gouzevitch,32B. Ille,32T. Kurca,32M. Lethuillier,32L. Mirabito,32S. Perries,32J. D. Ruiz Alvarez,32,q L. Sgandurra,32V. Sordini,32M. Vander Donckt,32P. Verdier,32S. Viret,32H. Xiao,32Z. Tsamalaidze,33,rC. Autermann,34 S. Beranek,34M. Bontenackels,34B. Calpas,34M. Edelhoff,34 L. Feld,34O. Hindrichs,34K. Klein,34A. Ostapchuk,34 A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34D. Sprenger,34H. Weber,34B. Wittmer,34V. Zhukov,34,fM. Ata,35 J. Caudron,35E. Dietz-Laursonn,35D. Duchardt,35M. Erdmann,35R. Fischer,35A. Güth,35T. Hebbeker,35C. Heidemann,35 K. Hoepfner,35D. Klingebiel,35S. Knutzen,35P. Kreuzer,35M. Merschmeyer,35A. Meyer,35M. Olschewski,35K. Padeken,35 P. Papacz,35H. Reithler,35S. A. Schmitz,35L. Sonnenschein,35D. Teyssier,35S. Thüer,35 M. Weber,35 V. Cherepanov,36 Y. Erdogan,36G. Flügge,36H. Geenen,36M. Geisler,36W. Haj Ahmad,36F. Hoehle,36B. Kargoll,36T. Kress,36Y. Kuessel,36 J. Lingemann,36,c A. Nowack,36I. M. Nugent,36L. Perchalla,36O. Pooth,36A. Stahl,36I. Asin,37N. Bartosik,37J. Behr,37 W. Behrenhoff,37U. Behrens,37A. J. Bell,37 M. Bergholz,37,s A. Bethani,37K. Borras,37A. Burgmeier,37A. Cakir,37 L. Calligaris,37A. Campbell,37S. Choudhury,37F. Costanza,37C. Diez Pardos,37S. Dooling,37T. Dorland,37G. Eckerlin,37 D. Eckstein,37T. Eichhorn,37G. Flucke,37A. Geiser,37A. Grebenyuk,37P. Gunnellini,37S. Habib,37J. Hauk,37G. Hellwig,37 M. Hempel,37D. Horton,37H. Jung,37M. Kasemann,37P. Katsas,37C. Kleinwort,37M. Krämer,37D. Krücker,37W. Lange,37 J. Leonard,37K. Lipka,37W. Lohmann,37,sB. Lutz,37R. Mankel,37I. Marfin,37I.-A. Melzer-Pellmann,37A. B. Meyer,37 J. Mnich,37A. Mussgiller,37S. Naumann-Emme,37O. Novgorodova,37F. Nowak,37H. Perrey,37A. Petrukhin,37D. Pitzl,37 R. Placakyte,37A. Raspereza,37P. M. Ribeiro Cipriano,37C. Riedl,37E. Ron,37 M. Ö. Sahin,37J. Salfeld-Nebgen,37 R. Schmidt,37,sT. Schoerner-Sadenius,37M. Schröder,37M. Stein,37A. D. R. Vargas Trevino,37R. Walsh,37C. Wissing,37 M. Aldaya Martin,38V. Blobel,38H. Enderle,38J. Erfle,38E. Garutti,38M. Görner,38M. Gosselink,38J. Haller,38K. Heine,38 R. S. Höing,38H. Kirschenmann,38R. Klanner,38R. Kogler,38J. Lange,38I. Marchesini,38J. Ott,38T. Peiffer,38N. Pietsch,38 D. Rathjens,38C. Sander,38H. Schettler,38P. Schleper,38E. Schlieckau,38A. Schmidt,38M. Seidel,38J. Sibille,38,tV. Sola,38 H. Stadie,38G. Steinbrück,38D. Troendle,38E. Usai,38L. Vanelderen,38C. Barth,39C. Baus,39 J. Berger,39C. Böser,39

E. Butz,39T. Chwalek,39W. De Boer,39A. Descroix,39A. Dierlamm,39 M. Feindt,39M. Guthoff,39,cF. Hartmann,39,c T. Hauth,39,c H. Held,39K. H. Hoffmann,39U. Husemann,39 I. Katkov,39,fA. Kornmayer,39,c E. Kuznetsova,39 P. Lobelle Pardo,39 D. Martschei,39M. U. Mozer,39Th. Müller,39M. Niegel,39A. Nürnberg,39O. Oberst,39 G. Quast,39

K. Rabbertz,39 F. Ratnikov,39S. Röcker,39 F.-P. Schilling,39G. Schott,39H. J. Simonis,39F. M. Stober,39R. Ulrich,39 J. Wagner-Kuhr,39S. Wayand,39T. Weiler,39 R. Wolf,39M. Zeise,39G. Anagnostou,40G. Daskalakis,40T. Geralis,40 S. Kesisoglou,40A. Kyriakis,40D. Loukas,40A. Markou,40C. Markou,40E. Ntomari,40I. Topsis-giotis,40L. Gouskos,41 A. Panagiotou,41N. Saoulidou,41E. Stiliaris,41X. Aslanoglou,42I. Evangelou,42G. Flouris,42C. Foudas,42P. Kokkas,42

N. Manthos,42 I. Papadopoulos,42 E. Paradas,42G. Bencze,43C. Hajdu,43 P. Hidas,43 D. Horvath,43,uF. Sikler,43 V. Veszpremi,43G. Vesztergombi,43,vA. J. Zsigmond,43N. Beni,44S. Czellar,44 J. Molnar,44J. Palinkas,44 Z. Szillasi,44

J. Karancsi,45 P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45S. K. Swain,46,w S. B. Beri,47 V. Bhatnagar,47N. Dhingra,47 R. Gupta,47M. Kaur,47M. Z. Mehta,47M. Mittal,47N. Nishu,47A. Sharma,47J. B. Singh,47Ashok Kumar,48Arun Kumar,48 S. Ahuja,48A. Bhardwaj,48B. C. Choudhary,48 A. Kumar,48S. Malhotra,48M. Naimuddin,48K. Ranjan,48P. Saxena,48 V. Sharma,48R. K. Shivpuri,48S. Banerjee,49 S. Bhattacharya,49K. Chatterjee,49S. Dutta,49B. Gomber,49 Sa. Jain,49 Sh. Jain,49R. Khurana,49A. Modak,49S. Mukherjee,49D. Roy,49S. Sarkar,49M. Sharan,49A. P. Singh,49A. Abdulsalam,50 D. Dutta,50S. Kailas,50V. Kumar,50A. K. Mohanty,50,cL. M. Pant,50P. Shukla,50A. Topkar,50T. Aziz,51R. M. Chatterjee,51 S. Ganguly,51S. Ghosh,51M. Guchait,51,xA. Gurtu,51,yG. Kole,51S. Kumar,51M. Maity,51,zG. Majumder,51K. Mazumdar,51

G. B. Mohanty,51B. Parida,51K. Sudhakar,51 N. Wickramage,51,aaS. Banerjee,52S. Dugad,52 H. Arfaei,53 H. Bakhshiansohi,53H. Behnamian,53 S. M. Etesami,53,bbA. Fahim,53,cc A. Jafari,53M. Khakzad,53

M. Mohammadi Najafabadi,53M. Naseri,53S. Paktinat Mehdiabadi,53B. Safarzadeh,53,dd M. Zeinali,53M. Grunewald,54 M. Abbrescia,55a,55bL. Barbone,55a,55bC. Calabria,55a,55bS. S. Chhibra,55a,55bA. Colaleo,55a D. Creanza,55a,55c

(8)

N. De Filippis,55a,55c M. De Palma,55a,55b L. Fiore,55a G. Iaselli,55a,55c G. Maggi,55a,55cM. Maggi,55a B. Marangelli,55a,55b S. My,55a,55c S. Nuzzo,55a,55bN. Pacifico,55a A. Pompili,55a,55b G. Pugliese,55a,55c R. Radogna,55a,55b G. Selvaggi,55a,55b

L. Silvestris,55a G. Singh,55a,55b R. Venditti,55a,55bP. Verwilligen,55a G. Zito,55a G. Abbiendi,56a A. C. Benvenuti,56a D. Bonacorsi,56a,56bS. Braibant-Giacomelli,56a,56bL. Brigliadori,56a,56b R. Campanini,56a,56bP. Capiluppi,56a,56b A. Castro,56a,56bF. R. Cavallo,56aG. Codispoti,56a,56bM. Cuffiani,56a,56bG. M. Dallavalle,56aF. Fabbri,56aA. Fanfani,56a,56b D. Fasanella,56a,56bP. Giacomelli,56aC. Grandi,56aL. Guiducci,56a,56bS. Marcellini,56aG. Masetti,56aM. Meneghelli,56a,56b A. Montanari,56aF. L. Navarria,56a,56bF. Odorici,56aA. Perrotta,56aF. Primavera,56a,56bA. M. Rossi,56a,56bT. Rovelli,56a,56b G. P. Siroli,56a,56bN. Tosi,56a,56b R. Travaglini,56a,56bS. Albergo,57a,57bG. Cappello,57a M. Chiorboli,57a,57b S. Costa,57a,57b

F. Giordano,57a,c R. Potenza,57a,57bA. Tricomi,57a,57b C. Tuve,57a,57bG. Barbagli,58a V. Ciulli,58a,58b C. Civinini,58a R. D’Alessandro,58a,58bE. Focardi,58a,58b E. Gallo,58a S. Gonzi,58a,58bV. Gori,58a,58bP. Lenzi,58a,58bM. Meschini,58a S. Paoletti,58aG. Sguazzoni,58aA. Tropiano,58a,58bL. Benussi,59S. Bianco,59F. Fabbri,59D. Piccolo,59P. Fabbricatore,60a

R. Ferretti,60a,60bF. Ferro,60aM. Lo Vetere,60a,60b R. Musenich,60a E. Robutti,60a S. Tosi,60a,60bA. Benaglia,61a M. E. Dinardo,61a,61b S. Fiorendi,61a,61b,c S. Gennai,61a A. Ghezzi,61a,61bP. Govoni,61a,61b M. T. Lucchini,61a,61b,c S. Malvezzi,61aR. A. Manzoni,61a,61b,c A. Martelli,61a,61b,cD. Menasce,61a L. Moroni,61aM. Paganoni,61a,61bD. Pedrini,61a

S. Ragazzi,61a,61bN. Redaelli,61aT. Tabarelli de Fatis,61a,61bS. Buontempo,62a N. Cavallo,62a,62c F. Fabozzi,62a,62c A. O. M. Iorio,62a,62bL. Lista,62aS. Meola,62a,62d,cM. Merola,62aP. Paolucci,62a,cP. Azzi,63aN. Bacchetta,63aM. Bellato,63a

D. Bisello,63a,63b A. Branca,63a,63bR. Carlin,63a,63bP. Checchia,63a T. Dorigo,63a U. Dosselli,63a M. Galanti,63a,63b,c F. Gasparini,63a,63b U. Gasparini,63a,63bP. Giubilato,63a,63b A. Gozzelino,63a K. Kanishchev,63a,63c S. Lacaprara,63a I. Lazzizzera,63a,63cM. Margoni,63a,63b A. T. Meneguzzo,63a,63bJ. Pazzini,63a,63b M. Pegoraro,63a N. Pozzobon,63a,63b P. Ronchese,63a,63bF. Simonetto,63a,63b E. Torassa,63a M. Tosi,63a,63b A. Triossi,63a P. Zotto,63a,63bA. Zucchetta,63a,63b G. Zumerle,63a,63b M. Gabusi,64a,64bS. P. Ratti,64a,64bC. Riccardi,64a,64bP. Vitulo,64a,64bM. Biasini,65a,65b G. M. Bilei,65a

L. Fanò,65a,65b P. Lariccia,65a,65bG. Mantovani,65a,65bM. Menichelli,65a A. Nappi,65a,65b,a F. Romeo,65a,65b A. Saha,65a A. Santocchia,65a,65bA. Spiezia,65a,65bK. Androsov,66a,eeP. Azzurri,66a G. Bagliesi,66a J. Bernardini,66a T. Boccali,66a

G. Broccolo,66a,66c R. Castaldi,66aM. A. Ciocci,66a,ee R. Dell’Orso,66aF. Fiori,66a,66c L. Foà,66a,66c A. Giassi,66a M. T. Grippo,66a,eeA. Kraan,66a F. Ligabue,66a,66cT. Lomtadze,66a L. Martini,66a,66b A. Messineo,66a,66b C. S. Moon,66a,ff

F. Palla,66a A. Rizzi,66a,66b A. Savoy-Navarro,66a,gg A. T. Serban,66a P. Spagnolo,66aP. Squillacioti,66a,eeR. Tenchini,66a G. Tonelli,66a,66bA. Venturi,66a P. G. Verdini,66a C. Vernieri,66a,66c L. Barone,67a,67bF. Cavallari,67a D. Del Re,67a,67b

M. Diemoz,67a M. Grassi,67a,67bC. Jorda,67a E. Longo,67a,67b F. Margaroli,67a,67bP. Meridiani,67aF. Micheli,67a,67b S. Nourbakhsh,67a,67bG. Organtini,67a,67bR. Paramatti,67aS. Rahatlou,67a,67bC. Rovelli,67a L. Soffi,67a,67bP. Traczyk,67a,67b N. Amapane,68a,68b R. Arcidiacono,68a,68c S. Argiro,68a,68bM. Arneodo,68a,68c R. Bellan,68a,68bC. Biino,68a N. Cartiglia,68a

S. Casasso,68a,68bM. Costa,68a,68bA. Degano,68a,68b N. Demaria,68a C. Mariotti,68a S. Maselli,68a E. Migliore,68a,68b V. Monaco,68a,68bM. Musich,68aM. M. Obertino,68a,68cG. Ortona,68a,68bL. Pacher,68a,68bN. Pastrone,68aM. Pelliccioni,68a,c

A. Potenza,68a,68bA. Romero,68a,68b M. Ruspa,68a,68c R. Sacchi,68a,68bA. Solano,68a,68bA. Staiano,68a U. Tamponi,68a S. Belforte,69a V. Candelise,69a,69bM. Casarsa,69a F. Cossutti,69a,c G. Della Ricca,69a,69bB. Gobbo,69a C. La Licata,69a,69b M. Marone,69a,69bD. Montanino,69a,69bA. Penzo,69aA. Schizzi,69a,69bT. Umer,69a,69bA. Zanetti,69aS. Chang,70T. Y. Kim,70 S. K. Nam,70D. H. Kim,71G. N. Kim,71J. E. Kim,71D. J. Kong,71S. Lee,71Y. D. Oh,71H. Park,71D. C. Son,71J. Y. Kim,72 Zero J. Kim,72S. Song,72S. Choi,73D. Gyun,73B. Hong,73M. Jo,73H. Kim,73Y. Kim,73K. S. Lee,73S. K. Park,73Y. Roh,73 M. Choi,74J. H. Kim,74C. Park,74I. C. Park,74S. Park,74G. Ryu,74Y. Choi,75Y. K. Choi,75J. Goh,75M. S. Kim,75 E. Kwon,75B. Lee,75J. Lee,75S. Lee,75H. Seo,75I. Yu,75A. Juodagalvis,76H. Castilla-Valdez,77E. De La Cruz-Burelo,77

I. Heredia-de La Cruz,77,hh R. Lopez-Fernandez,77 J. Martínez-Ortega,77A. Sanchez-Hernandez,77

L. M. Villasenor-Cendejas,77S. Carrillo Moreno,78F. Vazquez Valencia,78H. A. Salazar Ibarguen,79E. Casimiro Linares,80 A. Morelos Pineda,80 D. Krofcheck,81P. H. Butler,82 R. Doesburg,82S. Reucroft,82 H. Silverwood,82M. Ahmad,83 M. I. Asghar,83J. Butt,83H. R. Hoorani,83S. Khalid,83W. A. Khan,83T. Khurshid,83S. Qazi,83M. A. Shah,83M. Shoaib,83

H. Bialkowska,84M. Bluj,84,ii B. Boimska,84T. Frueboes,84M. Górski,84M. Kazana,84K. Nawrocki,84 K. Romanowska-Rybinska,84M. Szleper,84G. Wrochna,84P. Zalewski,84G. Brona,85K. Bunkowski,85M. Cwiok,85 W. Dominik,85K. Doroba,85A. Kalinowski,85M. Konecki,85J. Krolikowski,85M. Misiura,85W. Wolszczak,85P. Bargassa,86 C. Beirão Da Cruz E Silva,86P. Faccioli,86P. G. Ferreira Parracho,86M. Gallinaro,86F. Nguyen,86J. Rodrigues Antunes,86

J. Seixas,86,c J. Varela,86P. Vischia,86S. Afanasiev,87P. Bunin,87M. Gavrilenko,87I. Golutvin,87I. Gorbunov,87 A. Kamenev,87V. Karjavin,87V. Konoplyanikov,87A. Lanev,87A. Malakhov,87V. Matveev,87P. Moisenz,87V. Palichik,87

(9)

V. Perelygin,87S. Shmatov,87N. Skatchkov,87V. Smirnov,87A. Zarubin,87V. Golovtsov,88 Y. Ivanov,88V. Kim,88 P. Levchenko,88V. Murzin,88V. Oreshkin,88I. Smirnov,88V. Sulimov,88L. Uvarov,88S. Vavilov,88A. Vorobyev,88

An. Vorobyev,88Yu. Andreev,89 A. Dermenev,89S. Gninenko,89N. Golubev,89M. Kirsanov,89N. Krasnikov,89 A. Pashenkov,89D. Tlisov,89A. Toropin,89V. Epshteyn,90V. Gavrilov,90N. Lychkovskaya,90V. Popov,90G. Safronov,90

S. Semenov,90A. Spiridonov,90V. Stolin,90E. Vlasov,90 A. Zhokin,90 V. Andreev,91M. Azarkin,91I. Dremin,91 M. Kirakosyan,91A. Leonidov,91G. Mesyats,91S. V. Rusakov,91A. Vinogradov,91A. Belyaev,92E. Boos,92V. Bunichev,92

M. Dubinin,92,hL. Dudko,92V. Klyukhin,92O. Kodolova,92I. Lokhtin,92A. Markina,92S. Obraztsov,92M. Perfilov,92 S. Petrushanko,92 V. Savrin,92N. Tsirova,92I. Azhgirey,93I. Bayshev,93S. Bitioukov,93V. Kachanov,93A. Kalinin,93 D. Konstantinov,93V. Krychkine,93V. Petrov,93R. Ryutin,93A. Sobol,93L. Tourtchanovitch,93S. Troshin,93N. Tyurin,93

A. Uzunian,93A. Volkov,93P. Adzic,94,jj M. Djordjevic,94M. Ekmedzic,94J. Milosevic,94M. Aguilar-Benitez,95 J. Alcaraz Maestre,95C. Battilana,95E. Calvo,95M. Cerrada,95 M. Chamizo Llatas,95,d N. Colino,95B. De La Cruz,95 A. Delgado Peris,95D. Domínguez Vázquez,95C. Fernandez Bedoya,95J. P. Fernández Ramos,95A. Ferrando,95J. Flix,95

M. C. Fouz,95 P. Garcia-Abia,95O. Gonzalez Lopez,95S. Goy Lopez,95 J. M. Hernandez,95M. I. Josa,95G. Merino,95 E. Navarro De Martino,95J. Puerta Pelayo,95A. Quintario Olmeda,95 I. Redondo,95L. Romero,95M. S. Soares,95 C. Willmott,95C. Albajar,96 J. F. de Trocóniz,96H. Brun,97J. Cuevas,97J. Fernandez Menendez,97S. Folgueras,97 I. Gonzalez Caballero,97L. Lloret Iglesias,97J. A. Brochero Cifuentes,98I. J. Cabrillo,98A. Calderon,98S. H. Chuang,98 J. Duarte Campderros,98M. Fernandez,98G. Gomez,98J. Gonzalez Sanchez,98A. Graziano,98A. Lopez Virto,98J. Marco,98

R. Marco,98C. Martinez Rivero,98F. Matorras,98F. J. Munoz Sanchez,98J. Piedra Gomez,98T. Rodrigo,98 A. Y. Rodríguez-Marrero,98A. Ruiz-Jimeno,98L. Scodellaro,98I. Vila,98R. Vilar Cortabitarte,98D. Abbaneo,99E. Auffray,99

G. Auzinger,99 M. Bachtis,99 P. Baillon,99A. H. Ball,99D. Barney,99J. Bendavid,99L. Benhabib,99J. F. Benitez,99 C. Bernet,99,iG. Bianchi,99P. Bloch,99A. Bocci,99A. Bonato,99O. Bondu,99C. Botta,99H. Breuker,99T. Camporesi,99

G. Cerminara,99T. Christiansen,99 J. A. Coarasa Perez,99S. Colafranceschi,99,kkM. D’Alfonso,99 D. d’Enterria,99 A. Dabrowski,99A. David,99F. De Guio,99A. De Roeck,99 S. De Visscher,99 S. Di Guida,99M. Dobson,99 N. Dupont-Sagorin,99A. Elliott-Peisert,99J. Eugster,99G. Franzoni,99W. Funk,99M. Giffels,99D. Gigi,99 K. Gill,99 M. Girone,99 M. Giunta,99F. Glege,99R. Gomez-Reino Garrido,99S. Gowdy,99R. Guida,99J. Hammer,99M. Hansen,99

P. Harris,99A. Hinzmann,99V. Innocente,99P. Janot,99 E. Karavakis,99K. Kousouris,99 K. Krajczar,99P. Lecoq,99 C. Lourenço,99N. Magini,99L. Malgeri,99M. Mannelli,99L. Masetti,99F. Meijers,99S. Mersi,99E. Meschi,99F. Moortgat,99 M. Mulders,99P. Musella,99L. Orsini,99E. Palencia Cortezon,99E. Perez,99L. Perrozzi,99A. Petrilli,99G. Petrucciani,99 A. Pfeiffer,99 M. Pierini,99M. Pimiä,99D. Piparo,99M. Plagge,99A. Racz,99W. Reece,99G. Rolandi,99,ll M. Rovere,99 H. Sakulin,99F. Santanastasio,99C. Schäfer,99C. Schwick,99S. Sekmen,99A. Sharma,99P. Siegrist,99P. Silva,99M. Simon,99 P. Sphicas,99,mm J. Steggemann,99 B. Stieger,99M. Stoye,99A. Tsirou,99G. I. Veres,99,vJ. R. Vlimant,99H. K. Wöhri,99

W. D. Zeuner,99W. Bertl,100 K. Deiters,100W. Erdmann,100 K. Gabathuler,100 R. Horisberger,100Q. Ingram,100 H. C. Kaestli,100 S. König,100D. Kotlinski,100U. Langenegger,100 D. Renker,100T. Rohe,100 F. Bachmair,101L. Bäni,101

L. Bianchini,101P. Bortignon,101M. A. Buchmann,101 B. Casal,101N. Chanon,101A. Deisher,101G. Dissertori,101 M. Dittmar,101M. Donegà,101 M. Dünser,101 P. Eller,101C. Grab,101 D. Hits,101 W. Lustermann,101B. Mangano,101 A. C. Marini,101P. Martinez Ruiz del Arbol,101D. Meister,101N. Mohr,101C. Nägeli,101,nnP. Nef,101F. Nessi-Tedaldi,101 F. Pandolfi,101L. Pape,101F. Pauss,101 M. Peruzzi,101 M. Quittnat,101F. J. Ronga,101M. Rossini,101A. Starodumov,101,oo

M. Takahashi,101 L. Tauscher,101,a K. Theofilatos,101D. Treille,101R. Wallny,101H. A. Weber,101 C. Amsler,102,pp V. Chiochia,102A. De Cosa,102 C. Favaro,102M. Ivova Rikova,102B. Kilminster,102B. Millan Mejias,102J. Ngadiuba,102

P. Robmann,102 H. Snoek,102S. Taroni,102M. Verzetti,102 Y. Yang,102 M. Cardaci,103 K. H. Chen,103C. Ferro,103 C. M. Kuo,103S. W. Li,103 W. Lin,103Y. J. Lu,103R. Volpe,103 S. S. Yu,103 P. Bartalini,104 P. Chang,104 Y. H. Chang,104

Y. W. Chang,104 Y. Chao,104 K. F. Chen,104P. H. Chen,104 C. Dietz,104 U. Grundler,104 W.-S. Hou,104Y. Hsiung,104 K. Y. Kao,104Y. J. Lei,104Y. F. Liu,104R.-S. Lu,104D. Majumder,104E. Petrakou,104X. Shi,104J. G. Shiu,104Y. M. Tzeng,104

M. Wang,104 R. Wilken,104 B. Asavapibhop,105 N. Suwonjandee,105A. Adiguzel,106M. N. Bakirci,106,qq S. Cerci,106,rr C. Dozen,106 I. Dumanoglu,106E. Eskut,106S. Girgis,106 G. Gokbulut,106 E. Gurpinar,106 I. Hos,106 E. E. Kangal,106 A. Kayis Topaksu,106G. Onengut,106,ssK. Ozdemir,106S. Ozturk,106,qq A. Polatoz,106 K. Sogut,106,tt D. Sunar Cerci,106,rr B. Tali,106,rrH. Topakli,106,qqM. Vergili,106I. V. Akin,107T. Aliev,107B. Bilin,107S. Bilmis,107M. Deniz,107H. Gamsizkan,107 A. M. Guler,107G. Karapinar,107,uuK. Ocalan,107A. Ozpineci,107 M. Serin,107R. Sever,107 U. E. Surat,107 M. Yalvac,107

(10)

H. Bahtiyar,109,zz E. Barlas,109 K. Cankocak,109Y. O. Günaydin,109,aaa F. I. Vardarlı,109M. Yücel,109L. Levchuk,110 P. Sorokin,110 J. J. Brooke,111E. Clement,111D. Cussans,111 H. Flacher,111 R. Frazier,111J. Goldstein,111 M. Grimes,111

G. P. Heath,111 H. F. Heath,111 J. Jacob,111L. Kreczko,111C. Lucas,111 Z. Meng,111 D. M. Newbold,111,bbb S. Paramesvaran,111A. Poll,111 S. Senkin,111V. J. Smith,111T. Williams,111K. W. Bell,112 A. Belyaev,112,cccC. Brew,112 R. M. Brown,112D. J. A. Cockerill,112J. A. Coughlan,112K. Harder,112 S. Harper,112J. Ilic,112E. Olaiya,112D. Petyt,112

C. H. Shepherd-Themistocleous,112A. Thea,112I. R. Tomalin,112 W. J. Womersley,112 S. D. Worm,112 M. Baber,113 R. Bainbridge,113O. Buchmuller,113D. Burton,113D. Colling,113N. Cripps,113M. Cutajar,113P. Dauncey,113G. Davies,113

M. Della Negra,113 W. Ferguson,113 J. Fulcher,113 D. Futyan,113A. Gilbert,113A. Guneratne Bryer,113 G. Hall,113 Z. Hatherell,113J. Hays,113G. Iles,113M. Jarvis,113G. Karapostoli,113M. Kenzie,113R. Lane,113R. Lucas,113,bbbL. Lyons,113 A.-M. Magnan,113J. Marrouche,113 B. Mathias,113R. Nandi,113J. Nash,113 A. Nikitenko,113,oo J. Pela,113M. Pesaresi,113 K. Petridis,113M. Pioppi,113,dddD. M. Raymond,113 S. Rogerson,113A. Rose,113 C. Seez,113P. Sharp,113,aA. Sparrow,113 A. Tapper,113M. Vazquez Acosta,113T. Virdee,113S. Wakefield,113N. Wardle,113J. E. Cole,114P. R. Hobson,114A. Khan,114 P. Kyberd,114D. Leggat,114D. Leslie,114W. Martin,114 I. D. Reid,114 P. Symonds,114L. Teodorescu,114M. Turner,114

J. Dittmann,115K. Hatakeyama,115 A. Kasmi,115 H. Liu,115T. Scarborough,115O. Charaf,116 S. I. Cooper,116 C. Henderson,116P. Rumerio,116 A. Avetisyan,117 T. Bose,117C. Fantasia,117A. Heister,117 P. Lawson,117 D. Lazic,117 J. Rohlf,117 D. Sperka,117J. St. John,117L. Sulak,117J. Alimena,118S. Bhattacharya,118 G. Christopher,118D. Cutts,118

Z. Demiragli,118A. Ferapontov,118A. Garabedian,118U. Heintz,118 S. Jabeen,118 G. Kukartsev,118E. Laird,118 G. Landsberg,118M. Luk,118M. Narain,118M. Segala,118T. Sinthuprasith,118T. Speer,118 J. Swanson,118 R. Breedon,119 G. Breto,119M. Calderon De La Barca Sanchez,119S. Chauhan,119M. Chertok,119J. Conway,119R. Conway,119P. T. Cox,119 R. Erbacher,119M. Gardner,119W. Ko,119A. Kopecky,119R. Lander,119T. Miceli,119D. Pellett,119J. Pilot,119F. Ricci-Tam,119 B. Rutherford,119M. Searle,119 S. Shalhout,119 J. Smith,119 M. Squires,119M. Tripathi,119S. Wilbur,119 R. Yohay,119

V. Andreev,120 D. Cline,120R. Cousins,120S. Erhan,120 P. Everaerts,120C. Farrell,120M. Felcini,120J. Hauser,120 M. Ignatenko,120C. Jarvis,120 G. Rakness,120 P. Schlein,120,a E. Takasugi,120 V. Valuev,120M. Weber,120 J. Babb,121 R. Clare,121J. Ellison,121J. W. Gary,121G. Hanson,121J. Heilman,121P. Jandir,121F. Lacroix,121H. Liu,121O. R. Long,121

A. Luthra,121M. Malberti,121H. Nguyen,121A. Shrinivas,121J. Sturdy,121S. Sumowidagdo,121 S. Wimpenny,121 W. Andrews,122J. G. Branson,122G. B. Cerati,122S. Cittolin,122R. T. D’Agnolo,122D. Evans,122A. Holzner,122R. Kelley,122

D. Kovalskyi,122 M. Lebourgeois,122J. Letts,122I. Macneill,122S. Padhi,122C. Palmer,122 M. Pieri,122 M. Sani,122 V. Sharma,122 S. Simon,122E. Sudano,122M. Tadel,122Y. Tu,122A. Vartak,122S. Wasserbaech,122,eeeF. Würthwein,122 A. Yagil,122J. Yoo,122D. Barge,123C. Campagnari,123T. Danielson,123K. Flowers,123P. Geffert,123C. George,123F. Golf,123 J. Incandela,123C. Justus,123R. Magaña Villalba,123N. Mccoll,123V. Pavlunin,123J. Richman,123R. Rossin,123D. Stuart,123 W. To,123C. West,123A. Apresyan,124A. Bornheim,124J. Bunn,124Y. Chen,124E. Di Marco,124J. Duarte,124D. Kcira,124

A. Mott,124H. B. Newman,124C. Pena,124 C. Rogan,124M. Spiropulu,124 V. Timciuc,124 R. Wilkinson,124 S. Xie,124 R. Y. Zhu,124 V. Azzolini,125 A. Calamba,125R. Carroll,125T. Ferguson,125Y. Iiyama,125 D. W. Jang,125M. Paulini,125 J. Russ,125H. Vogel,125 I. Vorobiev,125J. P. Cumalat,126 B. R. Drell,126 W. T. Ford,126 A. Gaz,126E. Luiggi Lopez,126 U. Nauenberg,126 J. G. Smith,126 K. Stenson,126K. A. Ulmer,126S. R. Wagner,126J. Alexander,127A. Chatterjee,127 N. Eggert,127L. K. Gibbons,127W. Hopkins,127A. Khukhunaishvili,127B. Kreis,127N. Mirman,127G. Nicolas Kaufman,127 J. R. Patterson,127A. Ryd,127E. Salvati,127W. Sun,127W. D. Teo,127J. Thom,127J. Thompson,127J. Tucker,127Y. Weng,127

L. Winstrom,127 P. Wittich,127 D. Winn,128S. Abdullin,129M. Albrow,129J. Anderson,129 G. Apollinari,129 L. A. T. Bauerdick,129A. Beretvas,129 J. Berryhill,129P. C. Bhat,129 K. Burkett,129J. N. Butler,129V. Chetluru,129 H. W. K. Cheung,129F. Chlebana,129S. Cihangir,129V. D. Elvira,129I. Fisk,129J. Freeman,129Y. Gao,129E. Gottschalk,129 L. Gray,129D. Green,129 O. Gutsche,129D. Hare,129R. M. Harris,129 J. Hirschauer,129 B. Hooberman,129S. Jindariani,129 M. Johnson,129U. Joshi,129K. Kaadze,129B. Klima,129S. Kwan,129J. Linacre,129D. Lincoln,129R. Lipton,129J. Lykken,129

K. Maeshima,129J. M. Marraffino,129V. I. Martinez Outschoorn,129S. Maruyama,129D. Mason,129 P. McBride,129 K. Mishra,129 S. Mrenna,129 Y. Musienko,129,fffS. Nahn,129C. Newman-Holmes,129V. O’Dell,129O. Prokofyev,129 N. Ratnikova,129 E. Sexton-Kennedy,129S. Sharma,129W. J. Spalding,129 L. Spiegel,129L. Taylor,129 S. Tkaczyk,129 N. V. Tran,129 L. Uplegger,129E. W. Vaandering,129 R. Vidal,129 J. Whitmore,129W. Wu,129 F. Yang,129 J. C. Yun,129 D. Acosta,130P. Avery,130D. Bourilkov,130T. Cheng,130S. Das,130M. De Gruttola,130G. P. Di Giovanni,130D. Dobur,130

R. D. Field,130M. Fisher,130Y. Fu,130 I. K. Furic,130J. Hugon,130 B. Kim,130 J. Konigsberg,130 A. Korytov,130 A. Kropivnitskaya,130 T. Kypreos,130 J. F. Low,130 K. Matchev,130P. Milenovic,130,ggg G. Mitselmakher,130L. Muniz,130

(11)

A. Rinkevicius,130 L. Shchutska,130N. Skhirtladze,130 M. Snowball,130J. Yelton,130M. Zakaria,130V. Gaultney,131 S. Hewamanage,131S. Linn,131P. Markowitz,131 G. Martinez,131J. L. Rodriguez,131 T. Adams,132A. Askew,132 J. Bochenek,132J. Chen,132B. Diamond,132J. Haas,132 S. Hagopian,132 V. Hagopian,132K. F. Johnson,132 H. Prosper,132 V. Veeraraghavan,132M. Weinberg,132M. M. Baarmand,133B. Dorney,133M. Hohlmann,133H. Kalakhety,133F. Yumiceva,133 M. R. Adams,134L. Apanasevich,134V. E. Bazterra,134R. R. Betts,134I. Bucinskaite,134R. Cavanaugh,134O. Evdokimov,134 L. Gauthier,134C. E. Gerber,134D. J. Hofman,134S. Khalatyan,134P. Kurt,134D. H. Moon,134C. O’Brien,134C. Silkworth,134 P. Turner,134N. Varelas,134 U. Akgun,135 E. A. Albayrak,135,zz B. Bilki,135,hhhW. Clarida,135 K. Dilsiz,135 F. Duru,135

J.-P. Merlo,135H. Mermerkaya,135,iii A. Mestvirishvili,135 A. Moeller,135J. Nachtman,135H. Ogul,135 Y. Onel,135 F. Ozok,135,zz S. Sen,135 P. Tan,135 E. Tiras,135J. Wetzel,135T. Yetkin,135,jjj K. Yi,135B. A. Barnett,136B. Blumenfeld,136

S. Bolognesi,136D. Fehling,136A. V. Gritsan,136 P. Maksimovic,136C. Martin,136 M. Swartz,136 A. Whitbeck,136 P. Baringer,137 A. Bean,137G. Benelli,137R. P. Kenny III,137M. Murray,137D. Noonan,137S. Sanders,137J. Sekaric,137 R. Stringer,137Q. Wang,137J. S. Wood,137A. F. Barfuss,138I. Chakaberia,138A. Ivanov,138S. Khalil,138M. Makouski,138 Y. Maravin,138L. K. Saini,138S. Shrestha,138I. Svintradze,138J. Gronberg,139D. Lange,139F. Rebassoo,139D. Wright,139 A. Baden,140B. Calvert,140S. C. Eno,140 J. A. Gomez,140 N. J. Hadley,140R. G. Kellogg,140T. Kolberg,140 Y. Lu,140 M. Marionneau,140A. C. Mignerey,140K. Pedro,140A. Skuja,140J. Temple,140M. B. Tonjes,140S. C. Tonwar,140A. Apyan,141 R. Barbieri,141G. Bauer,141W. Busza,141 I. A. Cali,141M. Chan,141L. Di Matteo,141V. Dutta,141G. Gomez Ceballos,141 M. Goncharov,141D. Gulhan,141M. Klute,141Y. S. Lai,141Y.-J. Lee,141A. Levin,141P. D. Luckey,141T. Ma,141C. Paus,141 D. Ralph,141C. Roland,141G. Roland,141G. S. F. Stephans,141F. Stöckli,141K. Sumorok,141D. Velicanu,141J. Veverka,141 B. Wyslouch,141M. Yang,141A. S. Yoon,141M. Zanetti,141V. Zhukova,141B. Dahmes,142A. De Benedetti,142A. Gude,142 S. C. Kao,142 K. Klapoetke,142Y. Kubota,142J. Mans,142 N. Pastika,142 R. Rusack,142 A. Singovsky,142 N. Tambe,142

J. Turkewitz,142 J. G. Acosta,143L. M. Cremaldi,143R. Kroeger,143 S. Oliveros,143L. Perera,143 R. Rahmat,143 D. A. Sanders,143 D. Summers,143 E. Avdeeva,144 K. Bloom,144S. Bose,144D. R. Claes,144 A. Dominguez,144 R. Gonzalez Suarez,144J. Keller,144I. Kravchenko,144J. Lazo-Flores,144S. Malik,144F. Meier,144G. R. Snow,144J. Dolen,145

A. Godshalk,145I. Iashvili,145 S. Jain,145A. Kharchilava,145 A. Kumar,145S. Rappoccio,145 Z. Wan,145G. Alverson,146 E. Barberis,146D. Baumgartel,146M. Chasco,146 J. Haley,146 A. Massironi,146D. Nash,146T. Orimoto,146D. Trocino,146 D. Wood,146J. Zhang,146A. Anastassov,147K. A. Hahn,147A. Kubik,147L. Lusito,147N. Mucia,147N. Odell,147B. Pollack,147 A. Pozdnyakov,147 M. Schmitt,147 S. Stoynev,147K. Sung,147 M. Velasco,147 S. Won,147 D. Berry,148A. Brinkerhoff,148 K. M. Chan,148A. Drozdetskiy,148M. Hildreth,148C. Jessop,148D. J. Karmgard,148J. Kolb,148K. Lannon,148W. Luo,148

S. Lynch,148 N. Marinelli,148 D. M. Morse,148 T. Pearson,148M. Planer,148R. Ruchti,148J. Slaunwhite,148N. Valls,148 M. Wayne,148 M. Wolf,148L. Antonelli,149B. Bylsma,149L. S. Durkin,149 S. Flowers,149C. Hill,149 R. Hughes,149 K. Kotov,149 T. Y. Ling,149D. Puigh,149 M. Rodenburg,149G. Smith,149C. Vuosalo,149B. L. Winer,149 H. Wolfe,149 H. W. Wulsin,149E. Berry,150P. Elmer,150V. Halyo,150P. Hebda,150J. Hegeman,150A. Hunt,150P. Jindal,150S. A. Koay,150 P. Lujan,150D. Marlow,150T. Medvedeva,150M. Mooney,150J. Olsen,150P. Piroué,150X. Quan,150A. Raval,150H. Saka,150 D. Stickland,150C. Tully,150J. S. Werner,150S. C. Zenz,150A. Zuranski,150E. Brownson,151A. Lopez,151H. Mendez,151 J. E. Ramirez Vargas,151E. Alagoz,152D. Benedetti,152G. Bolla,152 D. Bortoletto,152M. De Mattia,152A. Everett,152

Z. Hu,152M. Jones,152 K. Jung,152 M. Kress,152 N. Leonardo,152 D. Lopes Pegna,152V. Maroussov,152 P. Merkel,152 D. H. Miller,152 N. Neumeister,152 B. C. Radburn-Smith,152I. Shipsey,152D. Silvers,152A. Svyatkovskiy,152F. Wang,152 W. Xie,152L. Xu,152H. D. Yoo,152J. Zablocki,152Y. Zheng,152N. Parashar,153A. Adair,154B. Akgun,154K. M. Ecklund,154

F. J. M. Geurts,154 W. Li,154 B. Michlin,154 B. P. Padley,154R. Redjimi,154 J. Roberts,154J. Zabel,154B. Betchart,155 A. Bodek,155 R. Covarelli,155 P. de Barbaro,155 R. Demina,155Y. Eshaq,155 T. Ferbel,155A. Garcia-Bellido,155 P. Goldenzweig,155J. Han,155A. Harel,155D. C. Miner,155G. Petrillo,155D. Vishnevskiy,155M. Zielinski,155A. Bhatti,156 R. Ciesielski,156L. Demortier,156K. Goulianos,156G. Lungu,156S. Malik,156C. Mesropian,156S. Arora,157A. Barker,157

J. P. Chou,157 C. Contreras-Campana,157E. Contreras-Campana,157D. Duggan,157 D. Ferencek,157 Y. Gershtein,157 R. Gray,157E. Halkiadakis,157D. Hidas,157A. Lath,157S. Panwalkar,157M. Park,157R. Patel,157V. Rekovic,157J. Robles,157

S. Salur,157S. Schnetzer,157 C. Seitz,157 S. Somalwar,157 R. Stone,157 S. Thomas,157P. Thomassen,157M. Walker,157 K. Rose,158 S. Spanier,158Z. C. Yang,158 A. York,158O. Bouhali,159,kkk R. Eusebi,159W. Flanagan,159 J. Gilmore,159 T. Kamon,159,lllV. Khotilovich,159V. Krutelyov,159R. Montalvo,159I. Osipenkov,159Y. Pakhotin,159A. Perloff,159J. Roe,159

A. Safonov,159 T. Sakuma,159 I. Suarez,159A. Tatarinov,159D. Toback,159N. Akchurin,160C. Cowden,160J. Damgov,160 C. Dragoiu,160P. R. Dudero,160K. Kovitanggoon,160S. Kunori,160S. W. Lee,160T. Libeiro,160I. Volobouev,160E. Appelt,161

(12)

A. G. Delannoy,161 S. Greene,161A. Gurrola,161W. Johns,161C. Maguire,161Y. Mao,161A. Melo,161M. Sharma,161 P. Sheldon,161B. Snook,161 S. Tuo,161J. Velkovska,161 M. W. Arenton,162 S. Boutle,162 B. Cox,162B. Francis,162

J. Goodell,162R. Hirosky,162A. Ledovskoy,162C. Lin,162C. Neu,162J. Wood,162S. Gollapinni,163 R. Harr,163 P. E. Karchin,163C. Kottachchi Kankanamge Don,163P. Lamichhane,163A. Sakharov,163D. A. Belknap,164L. Borrello,164

D. Carlsmith,164 M. Cepeda,164S. Dasu,164 S. Duric,164 E. Friis,164M. Grothe,164R. Hall-Wilton,164M. Herndon,164 A. Hervé,164P. Klabbers,164J. Klukas,164A. Lanaro,164 R. Loveless,164 A. Mohapatra,164I. Ojalvo,164 T. Perry,164

G. A. Pierro,164G. Polese,164I. Ross,164T. Sarangi,164A. Savin164 and W. H. Smith164 (CMS Collaboration)

1

Yerevan Physics Institute, Yerevan, Armenia

2

Institut für Hochenergiephysik der OeAW, Wien, Austria

3

National Centre for Particle and High Energy Physics, Minsk, Belarus

4

Universiteit Antwerpen, Antwerpen, Belgium

5

Vrije Universiteit Brussel, Brussel, Belgium

6

Université Libre de Bruxelles, Bruxelles, Belgium

7

Ghent University, Ghent, Belgium

8

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

9

Université de Mons, Mons, Belgium

10

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

11

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

12a

Universidade Estadual Paulista, São Paulo, Brazil

12b

Universidade Federal do ABC, São Paulo, Brazil

13

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

14University of Sofia, Sofia, Bulgaria 15

Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17

Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19

University of Split, Split, Croatia

20Institute Rudjer Boskovic, Zagreb, Croatia 21

University of Cyprus, Nicosia, Cyprus

22Charles University, Prague, Czech Republic 23

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

24

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

25Department of Physics, University of Helsinki, Helsinki, Finland 26

Helsinki Institute of Physics, Helsinki, Finland

27Lappeenranta University of Technology, Lappeenranta, Finland 28

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

30

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

31

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

32

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

33

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

34

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

35

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

36

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

37

Deutsches Elektronen-Synchrotron, Hamburg, Germany

38

University of Hamburg, Hamburg, Germany

39

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

40

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

41

University of Athens, Athens, Greece

42

University of Ioánnina, Ioánnina, Greece

43

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

44

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45

(13)

46National Institute of Science Education and Research, Bhubaneswar, India 47

Panjab University, Chandigarh, India

48University of Delhi, Delhi, India 49

Saha Institute of Nuclear Physics, Kolkata, India

50Bhabha Atomic Research Centre, Mumbai, India 51

Tata Institute of Fundamental Research—EHEP, Mumbai, India

52Tata Institute of Fundamental Research—HECR, Mumbai, India 53

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

54University College Dublin, Dublin, Ireland 55a

INFN Sezione di Bari, Bari, Italy

55bUniversità di Bari, Bari, Italy 55c

Politecnico di Bari, Bari, Italy

56aINFN Sezione di Bologna, Bologna, Italy 56b

Università di Bologna, Bologna, Italy

57aINFN Sezione di Catania, Catania, Italy 57b

Università di Catania, Catania, Italy

58aINFN Sezione di Firenze, Firenze, Italy 58b

Università di Firenze, Firenze, Italy

59INFN Laboratori Nazionali di Frascati, Frascati, Italy 60a

INFN Sezione di Genova, Genova, Italy

60bUniversità di Genova, Genova, Italy 61a

INFN Sezione di Milano-Bicocca, Milano, Italy

61bUniversità di Milano-Bicocca, Milano, Italy 62a

INFN Sezione di Napoli, Napoli, Italy

62bUniversità di Napoli’Federico II’, Napoli, Italy 62c

Università della Basilicata (Potenza), Napoli, Italy

62dUniversità G. Marconi (Roma), Napoli, Italy 63a

INFN Sezione di Padova, Padova, Italy

63bUniversità di Padova, Padova, Italy 63c

Università di Trento (Trento), Padova, Italy

64aINFN Sezione di Pavia, Pavia, Italy 64b

Università di Pavia, Pavia, Italy

65aINFN Sezione di Perugia 65b

Università di Perugia

66aINFN Sezione di Pisa, Pisa, Italy 66b

Università di Pisa, Pisa, Italy

66cScuola Normale Superiore di Pisa, Pisa, Italy 67a

INFN Sezione di Roma, Roma, Italy

67bUniversità di Roma, Roma, Italy 68a

INFN Sezione di Torino, Torino, Italy

68bUniversità di Torino, Torino, Italy 68c

Università del Piemonte Orientale (Novara), Torino, Italy

69aINFN Sezione di Trieste, Trieste, Italy 69b

Università di Trieste, Trieste, Italy

70Kangwon National University, Chunchon, Korea 71

Kyungpook National University, Daegu, Korea

72Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 73

Korea University, Seoul, Korea

74University of Seoul, Seoul, Korea 75

Sungkyunkwan University, Suwon, Korea

76Vilnius University, Vilnius, Lithuania 77

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

78Universidad Iberoamericana, Mexico City, Mexico 79

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

80Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico 81

University of Auckland, Auckland, New Zealand

82University of Canterbury, Christchurch, New Zealand 83

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

84National Centre for Nuclear Research, Swierk, Poland 85

(14)

86Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal 87

Joint Institute for Nuclear Research, Dubna, Russia

88Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 89

Institute for Nuclear Research, Moscow, Russia

90Institute for Theoretical and Experimental Physics, Moscow, Russia 91

P.N. Lebedev Physical Institute, Moscow, Russia

92Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 93

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

94University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia 95

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

96Universidad Autónoma de Madrid, Madrid, Spain 97

Universidad de Oviedo, Oviedo, Spain

98Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 99

CERN, European Organization for Nuclear Research, Geneva, Switzerland

100Paul Scherrer Institut, Villigen, Switzerland 101

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

102Universität Zürich, Zurich, Switzerland 103

National Central University, Chung-Li, Taiwan

104National Taiwan University (NTU), Taipei, Taiwan 105

Chulalongkorn University, Bangkok, Thailand

106Cukurova University, Adana, Turkey 107

Physics Department, Middle East Technical University, Ankara, Turkey

108Bogazici University, Istanbul, Turkey 109

Istanbul Technical University, Istanbul, Turkey

110National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 111

University of Bristol, Bristol, United Kingdom

112Rutherford Appleton Laboratory, Didcot, United Kingdom 113

Imperial College, London, United Kingdom

114Brunel University, Uxbridge, United Kingdom 115

Baylor University, Waco, USA

116The University of Alabama, Tuscaloosa, USA 117

Boston University, Boston, USA

118Brown University, Providence, USA 119

University of California, Davis, Davis, USA

120University of California, Los Angeles, USA 121

University of California, Riverside, Riverside, USA

122University of California, San Diego, La Jolla, USA 123

University of California, Santa Barbara, Santa Barbara, USA

124California Institute of Technology, Pasadena, USA 125

Carnegie Mellon University, Pittsburgh, USA

126University of Colorado at Boulder, Boulder, USA 127

Cornell University, Ithaca, USA

128Fairfield University, Fairfield, USA 129

Fermi National Accelerator Laboratory, Batavia, USA

130University of Florida, Gainesville, USA 131

Florida International University, Miami, USA

132Florida State University, Tallahassee, USA 133

Florida Institute of Technology, Melbourne, USA

134University of Illinois at Chicago (UIC), Chicago, USA 135

The University of Iowa, Iowa City, USA

136Johns Hopkins University, Baltimore, USA 137

The University of Kansas, Lawrence, USA

138Kansas State University, Manhattan, USA 139

Lawrence Livermore National Laboratory, Livermore, USA

140University of Maryland, College Park, USA 141

Massachusetts Institute of Technology, Cambridge, USA

142University of Minnesota, Minneapolis, USA 143

University of Mississippi, Oxford, USA

144University of Nebraska-Lincoln, Lincoln, USA 145

Figura

FIG. 1 (color online). Background-subtracted and unfolded differential cross sections for Δϕ l þ l − , cos ðθ ⋆ l þ Þ cosðθ ⋆l − Þ, and
TABLE II. Parton-level asymmetries. The uncertainties in the unfolded results are statistical, systematic, and the additional uncertainty from the top-quark p T reweighting

Riferimenti

Documenti correlati

Inoltre, questo, a seconda della capacità di generazione installata, può essere collegato o isolato dalla rete elettrica delle aziende fornitrici di energia (utility-..

Among the potentially relevant features, the system will suggest that: (S 1.1 ) “It might be interesting to explore the region of users with running activities.. In fact: while

These characteristics, together with the observa- tion that similar currents were not detected in uninjected oocytes or in oocytes expressing K V 7.2 or K V 7.3 channels,

In fact, Computer-aided Drug Design (CADD) methods, compared to the classical experimental procedures, allows to investigate the mechanism of action of various atomic

We propose an approach inspired by model reference adaptive control (MRAC) where control specifications can be determined by the reference model, letting the tuning process to

La seconda ondata di crisi, legata quindi al debito sovrano, ha provocato un peggioramento delle condizioni di raccolta e ha riproposto i problemi del sistema finanziario

I risultati relativi alla seconda ripetizione dell’esperimento mostrano che, contrariamente a quanto avvenuto nella prima ripetizione, i plot trattati separatamente nel tempo