• Non ci sono risultati.

Search for signatures of extra dimensions in the diphoton mass spectrum at the large hadron collider

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for signatures of extra dimensions in the diphoton mass spectrum at the large hadron collider"

Copied!
16
0
0

Testo completo

(1)

Search for Signatures of Extra Dimensions in the Diphoton Mass Spectrum at the

Large Hadron Collider

S. Chatrchyan et al.* (CMS Collaboration)

(Received 4 December 2011; published 12 March 2012)

A search for signatures of extra spatial dimensions in the diphoton invariant-mass spectrum has been performed with the CMS detector at the LHC. No excess of events above the standard model expectation is observed using a data sample collected in proton-proton collisions atpffiffiffis¼ 7 TeV corresponding to an integrated luminosity of2:2 fb1. In the context of the large-extra-dimensions model, lower limits are set on the effective Planck scale in the range of 2.3–3.8 TeV at the 95% confidence level. These limits are the most restrictive bounds on virtual-graviton exchange to date. The most restrictive lower limits to date are also set on the mass of the first graviton excitation in the Randall-Sundrum model in the range of 0.86–1.84 TeV, for values of the associated coupling parameter between 0.01 and 0.10.

DOI:10.1103/PhysRevLett.108.111801 PACS numbers: 13.85.Rm, 11.25.Wx, 13.85.Qk

Over a decade ago, Arkani-Hamed, Dimopoulos, and Dvali (ADD) [1,2] proposed that extra spatial dimensions could potentially solve the standard model (SM) hierarchy problem [3], which consists of the observation of the unnatural difference of scales between the gravitational and electroweak theories. They proposed a scenario whereby the SM is constrained to the common 3 þ 1 space-time dimensions (brane), while gravity is free to propagate throughout a larger multidimensional space (bulk). The gravitational flux on the brane is therefore diluted by virtue of Gauss’s law in the bulk, which relates the fundamental Planck scale MD to the apparent reduced scale MPl 2  1018 GeV according to the formula MnEDþ2

D ¼

 M2Pl

rnED, where r and nED are the size and number

of the extra dimensions (ED), respectively. Postulating a fundamental Planck scale to be on the order of the elec-troweak symmetry breaking scale (1 TeV) results in ED with r < 1 mm for nED 2.

Another model of ED that solves the hierarchy problem was proposed by Randall and Sundrum (RS) [4]. In this model, the observed hierarchy is related instead to the warped anti–de Sitter (AdS) geometry of the ED. We specifically consider the RS1 model whereby only one finite ED exists separating two branes, one at each end of the ED. The geometry of the bulk is based on a slice of a five-dimensional AdS space with a length rc, where rcis the compactification radius. The full metric is given by ds2 ¼ ekrcy

dxdx r2cdy2, where Greek indices run over four-dimensional space-time,  is the

Minkowski metric tensor, and0  y   is the coordinate along the single ED of radius rc. The value of k specifies the curvature scale (or ‘‘warp factor’’) and relates the fundamental Planck scale on one brane to the apparent scale on the other by¼ MPlekrc. As a consequence,

a value of krc 10 would provide a natural solution to the hierarchy problem, yielding 1 TeV.

Phenomenologically, the excited gravitons in both mod-els preferentially decay into two gauge bosons, such as photons, rather than into two leptons, because the graviton has spin 2, and so fermions cannot be produced in an s wave. In the RS scenario, gravitons appear as well-separated Kaluza-Klein (KK) excitations with masses and widths determined by the parameters of the RS1 model. One convenient choice of parametrization is the mass M1 of the first excitation of the graviton and the dimensionless warp factor ~k  k= MPl, which defines the strength of associated coupling to the SM fields. Precision electroweak data constrain ~k * 0:01, while perturbativity requirements limit ~k & 0:10 [5].

In the ADD model, the wave function of the KK gravitons must satisfy periodic boundary conditions, resulting in dis-crete energy levels with modal spacing of the order of the inverse ED size, from 1 to 100 meV, much smaller than the spacing in the RS1 model, which is expected to be of the order of 1 TeV. This effect produces an apparent con-tinuum spectrum of diphotons, rather than distinct reso-nances, at high (1 TeV) diphoton invariant mass M.

Summing over all KK modes in the ADD scenario results in a divergence in the cross section, so an ultraviolet (UV) cutoff scale MS is imposed. This effective Planck scale is related to—but potentially different from—the fundamental Planck scale MD. The precise relationship depends on the UV completion of the effective theory. The effects of virtual-graviton production on the differen-tial diphoton cross section are parametrized by the single

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

variable G ¼ F =MS4, whereF is an order-unity dimen-sionless parameter, for which several conventions exist [6]. In this Letter, we set lower limits on MSin three different conventions: GRW [7], Hewett [8], and HLZ [9].

Searches for ED via virtual-graviton effects in the ADD model have been conducted at HERA, LEP, the Tevatron, and the LHC [10,11]. The most stringent previously pub-lished limits on MS for nED 3 come from the previous measurement in the diphoton channel at the Compact Muon Solenoid (CMS) experiment [6]. For nED¼ 2, mea-surements by the D0 experiment in the dijet [12] and diphotonþ dielectron [13] channels are more restrictive. The most sensitive previous search for RS gravitons was conducted by the ATLAS experiment [14]. They used a search in the dilepton final state to exclude M1< 1:63 TeV for ~k ¼ 0:10.

In this Letter, we present a search for both nonresonant and resonant diphoton production, in the ADD and RS1 models, respectively. We use data corresponding to an integrated luminosity of 2:2 fb1, collected in pp colli-sions at pffiffiffis¼ 7 TeV at the LHC with the CMS detector between March and August 2011.

The CMS detector [15] is designed to study collisions at the LHC. An all-silicon tracker, an electromagnetic calo-rimeter (ECAL), and a hadronic sampling calocalo-rimeter are all contained within a large-bore 3.8 T superconducting solenoid. In the central region, the tracker consists of three radial layers of silicon pixel detectors followed radially by silicon strip detectors. The finely segmented ECAL has a design resolution for unconverted photons better than 0.5% at energies exceeding 100 GeV in the barrel (jj < 1:44). Here, the pseudorapidity  is defined as  ln½tanð=2Þ, where  is the polar angle with respect to the direction of the counterclockwise beam. Beyond the solenoid lie four layers of muon detectors. The instantaneous luminosity is measured with a relative uncertainty of 4.5% using infor-mation from forward hadronic calorimeters [16]. The two-tiered CMS trigger consists of the level-one trigger, composed of custom hardware, and the software-based high-level trigger.

Events for the analysis were collected through a dipho-ton trigger, where each phodipho-ton was required to have a transverse energy ET  E sin of at least 33, 55, or 60 GeV, depending on the instantaneous luminosity. We require that an event be consistent with a pp collision and have at least one well-reconstructed primary vertex [17]. We then reconstruct photons with ET> 70 GeV in the ECAL barrel by clustering electromagnetic energy depo-sitions. Electrons that do not originate from photon con-versions are suppressed by using information from the pixel detector to associate tracks and ECAL clusters com-patible with an electron hypothesis. The probability of misidentification of an electron as a photon is approxi-mately 3%, resulting in a negligibly small contribution to the diphoton spectrum in the signal region.

Hadronic jets can be misidentified as photons when their leading hadron is an energetic 0or  meson. We reduce the misidentification rate from this source by placing the same restrictions on the isolation as in the previous analy-sis for this channel [6]. These restrictions limit the total transverse energy because of tracks and calorimeter depo-sitions near the photon cluster. Restrictions on the shower-shape variable , which is a modified second moment of the electromagnetic energy cluster about its mean  position [18], also suppress hadronic misidentification. Topological and timing criteria suppress anomalous signals present in the ECAL [19]. Diphoton events are selected in which M> 140 GeV.

The photon reconstruction and identification efficiency is determined in Monte Carlo (MC) simulation and corrected using a data-to-MC scale factor of 1:005 0:034 derived from studying Z ! eþe events. The mea-sured efficiency for a single ET > 70 GeV photon with jj < 1:44 is ð87:4 5:4Þ% and depends only weakly on the ET and  of the photon, and the number of extra collisions present in the event. The systematic uncertainty bounds the variation as a function of these variables, the most significant of which is the number of extra colli-sions. We reweight the simulation to give the same recon-structed primary-vertex distribution (on average 6–8 vertices) as observed in the data. We determine the corre-sponding diphoton reconstruction and identification effi-ciency ð76:4 9:6Þ% by squaring the single-photon efficiency.

The simulation of ED in the ADD model is performed using version 1.3.0 of theSHERPA[20] MC generator. The simulation includes both SM diphoton production and signal diphoton production via virtual-graviton exchange in order to account for the interference effects between the SM and ADD processes. The leading-order (LO) SHERPA cross sections are multiplied by a constant next-to-leading-order (NLO) K factor of 1:6 0:1, a value that represents an updated calculation for pffiffiffis¼ 7 TeV by the authors of Refs. [21,22]. The systematic uncertainty on the signal K factor reflects the approximate variation of the K factor over a large region of the model parameters; it is not intended to account for the theoretical uncertainty. The cross sections in the simulation are conservatively set to zero forpffiffiffi^s> MS because the theory becomes nonpertur-bative for larger values ofpffiffiffi^s. Introducing this sharp trun-cation reduces the upper limits on MSby a few percent.

The simulation of RS-graviton production is performed using version 6.424 of thePYTHIA[23] MC program. The signal cross section is scaled by a mass-dependent NLO K factor [21,22], which ranges from 1.6 to 1.8 as a function of Mand for different values of ~k. TheCTEQ6L1[24] parton distribution functions (PDF) are used in the simulation of both the ADD and RS models, and a 1.5% relative uncer-tainty on the signal acceptance is included by measuring its dependence on the choice of PDF and its uncertainties.

(3)

Optimization of the event selection is done separately for both ADD and RS scenarios. The signal in both cases is predominantly at central values of , while the high-M SM background dominates the signal in the forward re-gion; therefore, we restrict ourselves to photons located in the ECAL barrel only. In the ADD scenario, we find that the optimal region for the search, based on the expected signal significance, is M> 900 GeV. This choice of selection depends weakly on the model parameters.

In the search for RS gravitons, a fixed window is se-lected about the M1 mass point of interest. Because the signal shapes deviate from Gaussian distributions, we de-fine an effective measure of the signal width eff as the half-width of the narrowest mass interval containing 68% of the signal from simulation. The value of eff ranges from 6 to 21 GeV for RS gravitons with M1 between 500 and 2000 GeV and ~k ¼ 0:01. The dependence on M1 is linear and also increases with ~k (eff ¼ 42 GeV for M1 ¼ 2 TeV and ~k ¼ 0:10). A window is then formed about the resonance mean of size 5eff in the data. This window contains 96%–97% of the signal acceptance for all mass points considered in this analysis, and the detector resolu-tion is negligible with respect to the window size. This choice of the window maximizes the signal acceptance and analysis sensitivity in the case of small backgrounds.

Backgrounds from the misidentification of a hadronic jet as a photon are small in the signal region but contribute to the low-M region. Two such sources of backgrounds from isolated-photon misidentification are considered: multijet production and prompt single-photon ( þ jet) production. In particular, we measure on a background-dominated sample a misidentification rate, defined as the ratio of the number of isolated photon candidates to non-isolated photonlike objects. These photonlike objects are reconstructed as photons but fail one of the isolation or shower-shape criteria; therefore, the samples correspond-ing to numerator and denominator are mutually exclusive, and prompt photons have a negligibly small contribution to the denominator. The misidentification rate is measured in a photon-triggered sample in bins of photon(like) candi-date ET, but the objects used in the measurement are required to be well separated from the triggered object to avoid a trigger-induced bias.

Because the background-dominated sample in which we measure the misidentification rate may contain some genu-ine, isolated photons that ‘‘contaminate’’ the numerator of the misidentification rate, we correct for this on a bin-by-bin basis. The  requirement is released and the nu-merator sample is fit for the fraction of prompt photons using one-dimensional probability density histograms (‘‘templates’’) in . The signal template is constructed from MC simulation, and the background template is con-structed from reconcon-structed photons that fail one or more of the isolation criteria. The measured misidentification rate falls from 7% at ET ¼ 70 GeV to 2% at ET ¼ 120 GeV. We apply a 20% systematic uncertainty to the rate derived from the variation of the misidentification rate measured in a jet-triggered sample.

[GeV] M 200 400 600 800 1000 1200 1400 1600 1800 2000 Events/20 GeV -3 10 -2 10 -1 10 1 10 2 10 3 10 Observed Diphoton +jet Dijet Systematic Uncertainty = 1.75 TeV 1 = 0.05, M k = 3 TeV S = 6, M ED n at 7 TeV -1 2.2 fb CMS

FIG. 1 (color online). Observed event yields (points with error bars) and background expectations (filled solid histograms) as a function of the diphoton invariant mass. Photons are required to be isolated, with ET> 70 GeV and jj < 1:44. The shaded band

around the background estimation corresponds to the average systematic uncertainty over the spectrum. The precise per-bin uncertainty is not provided for the sake of clarity. The last bin includes the sum of all contributions for M> 2:0 TeV. The

simulated distributions for two, nonexcluded signal hypotheses are shown for comparison as dotted (ADD) and dashed (RS) lines.

TABLE I. Observed event yields and background expectations for different reconstructed diphoton invariant-mass ranges. Full systematic uncertainties are included.

Diphoton invariant-mass range [TeV]

Process ½0:14; 0:2 ½0:2; 0:5 ½0:5; 0:9 >0:9 Multijet 15 6 17 7 0:2 0:1 0:003 0:001  þ jet 102 15 124 18 2:5 0:4 0:19 0:04 Diphoton 372 70 414 78 16:9 3:2 1:3 0:3 Backgrounds 489 73 555 81 19:6 3:2 1:5 0:3 Observed 484 517 16 2

(4)

The multijet and  þ jet backgrounds to the recon-structed diphoton spectrum are estimated by using the misidentification rate to extrapolate from two background-dominated reference regions, both selected with the same diphoton trigger as the primary signal sam-ple. One region includes events with only one isolated photon, but one or more nonisolated photons. The other region includes events with no isolated photons, but two or more nonisolated photons. The diphoton trigger is suffi-ciently inclusive that the regions are unaffected by the trigger selection. By applying the prompt-photon misiden-tification rate to these two reference regions, we predict the  þ jet and multijet backgrounds in the signal region.

The SM diphoton background dominates the signal re-gion. The expected number of background events due to this process is computed by rescaling the prediction fromPYTHIAwith a NLO K factor that varies with M. The NLO prediction is calculated with the DIPHOX+ GAMMA2MC [25,26] generators, which take into account the fragmentation processes in which the photons can come from the collinear fragmentations of hard partons. A separate analysis by CMS has also demonstrated good agreement with the NLO prediction at low M & 300 GeV [27]. The subleading-order gluon-fusion box diagram is included as a part of the PYTHIA calculation because of its large contribution at the LHC energy, although its effects are small at high M. The K factor varies between 1.7 and 1.1 from low to high M. A systematic uncertainty of 15% on the value of the K factor is determined by examining the PDF uncertainties and variation of the renormalization and factorization scales.

Figure 1 shows the invariant-mass distribution of the selected events, together with the estimated distributions for each of the backgrounds. TableIpresents the observed number of events in the data and the predicted number of background events in different ranges in M and corre-sponds directly to Fig.1. The last column corresponds to the signal region for the ADD search. We find that the observed data are consistent with the background estimate throughout the Mspectrum and do not show an excess of events, neither resonant nor nonresonant.

To set limits on virtual-graviton exchange in the ADD scenario, we compare the number of observed and ex-pected events in the signal region (M> 0:9 TeV) and set 95% confidence level (C.L.) upper limits on the quan-tity S  ðtotal SMÞ  B  A, where totalrepresents the total diphoton production cross section (including signal, SM, and interference effects), and SMrepresents

] -4 [TeV 3 10 G 2 4 6 8 10 12 14 16 18 20 S [fb] 0 1 2 3 4 5 6 7 8 9 10 Theory (K=1.6) 95% C.L upper limit -4 TeV -3 10 9.7 3 fb at 7 TeV -1 2.2 fb CMS ] -4 [TeV 4 s 1/M 0.005 0.01 0.015 0.02 S [fb] -1 10 1 10 2 10 -4 TeV -3 10 5.5 3 fb at 7 TeV -1 2.2 fb CMS Theory (K=1.6) 95% C.L upper limit

FIG. 2 (color online). Signal cross section S parametrization as a function of the strength of the ED effects G (top) and as a

function of1=M4Sfor the HLZ nED¼ 2 case (bottom).

TABLE II. The 95% C.L. lower limits on MS(in TeV) in the GRW, Hewett, and HLZ conventions for two values of the ADD signal

K factor, 1.0 and 1:6 0:1. All limits are computed with a signal cross section truncated to zero forpffiffiffi^s> MS, wherepffiffiffi^sis the

center-of-mass of the partonic collision. The limits are presented for both positive and negative interference in the Hewett convention and for nED¼ 2–7 in the HLZ convention. The median expected lower limits are given in parentheses.

Hewett HLZ K GRW Positive Negative nED¼ 2 nED¼ 3 nED¼ 4 nED¼ 5 nED¼ 6 nED¼ 7 1.0 2.94 2.63 2.28 3.29 3.50 2.94 2.66 2.47 2.34 (2.99) (2.67) (2.31) (3.37) (3.56) (2.99) (2.71) (2.52) (2.38) 1:6 0:1 3.18 2.84 2.41 3.68 3.79 3.18 2.88 2.68 2.53 (3.24) (2.90) (2.44) (3.77) (3.85) (3.24) (2.93) (2.73) (2.58)

(5)

the SM diphoton production cross section. The signal branching fraction to diphotons is indicated byB and the signal acceptance byA. We use the CLstechnique [28,29] to compute the limits with a likelihood constructed from the Poisson probability to observe N events, given S, the signal efficiency ð76:4 9:6Þ%, the expected number of background events (1:5 0:3), and the integrated luminos-ity L ¼ ð2:2 0:1Þ fb1 [16]. The variation of the K factor is included in the statistical analysis as an uncer-tainty on the signal yield.

The observed (median expected) 95% C.L. upper limit on S is 3.0 fb (2.7 fb). For the HLZ nED¼ 2 case, we parametrize S directly as a smooth function of 1=M4S. For all other conventions, S is parametrized as a function of the parameter G, as in Ref. [6]. The observed 95% C.L. limit, together with the signal parametrization, is shown in Fig.2. The intersection of the cross-section limit with the parametrized curve determines the 95% C.L. upper limit on the parameter G. As seen from the plot, these upper limits on S correspond to upper limits of G  0:0097 TeV4 and 1=M4

S 0:0055 TeV4. The upper limits on G are equated to lower limits on MS and are shown in TableII.

For the RS scenario, the same limit-setting calculation is performed, but in a bounded window in M. Figure 3 shows the excluded regions in the M1-~k plane. Also shown are bounds due to precision electroweak measurements and

to naturalness arguments [5]. Table III presents the 95% C.L. lower limits on the graviton mass M1 for different values of ~k. The median expected lower limits coincide within a few GeV of the observed limits.

In summary, we have performed a search for extra spatial dimensions leading to enhanced resonant or nonresonant diphoton production in proton-proton colli-sions at a center-of-mass energy of 7 TeV at the LHC. Using a data sample corresponding to an integrated luminosity of2:2 fb1 recorded by the CMS experiment, we observe no excess in diphoton production above the rate predicted from SM background sources. Values of the effective Planck scale MS less than 2.3–3.8 TeV are excluded at 95% C.L. for ADD models. We also exclude at 95% C.L. resonant graviton production in the RS1 model with values of M1 less than 0.86–1.84 TeV depending on the normalized coupling strength ~k. We present limits on both the ADD and RS1 models of extra dimensions in the diphoton final state that extend those observed at the D0 experiment [13], as well as those set previously by the CMS [6] and ATLAS [14] experiments.

We thank M. C. Kumar, P. Mathews, V. Ravindran, and A. Tripathi for the calculation of NLO K factors used in this Letter. We wish to congratulate our colleagues in the CERN accelerator departments for the excellent per-formance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST, MAE, and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (U.S.).

FIG. 3 (color online). The 95% C.L. exclusion region for the RS1 graviton model in the M1-~k plane. The expected limits

coincide very closely with the measured limits and so are not shown in the figure. Also shown are bounds due to electroweak constraints and naturalness (> 10 TeV). Perturbativity

re-quirements bound ~k & 0:10.

TABLE III. The 95% C.L. lower limits on M1for given values of the coupling parameter ~k. For ~k < 0:03, masses above the presented

limits are excluded by electroweak and naturalness constraints. The median expected lower limits are numerically the same for the presented precision except for the ~k ¼ 0:01 case, for which the expected lower limit on M1 is 0.84 TeV.

~k 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

(6)

[1] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429, 263 (1998).

[2] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Rev. D 59, 086004 (1999).

[3] E. Witten,Phys. Lett. B 105, 267 (1981).

[4] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).

[5] H. Davoudiasl, J. L. Hewett, and T. G. Rizzo,Phys. Rev. D 63, 075004 (2001).

[6] S. Chatrchyan et al. (CMS Collaboration),J. High Energy Phys. 05 (2011) 85.

[7] G. Giudice, R. Rattazzi, and J. Wells,Nucl. Phys. B544, 3 (1999).

[8] J. L. Hewett,Phys. Rev. Lett. 82, 4765 (1999).

[9] T. Han, J. D. Lykken, and R.-J. Zhang,Phys. Rev. D 59, 105006 (1999).

[10] K. Nakamura et al. (Particle Data Group),J. Phys. G 37, 075021 (2010).

[11] K. Cheung and G. Landsberg, Phys. Rev. D 62, 076003 (2000).

[12] V. M. Abazov et al. (D0 Collaboration),Phys. Rev. Lett. 103, 191803 (2009).

[13] V. M. Abazov et al. (D0 Collaboration),Phys. Rev. Lett. 102, 051601 (2009).

[14] G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 107, 272002 (2011).

[15] S. Chatrchyan et al. (CMS Collaboration), JINST 3, S08004 (2008).

[16] CMS Collaboration, Report No. CMS-PAS-EWK-10-004, 2010 [https://cdsweb.cern.ch/record/1279145?ln=en]. [17] V. Khachatryan et al. (CMS Collaboration),Eur. Phys. J. C

70, 1165 (2010).

[18] V. Khachatryan et al. (CMS Collaboration), Phys. Rev. Lett. 106, 082001 (2011).

[19] CMS Collaboration, Report No. CMS-PAS-EGM-10-006, 2010 [https://cdsweb.cern.ch/record/1324545?ln=en]. [20] T. Gleisberg et al., J. High Energy Phys. 02 (2004)

056.

[21] M. Kumar, P. Mathews, V. Ravindran, and A. Tripathi, Phys. Lett. B 672, 45 (2009).

[22] M. Kumar, P. Mathews, V. Ravindran, and A. Tripathi, Nucl. Phys. B818, 28 (2009).

[23] T. Sjostrand, P. Eden, C. Friberg, L. Lonnblad, G. Miu, S. Mrenna, and E. Norrbin, Comput. Phys. Commun. 135, 238 (2001).

[24] P. Nadolsky et al. (CTEQ Collaboration),Phys. Rev. D 78, 013004 (2008).

[25] T. Binoth, J. P. Guillet, E. Pilon, and M. Werlen,Eur. Phys. J. C 16, 311 (2000).

[26] Z. Bern, L. Dixon, and C. Schmidt, Phys. Rev. D 66, 074018 (2002).

[27] S. Chatrchyan et al. (CMS Collaboration),J. High Energy Phys. 01 (2012) 133.

[28] A. L. Read,J. Phys. G 28, 2693 (2002).

[29] T. Junk,Nucl. Instrum. Methods Phys. Res., Sect. A 434, 435 (1999).

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2T. Bergauer,2M. Dragicevic,2J. Ero¨,2 C. Fabjan,2M. Friedl,2R. Fru¨hwirth,2V. M. Ghete,2J. Hammer,2,bM. Hoch,2N. Ho¨rmann,2J. Hrubec,2M. Jeitler,2 W. Kiesenhofer,2A. Knapitsch,2M. Krammer,2D. Liko,2I. Mikulec,2M. Pernicka,2,aB. Rahbaran,2H. Rohringer,2 R. Scho¨fbeck,2J. Strauss,2A. Taurok,2F. Teischinger,2C. Trauner,2P. Wagner,2W. Waltenberger,2G. Walzel,2 E. Widl,2C.-E. Wulz,2V. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3S. Bansal,4L. Benucci,4E. A. De Wolf,4

X. Janssen,4S. Luyckx,4T. Maes,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4M. Selvaggi,4 H. Van Haevermaet,4P. Van Mechelen,4N. Van Remortel,4A. Van Spilbeeck,4F. Blekman,5S. Blyweert,5

J. D’Hondt,5R. Gonzalez Suarez,5A. Kalogeropoulos,5M. Maes,5A. Olbrechts,5W. Van Doninck,5 P. Van Mulders,5G. P. Van Onsem,5I. Villella,5O. Charaf,6B. Clerbaux,6G. De Lentdecker,6V. Dero,6A. P. R. Gay,6

G. H. Hammad,6T. Hreus,6A. Le´onard,6P. E. Marage,6L. Thomas,6C. Vander Velde,6P. Vanlaer,6J. Wickens,6 V. Adler,7K. Beernaert,7A. Cimmino,7S. Costantini,7M. Grunewald,7B. Klein,7J. Lellouch,7A. Marinov,7 J. Mccartin,7D. Ryckbosch,7N. Strobbe,7F. Thyssen,7M. Tytgat,7L. Vanelderen,7P. Verwilligen,7S. Walsh,7 N. Zaganidis,7S. Basegmez,8G. Bruno,8J. Caudron,8L. Ceard,8J. De Favereau De Jeneret,8C. Delaere,8D. Favart,8

L. Forthomme,8A. Giammanco,8,cG. Gre´goire,8J. Hollar,8V. Lemaitre,8J. Liao,8O. Militaru,8C. Nuttens,8 D. Pagano,8A. Pin,8K. Piotrzkowski,8N. Schul,8N. Beliy,9T. Caebergs,9E. Daubie,9G. A. Alves,10 D. De Jesus Damiao,10M. E. Pol,10M. H. G. Souza,10W. L. Alda´ Ju´nior,11W. Carvalho,11A. Custo´dio,11 E. M. Da Costa,11C. De Oliveira Martins,11S. Fonseca De Souza,11D. Matos Figueiredo,11L. Mundim,11

H. Nogima,11V. Oguri,11W. L. Prado Da Silva,11A. Santoro,11S. M. Silva Do Amaral,11A. Sznajder,11 T. S. Anjos,12,dC. A. Bernardes,12,dF. A. Dias,12,eT. R. Fernandez Perez Tomei,12E. M. Gregores,12,dC. Lagana,12

F. Marinho,12P. G. Mercadante,12,dS. F. Novaes,12Sandra S. Padula,12N. Darmenov,13,bV. Genchev,13,b P. Iaydjiev,13,bS. Piperov,13M. Rodozov,13S. Stoykova,13G. Sultanov,13V. Tcholakov,13R. Trayanov,13 M. Vutova,13A. Dimitrov,14R. Hadjiiska,14A. Karadzhinova,14V. Kozhuharov,14L. Litov,14B. Pavlov,14 P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15C. H. Jiang,15D. Liang,15S. Liang,15X. Meng,15J. Tao,15

J. Wang,15J. Wang,15X. Wang,15Z. Wang,15H. Xiao,15M. Xu,15J. Zang,15Z. Zhang,15Y. Ban,16S. Guo,16 Y. Guo,16W. Li,16S. Liu,16Y. Mao,16S. J. Qian,16H. Teng,16S. Wang,16B. Zhu,16W. Zou,16A. Cabrera,17

(7)

B. Gomez Moreno,17A. A. Ocampo Rios,17A. F. Osorio Oliveros,17J. C. Sanabria,17N. Godinovic,18D. Lelas,18 R. Plestina,18,fD. Polic,18I. Puljak,18,bZ. Antunovic,19M. Dzelalija,19M. Kovac,19V. Brigljevic,20S. Duric,20

K. Kadija,20J. Luetic,20S. Morovic,20A. Attikis,21M. Galanti,21J. Mousa,21C. Nicolaou,21F. Ptochos,21 P. A. Razis,21M. Finger,22M. Finger, Jr.,22Y. Assran,23,gA. Ellithi Kamel,23,hS. Khalil,23,iM. A. Mahmoud,23,j A. Radi,23,kA. Hektor,24M. Kadastik,24M. Mu¨ntel,24M. Raidal,24L. Rebane,24A. Tiko,24V. Azzolini,25P. Eerola,25

G. Fedi,25M. Voutilainen,25S. Czellar,26J. Ha¨rko¨nen,26A. Heikkinen,26V. Karima¨ki,26R. Kinnunen,26 M. J. Kortelainen,26T. Lampe´n,26K. Lassila-Perini,26S. Lehti,26T. Linde´n,26P. Luukka,26T. Ma¨enpa¨a¨,26 E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26D. Ungaro,26L. Wendland,26K. Banzuzi,27A. Karjalainen,27 A. Korpela,27T. Tuuva,27D. Sillou,28M. Besancon,29S. Choudhury,29M. Dejardin,29D. Denegri,29B. Fabbro,29 J. L. Faure,29F. Ferri,29S. Ganjour,29A. Givernaud,29P. Gras,29G. Hamel de Monchenault,29P. Jarry,29E. Locci,29 J. Malcles,29M. Marionneau,29L. Millischer,29J. Rander,29A. Rosowsky,29I. Shreyber,29M. Titov,29S. Baffioni,30

F. Beaudette,30L. Benhabib,30L. Bianchini,30M. Bluj,30,lC. Broutin,30P. Busson,30C. Charlot,30N. Daci,30 T. Dahms,30L. Dobrzynski,30S. Elgammal,30R. Granier de Cassagnac,30M. Haguenauer,30P. Mine´,30C. Mironov,30

C. Ochando,30P. Paganini,30D. Sabes,30R. Salerno,30Y. Sirois,30C. Thiebaux,30C. Veelken,30A. Zabi,30 J.-L. Agram,31,mJ. Andrea,31D. Bloch,31D. Bodin,31J.-M. Brom,31M. Cardaci,31E. C. Chabert,31C. Collard,31

E. Conte,31,mF. Drouhin,31,mC. Ferro,31J.-C. Fontaine,31,mD. Gele´,31U. Goerlach,31S. Greder,31P. Juillot,31 M. Karim,31,mA.-C. Le Bihan,31P. Van Hove,31F. Fassi,32D. Mercier,32C. Baty,33S. Beauceron,33N. Beaupere,33

M. Bedjidian,33O. Bondu,33G. Boudoul,33D. Boumediene,33H. Brun,33J. Chasserat,33R. Chierici,33,b D. Contardo,33P. Depasse,33H. El Mamouni,33A. Falkiewicz,33J. Fay,33S. Gascon,33M. Gouzevitch,33B. Ille,33

T. Kurca,33T. Le Grand,33M. Lethuillier,33L. Mirabito,33S. Perries,33V. Sordini,33S. Tosi,33Y. Tschudi,33 P. Verdier,33S. Viret,33D. Lomidze,34G. Anagnostou,35S. Beranek,35M. Edelhoff,35L. Feld,35N. Heracleous,35

O. Hindrichs,35R. Jussen,35K. Klein,35J. Merz,35A. Ostapchuk,35A. Perieanu,35F. Raupach,35J. Sammet,35 S. Schael,35D. Sprenger,35H. Weber,35B. Wittmer,35V. Zhukov,35,nM. Ata,36E. Dietz-Laursonn,36M. Erdmann,36

T. Hebbeker,36C. Heidemann,36A. Hinzmann,36K. Hoepfner,36T. Klimkovich,36D. Klingebiel,36P. Kreuzer,36 D. Lanske,36,aJ. Lingemann,36C. Magass,36M. Merschmeyer,36A. Meyer,36P. Papacz,36H. Pieta,36H. Reithler,36

S. A. Schmitz,36L. Sonnenschein,36J. Steggemann,36D. Teyssier,36M. Weber,36M. Bontenackels,37 V. Cherepanov,37M. Davids,37G. Flu¨gge,37H. Geenen,37W. Haj Ahmad,37F. Hoehle,37B. Kargoll,37T. Kress,37

Y. Kuessel,37A. Linn,37A. Nowack,37L. Perchalla,37O. Pooth,37J. Rennefeld,37P. Sauerland,37A. Stahl,37 D. Tornier,37M. H. Zoeller,37M. Aldaya Martin,38W. Behrenhoff,38U. Behrens,38M. Bergholz,38,oA. Bethani,38 K. Borras,38A. Cakir,38A. Campbell,38E. Castro,38D. Dammann,38G. Eckerlin,38D. Eckstein,38A. Flossdorf,38

G. Flucke,38A. Geiser,38J. Hauk,38H. Jung,38,bM. Kasemann,38P. Katsas,38C. Kleinwort,38H. Kluge,38 A. Knutsson,38M. Kra¨mer,38D. Kru¨cker,38E. Kuznetsova,38W. Lange,38W. Lohmann,38,oB. Lutz,38R. Mankel,38

I. Marfin,38M. Marienfeld,38I.-A. Melzer-Pellmann,38A. B. Meyer,38J. Mnich,38A. Mussgiller,38 S. Naumann-Emme,38J. Olzem,38A. Petrukhin,38D. Pitzl,38A. Raspereza,38M. Rosin,38J. Salfeld-Nebgen,38 R. Schmidt,38,oT. Schoerner-Sadenius,38N. Sen,38A. Spiridonov,38M. Stein,38J. Tomaszewska,38R. Walsh,38 C. Wissing,38C. Autermann,39V. Blobel,39S. Bobrovskyi,39J. Draeger,39H. Enderle,39U. Gebbert,39M. Go¨rner,39 T. Hermanns,39K. Kaschube,39G. Kaussen,39H. Kirschenmann,39R. Klanner,39J. Lange,39B. Mura,39F. Nowak,39 N. Pietsch,39C. Sander,39H. Schettler,39P. Schleper,39E. Schlieckau,39M. Schro¨der,39T. Schum,39H. Stadie,39 G. Steinbru¨ck,39J. Thomsen,39C. Barth,40J. Berger,40T. Chwalek,40W. De Boer,40A. Dierlamm,40G. Dirkes,40

M. Feindt,40J. Gruschke,40M. Guthoff,40,bC. Hackstein,40F. Hartmann,40M. Heinrich,40H. Held,40 K. H. Hoffmann,40S. Honc,40I. Katkov,40,nJ. R. Komaragiri,40T. Kuhr,40D. Martschei,40S. Mueller,40Th. Mu¨ller,40 M. Niegel,40O. Oberst,40A. Oehler,40J. Ott,40T. Peiffer,40G. Quast,40K. Rabbertz,40F. Ratnikov,40N. Ratnikova,40

M. Renz,40S. Ro¨cker,40C. Saout,40A. Scheurer,40P. Schieferdecker,40F.-P. Schilling,40M. Schmanau,40 G. Schott,40H. J. Simonis,40F. M. Stober,40D. Troendle,40J. Wagner-Kuhr,40T. Weiler,40M. Zeise,40 E. B. Ziebarth,40G. Daskalakis,41T. Geralis,41S. Kesisoglou,41A. Kyriakis,41D. Loukas,41I. Manolakos,41 A. Markou,41C. Markou,41C. Mavrommatis,41E. Ntomari,41E. Petrakou,41L. Gouskos,42T. J. Mertzimekis,42

A. Panagiotou,42N. Saoulidou,42E. Stiliaris,42I. Evangelou,43C. Foudas,43,bP. Kokkas,43N. Manthos,43 I. Papadopoulos,43V. Patras,43F. A. Triantis,43A. Aranyi,44G. Bencze,44L. Boldizsar,44C. Hajdu,44,bP. Hidas,44 D. Horvath,44,pA. Kapusi,44K. Krajczar,44,qF. Sikler,44,bG. I. Veres,44,qG. Vesztergombi,44,qN. Beni,45J. Molnar,45 J. Palinkas,45Z. Szillasi,45V. Veszpremi,45J. Karancsi,46P. Raics,46Z. L. Trocsanyi,46B. Ujvari,46S. B. Beri,47

(8)

L. K. Saini,47A. Sharma,47A. P. Singh,47J. Singh,47S. P. Singh,47S. Ahuja,48B. C. Choudhary,48A. Kumar,48 A. Kumar,48S. Malhotra,48M. Naimuddin,48K. Ranjan,48R. K. Shivpuri,48S. Banerjee,49S. Bhattacharya,49 S. Dutta,49B. Gomber,49S. Jain,49S. Jain,49R. Khurana,49S. Sarkar,49R. K. Choudhury,50D. Dutta,50S. Kailas,50

V. Kumar,50A. K. Mohanty,50,bL. M. Pant,50P. Shukla,50T. Aziz,51M. Guchait,51,rA. Gurtu,51,sM. Maity,51,s D. Majumder,51G. Majumder,51K. Mazumdar,51G. B. Mohanty,51B. Parida,51A. Saha,51K. Sudhakar,51 N. Wickramage,51S. Banerjee,52S. Dugad,52N. K. Mondal,52H. Arfaei,53H. Bakhshiansohi,53,tS. M. Etesami,53,u

A. Fahim,53,tM. Hashemi,53H. Hesari,53A. Jafari,53,tM. Khakzad,53A. Mohammadi,53,v

M. Mohammadi Najafabadi,53S. Paktinat Mehdiabadi,53B. Safarzadeh,53,wM. Zeinali,53,uM. Abbrescia,54a,54b L. Barbone,54a,54bC. Calabria,54a,54bA. Colaleo,54aD. Creanza,54a,54cN. De Filippis,54a,54c,bM. De Palma,54a,54b L. Fiore,54aG. Iaselli,54a,54cL. Lusito,54a,54bG. Maggi,54a,54cM. Maggi,54aN. Manna,54a,54bB. Marangelli,54a,54b

S. My,54a,54cS. Nuzzo,54a,54bN. Pacifico,54a,54bA. Pompili,54a,54bG. Pugliese,54a,54cF. Romano,54a,54c G. Selvaggi,54a,54bL. Silvestris,54aS. Tupputi,54a,54bG. Zito,54aG. Abbiendi,55aA. C. Benvenuti,55aD. Bonacorsi,55a

S. Braibant-Giacomelli,55a,55bL. Brigliadori,55aP. Capiluppi,55a,55bA. Castro,55a,55bF. R. Cavallo,55a M. Cuffiani,55a,55bG. M. Dallavalle,55aF. Fabbri,55aA. Fanfani,55a,55bD. Fasanella,55a,bP. Giacomelli,55a C. Grandi,55aS. Marcellini,55aG. Masetti,55aM. Meneghelli,55a,55bA. Montanari,55aF. L. Navarria,55a,55b

F. Odorici,55aA. Perrotta,55aF. Primavera,55aA. M. Rossi,55a,55bT. Rovelli,55a,55bG. Siroli,55a,55b R. Travaglini,55a,55bS. Albergo,56a,56bG. Cappello,56a,56bM. Chiorboli,56a,56bS. Costa,56a,56bR. Potenza,56a,56b

A. Tricomi,56a,56bC. Tuve,56a,56bG. Barbagli,57aV. Ciulli,57a,57bC. Civinini,57aR. D’Alessandro,57a,57b E. Focardi,57a,57bS. Frosali,57a,57bE. Gallo,57aS. Gonzi,57a,57bM. Meschini,57aS. Paoletti,57aG. Sguazzoni,57a

A. Tropiano,57a,bL. Benussi,58S. Bianco,58S. Colafranceschi,58,xF. Fabbri,58D. Piccolo,58P. Fabbricatore,59 R. Musenich,59A. Benaglia,60a,60b,bF. De Guio,60a,60bL. Di Matteo,60a,60bS. Gennai,60a,bA. Ghezzi,60a,60b

S. Malvezzi,60aA. Martelli,60a,60bA. Massironi,60a,60b,bD. Menasce,60aL. Moroni,60aM. Paganoni,60a,60b D. Pedrini,60aS. Ragazzi,60a,60bN. Redaelli,60aS. Sala,60aT. Tabarelli de Fatis,60a,60bS. Buontempo,61a

C. A. Carrillo Montoya,61a,bN. Cavallo,61a,yA. De Cosa,61a,61bO. Dogangun,61a,61bF. Fabozzi,61a,y A. O. M. Iorio,61a,bL. Lista,61aM. Merola,61a,61bP. Paolucci,61aP. Azzi,62aN. Bacchetta,62a,bP. Bellan,62a,62b

D. Bisello,62a,62bA. Branca,62aR. Carlin,62a,62bP. Checchia,62aT. Dorigo,62aU. Dosselli,62aF. Fanzago,62a F. Gasparini,62a,62bU. Gasparini,62a,62bA. Gozzelino,62aS. Lacaprara,62a,zI. Lazzizzera,62a,62cM. Margoni,62a,62b M. Mazzucato,62aA. T. Meneguzzo,62a,62bM. Nespolo,62a,bL. Perrozzi,62aN. Pozzobon,62a,62bP. Ronchese,62a,62b F. Simonetto,62a,62bE. Torassa,62aM. Tosi,62a,62b,bS. Vanini,62a,62bP. Zotto,62a,62bG. Zumerle,62a,62bP. Baesso,63a,63b U. Berzano,63aS. P. Ratti,63a,63bC. Riccardi,63a,63bP. Torre,63a,63bP. Vitulo,63a,63bC. Viviani,63a,63bM. Biasini,64a,64b

G. M. Bilei,64aB. Caponeri,64a,64bL. Fano`,64a,64bP. Lariccia,64a,64bA. Lucaroni,64a,64b,bG. Mantovani,64a,64b M. Menichelli,64aA. Nappi,64a,64bF. Romeo,64a,64bA. Santocchia,64a,64bS. Taroni,64a,64b,bM. Valdata,64a,64b

P. Azzurri,65a,65cG. Bagliesi,65aT. Boccali,65aG. Broccolo,65a,65cR. Castaldi,65aR. T. D’Agnolo,65a,65c R. Dell’Orso,65aF. Fiori,65a,65bL. Foa`,65a,65cA. Giassi,65aA. Kraan,65aF. Ligabue,65a,65cT. Lomtadze,65a L. Martini,65a,aaA. Messineo,65a,65bF. Palla,65aF. Palmonari,65aA. Rizzi,65aG. Segneri,65aA. T. Serban,65a P. Spagnolo,65aR. Tenchini,65aG. Tonelli,65a,65b,bA. Venturi,65a,bP. G. Verdini,65aL. Barone,66a,66bF. Cavallari,66a D. Del Re,66a,66b,bM. Diemoz,66aD. Franci,66a,66bM. Grassi,66a,bE. Longo,66a,66bP. Meridiani,66aS. Nourbakhsh,66a

G. Organtini,66a,66bF. Pandolfi,66a,66bR. Paramatti,66aS. Rahatlou,66a,66bM. Sigamani,66aN. Amapane,67a,67b R. Arcidiacono,67a,67cS. Argiro,67a,67bM. Arneodo,67a,67cC. Biino,67aC. Botta,67a,67bN. Cartiglia,67a

R. Castello,67a,67bM. Costa,67a,67bN. Demaria,67aA. Graziano,67a,67bC. Mariotti,67a,bS. Maselli,67a E. Migliore,67a,67bV. Monaco,67a,67bM. Musich,67aM. M. Obertino,67a,67cN. Pastrone,67aM. Pelliccioni,67a A. Potenza,67a,67bA. Romero,67a,67bM. Ruspa,67a,67cR. Sacchi,67a,67bV. Sola,67a,67bA. Solano,67a,67bA. Staiano,67a

A. Vilela Pereira,67aS. Belforte,68aF. Cossutti,68aG. Della Ricca,68a,68bB. Gobbo,68aM. Marone,68a,68b D. Montanino,68a,68b,bA. Penzo,68aS. G. Heo,69S. K. Nam,69S. Chang,70J. Chung,70D. H. Kim,70G. N. Kim,70

J. E. Kim,70D. J. Kong,70H. Park,70S. R. Ro,70D. C. Son,70T. Son,70J. Y. Kim,71Zero J. Kim,71S. Song,71 H. Y. Jo,72S. Choi,73D. Gyun,73B. Hong,73M. Jo,73H. Kim,73T. J. Kim,73K. S. Lee,73D. H. Moon,73S. K. Park,73

E. Seo,73K. S. Sim,73M. Choi,74S. Kang,74H. Kim,74J. H. Kim,74C. Park,74I. C. Park,74S. Park,74G. Ryu,74 Y. Cho,75Y. Choi,75Y. K. Choi,75J. Goh,75M. S. Kim,75B. Lee,75J. Lee,75S. Lee,75H. Seo,75I. Yu,75 M. J. Bilinskas,76I. Grigelionis,76M. Janulis,76D. Martisiute,76P. Petrov,76M. Polujanskas,76T. Sabonis,76 H. Castilla-Valdez,77E. De La Cruz-Burelo,77I. Heredia-de La Cruz,77R. Lopez-Fernandez,77R. Magan˜a Villalba,77

(9)

F. Vazquez Valencia,78H. A. Salazar Ibarguen,79E. Casimiro Linares,80A. Morelos Pineda,80M. A. Reyes-Santos,80 D. Krofcheck,81A. J. Bell,82P. H. Butler,82R. Doesburg,82S. Reucroft,82H. Silverwood,82M. Ahmad,83 M. I. Asghar,83H. R. Hoorani,83S. Khalid,83W. A. Khan,83T. Khurshid,83S. Qazi,83M. A. Shah,83M. Shoaib,83

G. Brona,84M. Cwiok,84W. Dominik,84K. Doroba,84A. Kalinowski,84M. Konecki,84J. Krolikowski,84 H. Bialkowska,85B. Boimska,85T. Frueboes,85R. Gokieli,85M. Go´rski,85M. Kazana,85K. Nawrocki,85 K. Romanowska-Rybinska,85M. Szleper,85G. Wrochna,85P. Zalewski,85N. Almeida,86P. Bargassa,86A. David,86

P. Faccioli,86P. G. Ferreira Parracho,86M. Gallinaro,86P. Musella,86A. Nayak,86J. Pela,86,bP. Q. Ribeiro,86 J. Seixas,86J. Varela,86S. Afanasiev,87I. Belotelov,87P. Bunin,87M. Gavrilenko,87I. Golutvin,87I. Gorbunov,87 A. Kamenev,87V. Karjavin,87G. Kozlov,87A. Lanev,87P. Moisenz,87V. Palichik,87V. Perelygin,87S. Shmatov,87 V. Smirnov,87A. Volodko,87A. Zarubin,87S. Evstyukhin,88V. Golovtsov,88Y. Ivanov,88V. Kim,88P. Levchenko,88 V. Murzin,88V. Oreshkin,88I. Smirnov,88V. Sulimov,88L. Uvarov,88S. Vavilov,88A. Vorobyev,88An. Vorobyev,88

Yu. Andreev,89A. Dermenev,89S. Gninenko,89N. Golubev,89M. Kirsanov,89N. Krasnikov,89V. Matveev,89 A. Pashenkov,89A. Toropin,89S. Troitsky,89V. Epshteyn,90M. Erofeeva,90V. Gavrilov,90M. Kossov,90,b A. Krokhotin,90N. Lychkovskaya,90V. Popov,90G. Safronov,90S. Semenov,90V. Stolin,90E. Vlasov,90A. Zhokin,90

A. Belyaev,91E. Boos,91M. Dubinin,91,eL. Dudko,91A. Ershov,91A. Gribushin,91O. Kodolova,91I. Lokhtin,91 A. Markina,91S. Obraztsov,91M. Perfilov,91S. Petrushanko,91L. Sarycheva,91V. Savrin,91A. Snigirev,91 V. Andreev,92M. Azarkin,92I. Dremin,92M. Kirakosyan,92A. Leonidov,92G. Mesyats,92S. V. Rusakov,92 A. Vinogradov,92I. Azhgirey,93I. Bayshev,93S. Bitioukov,93V. Grishin,93,bV. Kachanov,93D. Konstantinov,93 A. Korablev,93V. Krychkine,93V. Petrov,93R. Ryutin,93A. Sobol,93L. Tourtchanovitch,93S. Troshin,93N. Tyurin,93

A. Uzunian,93A. Volkov,93P. Adzic,94,bbM. Djordjevic,94M. Ekmedzic,94D. Krpic,94,bbJ. Milosevic,94 M. Aguilar-Benitez,95J. Alcaraz Maestre,95P. Arce,95C. Battilana,95E. Calvo,95M. Cerrada,95

M. Chamizo Llatas,95N. Colino,95B. De La Cruz,95A. Delgado Peris,95C. Diez Pardos,95D. Domı´nguez Va´zquez,95 C. Fernandez Bedoya,95J. P. Ferna´ndez Ramos,95A. Ferrando,95J. Flix,95M. C. Fouz,95P. Garcia-Abia,95

O. Gonzalez Lopez,95S. Goy Lopez,95J. M. Hernandez,95M. I. Josa,95G. Merino,95J. Puerta Pelayo,95 I. Redondo,95L. Romero,95J. Santaolalla,95M. S. Soares,95C. Willmott,95C. Albajar,96G. Codispoti,96

J. F. de Troco´niz,96J. Cuevas,97J. Fernandez Menendez,97S. Folgueras,97I. Gonzalez Caballero,97 L. Lloret Iglesias,97J. M. Vizan Garcia,97J. A. Brochero Cifuentes,98I. J. Cabrillo,98A. Calderon,98S. H. Chuang,98

J. Duarte Campderros,98M. Felcini,98,ccM. Fernandez,98G. Gomez,98J. Gonzalez Sanchez,98C. Jorda,98 P. Lobelle Pardo,98A. Lopez Virto,98J. Marco,98R. Marco,98C. Martinez Rivero,98F. Matorras,98 F. J. Munoz Sanchez,98J. Piedra Gomez,98,ddT. Rodrigo,98A. Y. Rodrı´guez-Marrero,98A. Ruiz-Jimeno,98 L. Scodellaro,98M. Sobron Sanudo,98I. Vila,98R. Vilar Cortabitarte,98D. Abbaneo,99E. Auffray,99G. Auzinger,99

P. Baillon,99A. H. Ball,99D. Barney,99C. Bernet,99,fW. Bialas,99P. Bloch,99A. Bocci,99H. Breuker,99 K. Bunkowski,99T. Camporesi,99G. Cerminara,99T. Christiansen,99J. A. Coarasa Perez,99B. Cure´,99 D. D’Enterria,99A. De Roeck,99S. Di Guida,99M. Dobson,99N. Dupont-Sagorin,99A. Elliott-Peisert,99B. Frisch,99 W. Funk,99A. Gaddi,99G. Georgiou,99H. Gerwig,99M. Giffels,99D. Gigi,99K. Gill,99D. Giordano,99M. Giunta,99

F. Glege,99R. Gomez-Reino Garrido,99P. Govoni,99S. Gowdy,99R. Guida,99L. Guiducci,99S. Gundacker,99 M. Hansen,99C. Hartl,99J. Harvey,99J. Hegeman,99B. Hegner,99H. F. Hoffmann,99V. Innocente,99P. Janot,99

K. Kaadze,99E. Karavakis,99P. Lecoq,99P. Lenzi,99C. Lourenc¸o,99T. Ma¨ki,99M. Malberti,99L. Malgeri,99 M. Mannelli,99L. Masetti,99G. Mavromanolakis,99F. Meijers,99S. Mersi,99E. Meschi,99R. Moser,99 M. U. Mozer,99M. Mulders,99E. Nesvold,99M. Nguyen,99T. Orimoto,99L. Orsini,99E. Palencia Cortezon,99

E. Perez,99A. Petrilli,99A. Pfeiffer,99M. Pierini,99M. Pimia¨,99D. Piparo,99G. Polese,99L. Quertenmont,99 A. Racz,99W. Reece,99J. Rodrigues Antunes,99G. Rolandi,99,eeT. Rommerskirchen,99C. Rovelli,99,ffM. Rovere,99

H. Sakulin,99F. Santanastasio,99C. Scha¨fer,99C. Schwick,99I. Segoni,99A. Sharma,99P. Siegrist,99P. Silva,99 M. Simon,99P. Sphicas,99,ggD. Spiga,99M. Spiropulu,99,eM. Stoye,99A. Tsirou,99P. Vichoudis,99H. K. Wo¨hri,99 S. D. Worm,99,hhW. D. Zeuner,99W. Bertl,100K. Deiters,100W. Erdmann,100K. Gabathuler,100R. Horisberger,100

Q. Ingram,100H. C. Kaestli,100S. Ko¨nig,100D. Kotlinski,100U. Langenegger,100F. Meier,100D. Renker,100 T. Rohe,100J. Sibille,100,iiL. Ba¨ni,101P. Bortignon,101B. Casal,101N. Chanon,101Z. Chen,101S. Cittolin,101 A. Deisher,101G. Dissertori,101M. Dittmar,101J. Eugster,101K. Freudenreich,101C. Grab,101P. Lecomte,101 W. Lustermann,101P. Martinez Ruiz del Arbol,101P. Milenovic,101,jjN. Mohr,101F. Moortgat,101C. Na¨geli,101,kk

P. Nef,101F. Nessi-Tedaldi,101L. Pape,101F. Pauss,101M. Peruzzi,101F. J. Ronga,101M. Rossini,101L. Sala,101 A. K. Sanchez,101M.-C. Sawley,101A. Starodumov,101,llB. Stieger,101M. Takahashi,101L. Tauscher,101,aA. Thea,101

(10)

K. Theofilatos,101D. Treille,101C. Urscheler,101R. Wallny,101H. A. Weber,101L. Wehrli,101J. Weng,101 E. Aguilo,102C. Amsler,102V. Chiochia,102S. De Visscher,102C. Favaro,102M. Ivova Rikova,102B. Millan Mejias,102

P. Otiougova,102P. Robmann,102A. Schmidt,102H. Snoek,102M. Verzetti,102Y. H. Chang,103K. H. Chen,103 C. M. Kuo,103S. W. Li,103W. Lin,103Z. K. Liu,103Y. J. Lu,103D. Mekterovic,103R. Volpe,103S. S. Yu,103 P. Bartalini,104P. Chang,104Y. H. Chang,104Y. W. Chang,104Y. Chao,104K. F. Chen,104C. Dietz,104U. Grundler,104

W.-S. Hou,104Y. Hsiung,104K. Y. Kao,104Y. J. Lei,104R.-S. Lu,104J. G. Shiu,104Y. M. Tzeng,104X. Wan,104 M. Wang,104A. Adiguzel,105M. N. Bakirci,105,mmS. Cerci,105,nnC. Dozen,105I. Dumanoglu,105E. Eskut,105 S. Girgis,105G. Gokbulut,105I. Hos,105E. E. Kangal,105G. Karapinar,105A. Kayis Topaksu,105G. Onengut,105 K. Ozdemir,105S. Ozturk,105,ooA. Polatoz,105K. Sogut,105,ppD. Sunar Cerci,105,nnB. Tali,105,nnH. Topakli,105,mm

D. Uzun,105L. N. Vergili,105M. Vergili,105I. V. Akin,106T. Aliev,106B. Bilin,106S. Bilmis,106M. Deniz,106 H. Gamsizkan,106A. M. Guler,106K. Ocalan,106A. Ozpineci,106M. Serin,106R. Sever,106U. E. Surat,106 M. Yalvac,106E. Yildirim,106M. Zeyrek,106M. Deliomeroglu,107E. Gu¨lmez,107B. Isildak,107M. Kaya,107,qq O. Kaya,107,qqM. O¨ zbek,107S. Ozkorucuklu,107,rrN. Sonmez,107,ssL. Levchuk,108F. Bostock,109J. J. Brooke,109

E. Clement,109D. Cussans,109R. Frazier,109J. Goldstein,109M. Grimes,109G. P. Heath,109H. F. Heath,109 L. Kreczko,109S. Metson,109D. M. Newbold,109,hhK. Nirunpong,109A. Poll,109S. Senkin,109V. J. Smith,109

T. Williams,109L. Basso,110,ttK. W. Bell,110A. Belyaev,110,ttC. Brew,110R. M. Brown,110B. Camanzi,110 D. J. A. Cockerill,110J. A. Coughlan,110K. Harder,110S. Harper,110J. Jackson,110B. W. Kennedy,110E. Olaiya,110

D. Petyt,110B. C. Radburn-Smith,110C. H. Shepherd-Themistocleous,110I. R. Tomalin,110W. J. Womersley,110 R. Bainbridge,111G. Ball,111R. Beuselinck,111O. Buchmuller,111D. Colling,111N. Cripps,111M. Cutajar,111

P. Dauncey,111G. Davies,111M. Della Negra,111W. Ferguson,111J. Fulcher,111D. Futyan,111A. Gilbert,111 A. Guneratne Bryer,111G. Hall,111Z. Hatherell,111J. Hays,111G. Iles,111M. Jarvis,111G. Karapostoli,111 L. Lyons,111A.-M. Magnan,111J. Marrouche,111B. Mathias,111R. Nandi,111J. Nash,111A. Nikitenko,111,ll

A. Papageorgiou,111M. Pesaresi,111K. Petridis,111M. Pioppi,111,uuD. M. Raymond,111S. Rogerson,111 N. Rompotis,111A. Rose,111M. J. Ryan,111C. Seez,111P. Sharp,111A. Sparrow,111A. Tapper,111S. Tourneur,111 M. Vazquez Acosta,111T. Virdee,111S. Wakefield,111N. Wardle,111D. Wardrope,111T. Whyntie,111M. Barrett,112 M. Chadwick,112J. E. Cole,112P. R. Hobson,112A. Khan,112P. Kyberd,112D. Leslie,112W. Martin,112I. D. Reid,112 L. Teodorescu,112M. Turner,112K. Hatakeyama,113H. Liu,113T. Scarborough,113C. Henderson,114A. Avetisyan,115 T. Bose,115E. Carrera Jarrin,115C. Fantasia,115A. Heister,115J. St. John,115P. Lawson,115D. Lazic,115J. Rohlf,115

D. Sperka,115L. Sulak,115S. Bhattacharya,116D. Cutts,116A. Ferapontov,116U. Heintz,116S. Jabeen,116 G. Kukartsev,116G. Landsberg,116M. Luk,116M. Narain,116D. Nguyen,116M. Segala,116T. Sinthuprasith,116 T. Speer,116K. V. Tsang,116R. Breedon,117G. Breto,117M. Calderon De La Barca Sanchez,117S. Chauhan,117

M. Chertok,117J. Conway,117R. Conway,117P. T. Cox,117J. Dolen,117R. Erbacher,117R. Houtz,117W. Ko,117 A. Kopecky,117R. Lander,117O. Mall,117T. Miceli,117D. Pellett,117J. Robles,117B. Rutherford,117M. Searle,117

J. Smith,117M. Squires,117M. Tripathi,117R. Vasquez Sierra,117V. Andreev,118K. Arisaka,118D. Cline,118 R. Cousins,118J. Duris,118S. Erhan,118P. Everaerts,118C. Farrell,118J. Hauser,118M. Ignatenko,118C. Jarvis,118

C. Plager,118G. Rakness,118P. Schlein,118,aJ. Tucker,118V. Valuev,118M. Weber,118J. Babb,119R. Clare,119 J. Ellison,119J. W. Gary,119F. Giordano,119G. Hanson,119G. Y. Jeng,119S. C. Kao,119H. Liu,119O. R. Long,119 A. Luthra,119H. Nguyen,119S. Paramesvaran,119J. Sturdy,119S. Sumowidagdo,119R. Wilken,119S. Wimpenny,119

W. Andrews,120J. G. Branson,120G. B. Cerati,120D. Evans,120F. Golf,120A. Holzner,120R. Kelley,120 M. Lebourgeois,120J. Letts,120I. Macneill,120B. Mangano,120S. Padhi,120C. Palmer,120G. Petrucciani,120H. Pi,120 M. Pieri,120R. Ranieri,120M. Sani,120I. Sfiligoi,120V. Sharma,120S. Simon,120E. Sudano,120M. Tadel,120Y. Tu,120

A. Vartak,120S. Wasserbaech,120,vvF. Wu¨rthwein,120A. Yagil,120J. Yoo,120D. Barge,121R. Bellan,121 C. Campagnari,121M. D’Alfonso,121T. Danielson,121K. Flowers,121P. Geffert,121C. George,121J. Incandela,121

C. Justus,121P. Kalavase,121S. A. Koay,121D. Kovalskyi,121,bV. Krutelyov,121S. Lowette,121N. Mccoll,121 S. D. Mullin,121V. Pavlunin,121F. Rebassoo,121J. Ribnik,121J. Richman,121R. Rossin,121D. Stuart,121W. To,121 J. R. Vlimant,121C. West,121A. Apresyan,122A. Bornheim,122J. Bunn,122Y. Chen,122E. Di Marco,122J. Duarte,122 M. Gataullin,122Y. Ma,122A. Mott,122H. B. Newman,122C. Rogan,122V. Timciuc,122P. Traczyk,122J. Veverka,122 R. Wilkinson,122Y. Yang,122R. Y. Zhu,122B. Akgun,123R. Carroll,123T. Ferguson,123Y. Iiyama,123D. W. Jang,123 S. Y. Jun,123Y. F. Liu,123M. Paulini,123J. Russ,123H. Vogel,123I. Vorobiev,123J. P. Cumalat,124M. E. Dinardo,124 B. R. Drell,124C. J. Edelmaier,124W. T. Ford,124A. Gaz,124B. Heyburn,124E. Luiggi Lopez,124U. Nauenberg,124 J. G. Smith,124K. Stenson,124K. A. Ulmer,124S. R. Wagner,124S. L. Zang,124L. Agostino,125J. Alexander,125

(11)

A. Chatterjee,125N. Eggert,125L. K. Gibbons,125B. Heltsley,125W. Hopkins,125A. Khukhunaishvili,125B. Kreis,125 G. Nicolas Kaufman,125J. R. Patterson,125D. Puigh,125A. Ryd,125E. Salvati,125X. Shi,125W. Sun,125W. D. Teo,125 J. Thom,125J. Thompson,125J. Vaughan,125Y. Weng,125L. Winstrom,125P. Wittich,125A. Biselli,126G. Cirino,126

D. Winn,126S. Abdullin,127M. Albrow,127J. Anderson,127G. Apollinari,127M. Atac,127J. A. Bakken,127 L. A. T. Bauerdick,127A. Beretvas,127J. Berryhill,127P. C. Bhat,127I. Bloch,127K. Burkett,127J. N. Butler,127 V. Chetluru,127H. W. K. Cheung,127F. Chlebana,127S. Cihangir,127W. Cooper,127D. P. Eartly,127V. D. Elvira,127

S. Esen,127I. Fisk,127J. Freeman,127Y. Gao,127E. Gottschalk,127D. Green,127O. Gutsche,127J. Hanlon,127 R. M. Harris,127J. Hirschauer,127B. Hooberman,127H. Jensen,127S. Jindariani,127M. Johnson,127U. Joshi,127

B. Klima,127K. Kousouris,127S. Kunori,127S. Kwan,127C. Leonidopoulos,127D. Lincoln,127R. Lipton,127 J. Lykken,127K. Maeshima,127J. M. Marraffino,127S. Maruyama,127D. Mason,127P. McBride,127T. Miao,127 K. Mishra,127S. Mrenna,127Y. Musienko,127,wwC. Newman-Holmes,127V. O’Dell,127J. Pivarski,127R. Pordes,127

O. Prokofyev,127T. Schwarz,127E. Sexton-Kennedy,127S. Sharma,127W. J. Spalding,127L. Spiegel,127P. Tan,127 L. Taylor,127S. Tkaczyk,127L. Uplegger,127E. W. Vaandering,127R. Vidal,127J. Whitmore,127W. Wu,127F. Yang,127 F. Yumiceva,127J. C. Yun,127D. Acosta,128P. Avery,128D. Bourilkov,128M. Chen,128S. Das,128M. De Gruttola,128

G. P. Di Giovanni,128D. Dobur,128A. Drozdetskiy,128R. D. Field,128M. Fisher,128Y. Fu,128I. K. Furic,128 J. Gartner,128S. Goldberg,128J. Hugon,128B. Kim,128J. Konigsberg,128A. Korytov,128A. Kropivnitskaya,128

T. Kypreos,128J. F. Low,128K. Matchev,128G. Mitselmakher,128L. Muniz,128M. Park,128R. Remington,128 A. Rinkevicius,128M. Schmitt,128B. Scurlock,128P. Sellers,128N. Skhirtladze,128M. Snowball,128D. Wang,128

J. Yelton,128M. Zakaria,128V. Gaultney,129L. M. Lebolo,129S. Linn,129P. Markowitz,129G. Martinez,129 J. L. Rodriguez,129T. Adams,130A. Askew,130J. Bochenek,130J. Chen,130B. Diamond,130S. V. Gleyzer,130

J. Haas,130S. Hagopian,130V. Hagopian,130M. Jenkins,130K. F. Johnson,130H. Prosper,130S. Sekmen,130 V. Veeraraghavan,130M. M. Baarmand,131B. Dorney,131M. Hohlmann,131H. Kalakhety,131I. Vodopiyanov,131

M. R. Adams,132I. M. Anghel,132L. Apanasevich,132Y. Bai,132V. E. Bazterra,132R. R. Betts,132J. Callner,132 R. Cavanaugh,132C. Dragoiu,132L. Gauthier,132C. E. Gerber,132D. J. Hofman,132S. Khalatyan,132G. J. Kunde,132,xx F. Lacroix,132M. Malek,132C. O’Brien,132C. Silkworth,132C. Silvestre,132D. Strom,132N. Varelas,132U. Akgun,133

E. A. Albayrak,133B. Bilki,133W. Clarida,133F. Duru,133S. Griffiths,133C. K. Lae,133E. McCliment,133 J.-P. Merlo,133H. Mermerkaya,133,yyA. Mestvirishvili,133A. Moeller,133J. Nachtman,133C. R. Newsom,133 E. Norbeck,133J. Olson,133Y. Onel,133F. Ozok,133S. Sen,133E. Tiras,133J. Wetzel,133T. Yetkin,133K. Yi,133 B. A. Barnett,134B. Blumenfeld,134S. Bolognesi,134A. Bonato,134C. Eskew,134D. Fehling,134G. Giurgiu,134

A. V. Gritsan,134Z. J. Guo,134G. Hu,134P. Maksimovic,134S. Rappoccio,134M. Swartz,134N. V. Tran,134 A. Whitbeck,134P. Baringer,135A. Bean,135G. Benelli,135O. Grachov,135R. P. Kenny Iii,135M. Murray,135 D. Noonan,135S. Sanders,135R. Stringer,135G. Tinti,135J. S. Wood,135V. Zhukova,135A. F. Barfuss,136T. Bolton,136

I. Chakaberia,136A. Ivanov,136S. Khalil,136M. Makouski,136Y. Maravin,136S. Shrestha,136I. Svintradze,136 J. Gronberg,137D. Lange,137D. Wright,137A. Baden,138M. Boutemeur,138B. Calvert,138S. C. Eno,138 J. A. Gomez,138N. J. Hadley,138R. G. Kellogg,138M. Kirn,138Y. Lu,138A. C. Mignerey,138A. Peterman,138 K. Rossato,138P. Rumerio,138A. Skuja,138J. Temple,138M. B. Tonjes,138S. C. Tonwar,138E. Twedt,138B. Alver,139 G. Bauer,139J. Bendavid,139W. Busza,139E. Butz,139I. A. Cali,139M. Chan,139V. Dutta,139G. Gomez Ceballos,139

M. Goncharov,139K. A. Hahn,139P. Harris,139Y. Kim,139M. Klute,139Y.-J. Lee,139W. Li,139P. D. Luckey,139 T. Ma,139S. Nahn,139C. Paus,139D. Ralph,139C. Roland,139G. Roland,139M. Rudolph,139G. S. F. Stephans,139 F. Sto¨ckli,139K. Sumorok,139K. Sung,139D. Velicanu,139E. A. Wenger,139R. Wolf,139B. Wyslouch,139S. Xie,139

M. Yang,139Y. Yilmaz,139A. S. Yoon,139M. Zanetti,139S. I. Cooper,140P. Cushman,140B. Dahmes,140 A. De Benedetti,140G. Franzoni,140A. Gude,140J. Haupt,140K. Klapoetke,140Y. Kubota,140J. Mans,140 N. Pastika,140V. Rekovic,140R. Rusack,140M. Sasseville,140A. Singovsky,140N. Tambe,140J. Turkewitz,140 L. M. Cremaldi,141R. Godang,141R. Kroeger,141L. Perera,141R. Rahmat,141D. A. Sanders,141D. Summers,141

E. Avdeeva,142K. Bloom,142S. Bose,142J. Butt,142D. R. Claes,142A. Dominguez,142M. Eads,142P. Jindal,142 J. Keller,142I. Kravchenko,142J. Lazo-Flores,142H. Malbouisson,142S. Malik,142G. R. Snow,142U. Baur,143 A. Godshalk,143I. Iashvili,143S. Jain,143A. Kharchilava,143A. Kumar,143K. Smith,143Z. Wan,143G. Alverson,144

E. Barberis,144D. Baumgartel,144M. Chasco,144D. Trocino,144D. Wood,144J. Zhang,144A. Anastassov,145 A. Kubik,145N. Mucia,145N. Odell,145R. A. Ofierzynski,145B. Pollack,145A. Pozdnyakov,145M. Schmitt,145

S. Stoynev,145M. Velasco,145S. Won,145L. Antonelli,146D. Berry,146A. Brinkerhoff,146M. Hildreth,146 C. Jessop,146D. J. Karmgard,146J. Kolb,146T. Kolberg,146K. Lannon,146W. Luo,146S. Lynch,146N. Marinelli,146

(12)

D. M. Morse,146T. Pearson,146R. Ruchti,146J. Slaunwhite,146N. Valls,146M. Wayne,146J. Ziegler,146B. Bylsma,147 L. S. Durkin,147C. Hill,147P. Killewald,147K. Kotov,147T. Y. Ling,147M. Rodenburg,147C. Vuosalo,147 G. Williams,147N. Adam,148E. Berry,148P. Elmer,148D. Gerbaudo,148V. Halyo,148P. Hebda,148A. Hunt,148 E. Laird,148D. Lopes Pegna,148P. Lujan,148D. Marlow,148T. Medvedeva,148M. Mooney,148J. Olsen,148P. Piroue´,148

X. Quan,148A. Raval,148H. Saka,148D. Stickland,148C. Tully,148J. S. Werner,148A. Zuranski,148J. G. Acosta,149 X. T. Huang,149A. Lopez,149H. Mendez,149S. Oliveros,149J. E. Ramirez Vargas,149A. Zatserklyaniy,149 E. Alagoz,150V. E. Barnes,150D. Benedetti,150G. Bolla,150L. Borrello,150D. Bortoletto,150M. De Mattia,150 A. Everett,150L. Gutay,150Z. Hu,150M. Jones,150O. Koybasi,150M. Kress,150A. T. Laasanen,150N. Leonardo,150 V. Maroussov,150P. Merkel,150D. H. Miller,150N. Neumeister,150I. Shipsey,150D. Silvers,150A. Svyatkovskiy,150

M. Vidal Marono,150H. D. Yoo,150J. Zablocki,150Y. Zheng,150S. Guragain,151N. Parashar,151A. Adair,152 C. Boulahouache,152V. Cuplov,152K. M. Ecklund,152F. J. M. Geurts,152B. P. Padley,152R. Redjimi,152J. Roberts,152 J. Zabel,152B. Betchart,153A. Bodek,153Y. S. Chung,153R. Covarelli,153P. de Barbaro,153R. Demina,153Y. Eshaq,153

H. Flacher,153A. Garcia-Bellido,153P. Goldenzweig,153Y. Gotra,153J. Han,153A. Harel,153D. C. Miner,153 G. Petrillo,153W. Sakumoto,153D. Vishnevskiy,153M. Zielinski,153A. Bhatti,154R. Ciesielski,154L. Demortier,154

K. Goulianos,154G. Lungu,154S. Malik,154C. Mesropian,154S. Arora,155O. Atramentov,155A. Barker,155 J. P. Chou,155C. Contreras-Campana,155E. Contreras-Campana,155D. Duggan,155D. Ferencek,155Y. Gershtein,155

R. Gray,155E. Halkiadakis,155D. Hidas,155D. Hits,155A. Lath,155S. Panwalkar,155M. Park,155R. Patel,155 A. Richards,155K. Rose,155S. Salur,155S. Schnetzer,155S. Somalwar,155R. Stone,155S. Thomas,155G. Cerizza,156

M. Hollingsworth,156S. Spanier,156Z. C. Yang,156A. York,156R. Eusebi,157W. Flanagan,157J. Gilmore,157 T. Kamon,157,zzV. Khotilovich,157R. Montalvo,157I. Osipenkov,157Y. Pakhotin,157A. Perloff,157J. Roe,157 A. Safonov,157S. Sengupta,157I. Suarez,157A. Tatarinov,157D. Toback,157N. Akchurin,158C. Bardak,158 J. Damgov,158P. R. Dudero,158C. Jeong,158K. Kovitanggoon,158S. W. Lee,158T. Libeiro,158P. Mane,158Y. Roh,158 A. Sill,158I. Volobouev,158R. Wigmans,158E. Yazgan,158E. Appelt,159E. Brownson,159D. Engh,159C. Florez,159

W. Gabella,159A. Gurrola,159M. Issah,159W. Johns,159C. Johnston,159P. Kurt,159C. Maguire,159A. Melo,159 P. Sheldon,159B. Snook,159S. Tuo,159J. Velkovska,159M. W. Arenton,160M. Balazs,160S. Boutle,160S. Conetti,160

B. Cox,160B. Francis,160S. Goadhouse,160J. Goodell,160R. Hirosky,160A. Ledovskoy,160C. Lin,160C. Neu,160 J. Wood,160R. Yohay,160S. Gollapinni,161R. Harr,161P. E. Karchin,161C. Kottachchi Kankanamge Don,161 P. Lamichhane,161M. Mattson,161C. Milste`ne,161A. Sakharov,161M. Anderson,162M. Bachtis,162D. Belknap,162 J. N. Bellinger,162J. Bernardini,162D. Carlsmith,162M. Cepeda,162S. Dasu,162J. Efron,162E. Friis,162L. Gray,162

K. S. Grogg,162M. Grothe,162R. Hall-Wilton,162M. Herndon,162A. Herve´,162P. Klabbers,162J. Klukas,162 A. Lanaro,162C. Lazaridis,162J. Leonard,162R. Loveless,162A. Mohapatra,162I. Ojalvo,162G. A. Pierro,162

I. Ross,162A. Savin,162W. H. Smith,162J. Swanson,162and M. Weinberg162 (CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium 8

Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium

9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria

15Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17

Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia

(13)

20Institute Rudjer Boskovic, Zagreb, Croatia 21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt,

Egyptian Network of High Energy Physics, Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland 27

Lappeenranta University of Technology, Lappeenranta, Finland

28Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France 29DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

30Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

31Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse,

CNRS/IN2P3, Strasbourg, France

32Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France 33Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France

34Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 35RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

36RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 37RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

38Deutsches Elektronen-Synchrotron, Hamburg, Germany 39University of Hamburg, Hamburg, Germany 40Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 41Institute of Nuclear Physics ‘‘Demokritos,’’ Aghia Paraskevi, Greece

42

University of Athens, Athens, Greece

43University of Ioa´nnina, Ioa´nnina, Greece

44KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 45Institute of Nuclear Research ATOMKI, Debrecen, Hungary

46University of Debrecen, Debrecen, Hungary 47Panjab University, Chandigarh, India

48University of Delhi, Delhi, India 49Saha Institute of Nuclear Physics, Kolkata, India

50Bhabha Atomic Research Centre, Mumbai, India 51Tata Institute of Fundamental Research–EHEP, Mumbai, India 52Tata Institute of Fundamental Research–HECR, Mumbai, India 53Institute for Research and Fundamental Sciences (IPM), Tehran, Iran

54aINFN Sezione di Bari, Bari, Italy 54bUniversita` di Bari, Bari, Italy 54cPolitecnico di Bari, Bari, Italy 55aINFN Sezione di Bologna, Bologna, Italy

55bUniversita` di Bologna, Bologna, Italy 56aINFN Sezione di Catania, Catania, Italy

56bUniversita` di Catania, Catania, Italy 57aINFN Sezione di Firenze, Firenze, Italy

57bUniversita` di Firenze, Firenze, Italy

58INFN Laboratori Nazionali di Frascati, Frascati, Italy 59INFN Sezione di Genova, Genova, Italy 60a

INFN Sezione di Milano-Bicocca, Milano, Italy

60bUniversita` di Milano-Bicocca, Milano, Italy 61aINFN Sezione di Napoli, Napoli, Italy 61bUniversita` di Napoli ‘‘Federico II,’’ Napoli, Italy

62aINFN Sezione di Padova, Padova, Italy 62bUniversita` di Padova, Padova, Italy 62cUniversita` di Trento (Trento), Padova, Italy

63aINFN Sezione di Pavia, Pavia, Italy 63bUniversita` di Pavia, Pavia, Italy

64a

INFN Sezione di Perugia, Italy

64bUniversita` di Perugia, Italy 65aINFN Sezione di Pisa, Pisa, Italy

65bUniversita` di Pisa, Pisa, Italy 65cScuola Normale Superiore di Pisa, Pisa, Italy

(14)

66aINFN Sezione di Roma, Roma, Italy 66bUniversita` di Roma ‘‘La Sapienza,’’ Roma, Italy

67aINFN Sezione di Torino, Torino, Italy 67bUniversita` di Torino, Torino, Italy

67cUniversita` del Piemonte Orientale (Novara), Torino, Italy 68aINFN Sezione di Trieste, Trieste, Italy

68bUniversita` di Trieste, Trieste, Italy 69Kangwon National University, Chunchon, Korea

70

Kyungpook National University, Daegu, Korea

71Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 72Konkuk University, Seoul, Korea

73Korea University, Seoul, Korea 74University of Seoul, Seoul, Korea 75Sungkyunkwan University, Suwon, Korea

76Vilnius University, Vilnius, Lithuania

77Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 78Universidad Iberoamericana, Mexico City, Mexico

79Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 80Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

81University of Auckland, Auckland, New Zealand 82University of Canterbury, Christchurch, New Zealand

83National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 84Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

85Soltan Institute for Nuclear Studies, Warsaw, Poland 86

Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal

87Joint Institute for Nuclear Research, Dubna, Russia

88Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia 89Institute for Nuclear Research, Moscow, Russia

90Institute for Theoretical and Experimental Physics, Moscow, Russia 91Moscow State University, Moscow, Russia

92P. N. Lebedev Physical Institute, Moscow, Russia

93State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 94University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

95Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain 96Universidad Auto´noma de Madrid, Madrid, Spain

97Universidad de Oviedo, Oviedo, Spain

98Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 99CERN, European Organization for Nuclear Research, Geneva, Switzerland

100Paul Scherrer Institut, Villigen, Switzerland

101Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 102Universita¨t Zu¨rich, Zurich, Switzerland

103National Central University, Chung-Li, Taiwan 104National Taiwan University (NTU), Taipei, Taiwan

105Cukurova University, Adana, Turkey

106Middle East Technical University, Physics Department, Ankara, Turkey 107Bogazici University, Istanbul, Turkey

108National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 109

University of Bristol, Bristol, United Kingdom

110Rutherford Appleton Laboratory, Didcot, United Kingdom 111Imperial College, London, United Kingdom 112Brunel University, Uxbridge, United Kingdom

113Baylor University, Waco, Texas, USA

114The University of Alabama, Tuscaloosa, Alabama, USA 115Boston University, Boston, Massachusetts, USA 116Brown University, Providence, Rhode Island, USA 117University of California, Davis, Davis, California, USA 118

University of California, Los Angeles, Los Angeles, California, USA

119University of California, Riverside, Riverside, California, USA 120University of California, San Diego, La Jolla, California, USA 121University of California, Santa Barbara, Santa Barbara, California, USA

(15)

123Carnegie Mellon University, Pittsburgh, Pennsylvania, USA 124University of Colorado at Boulder, Boulder, Colorado, USA

125Cornell University, Ithaca, New York, USA 126Fairfield University, Fairfield, Connecticut, USA 127Fermi National Accelerator Laboratory, Batavia, Illinois, USA

128University of Florida, Gainesville, Florida, USA 129Florida International University, Miami, Florida, USA

130Florida State University, Tallahassee, Florida, USA 131

Florida Institute of Technology, Melbourne, Florida, USA

132University of Illinois at Chicago (UIC), Chicago, Illinois, USA 133The University of Iowa, Iowa City, Iowa, USA 134Johns Hopkins University, Baltimore, Maryland, USA

135The University of Kansas, Lawrence, Kansas, USA 136Kansas State University, Manhattan, Kansas, USA

137Lawrence Livermore National Laboratory, Livermore, California, USA 138University of Maryland, College Park, Maryland, USA 139Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

140University of Minnesota, Minneapolis, Minnesota, USA 141University of Mississippi, University, Mississippi, USA 142University of Nebraska-Lincoln, Lincoln, Nebraska, USA 143State University of New York at Buffalo, Buffalo, New York, USA

144Northeastern University, Boston, Massachusetts, USA 145Northwestern University, Evanston, Illinois, USA 146University of Notre Dame, Notre Dame, Indiana, USA

147

The Ohio State University, Columbus, Ohio, USA

148Princeton University, Princeton, New Jersey, USA 149University of Puerto Rico, Mayaguez, Puerto Rico 150Purdue University, West Lafayette, Indiana, USA 151Purdue University Calumet, Hammond, Indiana, USA

152Rice University, Houston, Texas, USA 153University of Rochester, Rochester, New York, USA 154The Rockefeller University, New York, New York, USA

155Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA 156University of Tennessee, Knoxville, Tennessee, USA

157Texas A&M University, College Station, Texas, USA 158Texas Tech University, Lubbock, Texas, USA 159Vanderbilt University, Nashville, Tennessee, USA 160University of Virginia, Charlottesville, Virginia, USA

161Wayne State University, Detroit, Michigan, USA 162University of Wisconsin, Madison, Wisconsin, USA

aDeceased.

bAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland. cAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia. dAlso at Universidade Federal do ABC, Santo Andre, Brazil.

eAlso at California Institute of Technology, Pasadena, California, USA.

fAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. g

Also at Suez Canal University, Suez, Egypt.

hAlso at Cairo University, Cairo, Egypt. iAlso at British University, Cairo, Egypt. jAlso at Fayoum University, El-Fayoum, Egypt. kAlso at Ain Shams University, Cairo, Egypt.

lAlso at Soltan Institute for Nuclear Studies, Warsaw, Poland. mAlso at Universite´ de Haute-Alsace, Mulhouse, France.

nAlso at Moscow State University, Moscow, Russia.

oAlso at Brandenburg University of Technology, Cottbus, Germany. pAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. qAlso at Eo¨tvo¨s Lora´nd University, Budapest, Hungary.

(16)

sAlso at University of Visva-Bharati, Santiniketan, India. tAlso at Sharif University of Technology, Tehran, Iran. uAlso at Isfahan University of Technology, Isfahan, Iran. vAlso at Shiraz University, Shiraz, Iran.

wAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Teheran, Iran. xAlso at Facolta` Ingegneria Universita` di Roma, Roma, Italy.

yAlso at Universita` della Basilicata, Potenza, Italy.

zAlso at Laboratori Nazionali di Legnaro dell’ INFN, Legnaro, Italy. aaAlso at Universita` degli studi di Siena, Siena, Italy.

bbAlso at Faculty of Physics of University of Belgrade, Belgrade, Serbia. ccAlso at University of California, Los Angeles, Los Angeles, California, USA. ddAlso at University of Florida, Gainesville, Florida, USA.

eeAlso at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.

ffAlso at INFN Sezione di Roma, Universita` di Roma ‘‘La Sapienza,’’ Roma, Italy. gg

Also at University of Athens, Athens, Greece.

hhAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom. iiAlso at The University of Kansas, Lawrence, Kansas, USA.

jjAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. kkAlso at Paul Scherrer Institut, Villigen, Switzerland.

llAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. mmAlso at Gaziosmanpasa University, Tokat, Turkey.

nnAlso at Adiyaman University, Adiyaman, Turkey. ooAlso at The University of Iowa, Iowa City, Iowa, USA. ppAlso at Mersin University, Mersin, Turkey.

qqAlso at Kafkas University, Kars, Turkey.

rrAlso at Suleyman Demirel University, Isparta, Turkey. ssAlso at Ege University, Izmir, Turkey.

ttAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. uuAlso at INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy.

vv

Also at Utah Valley University, Orem, Utah, USA.

wwAlso at Institute for Nuclear Research, Moscow, Russia.

xxAlso at Los Alamos National Laboratory, Los Alamos, New Mexico, USA. yyAlso at Erzincan University, Erzincan, Turkey.

Figura

TABLE I. Observed event yields and background expectations for different reconstructed diphoton invariant-mass ranges
Figure 1 shows the invariant-mass distribution of the selected events, together with the estimated distributions for each of the backgrounds
FIG. 3 (color online). The 95% C.L. exclusion region for the RS1 graviton model in the M 1 -~ k plane

Riferimenti

Documenti correlati

Keywords: Endocrine disruptor, humic substances, natural organic matter, organic contaminant, phytoremediation,

RNA-seq of AML-amp cases identi fied 12,468 and 58,032 raw chimeric transcripts by CS and FM, respectively, among which 38 and 429 involved 8q24-ampli fied genes (Supplementary

The aim of the present study was to estimate the preventable proportion of Intubation-Asso- ciated Pneumonia (IAP) in the Intensive Care Units (ICUs) participating in the Italian

In both GLC1 cell lines, we observed a significant up-regulation of the amplified genes AKT3 and RUNX1; CREG1 showed up-regulation in GLC1DM but not in GLC1HSR, most likely due to

an approximate admission rate to acute psychiatric wards, including voluntary and involuntary patients, of 31.8 per 10,000 residents in the city of Rome in 2002.. Another

The fractional frequency difference that VLBI evaluated was consistent with the difference between two HM frequencies which were separately calibrated by a Sr lattice clock

She has published broadly in early cinema, has programmed films for Cinema Ritrovato, Bologna, and been involved in Women and the Silent Screen since its founding in

Recall that the diseconomy of scope in R&amp;D reduces fundamental innovation, while the diseconomy of scope in the production of varieties increases specialized innovation,