• Non ci sono risultati.

The Cotton Tensor and the Ricci Flow

N/A
N/A
Protected

Academic year: 2021

Condividi "The Cotton Tensor and the Ricci Flow"

Copied!
23
0
0

Testo completo

(1)

Research Article

Open Access

Carlo Mantegazza, Samuele Mongodi, and Michele Rimoldi*

The Cotton Tensor and the Ricci Flow

https://doi.org/10.1515/geofl-2017-0001

Received April 20, 2017; accepted October 23, 2017

Abstract:We compute the evolution equation of the Cotton and the Bach tensor under the Ricci flow of a Riemannian manifold, with particular attention to the three dimensional case, and we discuss some appli-cations.

Keywords:Ricci flow, Cotton tensor, Bach tensor, Ricci solitons

MSC:53C21, 53C25

1 Preliminaries

The Riemann curvature operator of a Riemannian manifold (Mn, g) is defined, as in [6], by Riem(X, Y)Z =YXZ−∇XYZ+∇[X,Y]Z.

In a local coordinate system the components of the (3, 1)–Riemann curvature tensor are given by Rl ijk∂x∂l =

Riem ∂x∂i, ∂xj



∂xk and we denote by Rijkl= glmRmijkits (4, 0)–version.

With the previous choice, for the sphere Snwe have Riem(v, w, v, w) = Rabcdvawbvcwd> 0.

In all the paper the Einstein convention of summing over the repeated indices will be adopted.

The Ricci tensor is obtained by the contraction Rik= gjlRijkland R = gikRikwill denote the scalar

curva-ture.

We recall the interchange of derivative formula,

∇2ijωk∇2jiωk= Rijkpgpqωq,

and Schur lemma, which follows by the second Bianchi identity, 2gpqpRqi=∇iR .

They both will be used extensively in the computations that follows.

The so called Weyl tensor is then defined by the following decomposition formula (see [6, Chapter 3, Section K]) in dimension n ≥ 3,

Rijkl= n1

− 2(Rikgjl− Rilgjk+ Rjlgik− Rjkgil) − R

(n − 1)(n − 2)(gikgjl− gilgjk) + Wijkl. (1.1) The Weyl tensor satisfies all the symmetries of the curvature tensor, moreover, all its traces with the metric are zero, as it can be easily seen by the above formula.

*Corresponding Author: Michele Rimoldi:Dipartimento di Scienze Matematiche "Giuseppe Luigi Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, Italy, I-10129, E-mail: michele.rimoldi@polito.it

Carlo Mantegazza:Dipartimento di Matematica, Università di Napoli "Federico II", Via Cintia, Monte S. Angelo, Napoli, Italy, I-80126, E-mail: c.mantegazza@sns.it

Samuele Mongodi:Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, Italy, I-20133, E-mail: samuele.mongodi@polimi.it

(2)

In dimension three W is identically zero for every Riemannian manifold. It becomes relevant instead when

n≥ 4 since its vanishing is a condition equivalent for (Mn, g) to be locally conformally flat, that is, around

every point pMnthere is a conformal deformationegij = e

fg

ijof the original metric g, such that the new

metric is flat, namely, the Riemann tensor associated toegis zero in Up(here f : Up→R is a smooth function defined in a open neighborhood Upof p).

In dimension n = 3, instead, locally conformally flatness is equivalent to the vanishing of the following Cotton

tensor

Cijk=∇kRij−∇jRik− 1

2(n − 1)kRgij−∇jRgik , (1.2)

which expresses the fact that the Schouten tensor Sij= Rij

Rgij

2(n − 1)

is a Codazzi tensor (see [1, Chapter 16, Section C]), that is, a symmetric bilinear form Tijsuch that∇kTij =

iTkj.

By means of the second Bianchi identity, one can easily get (see [1]) that ∇lWlijk= −

n− 3

n− 2Cijk. (1.3)

Hence, when n ≥ 4, if we assume that the manifold is locally conformally flat (that is, W = 0), the Cotton tensor is identically zero also in this case, but this is only a necessary condition.

By direct computation, we can see that the tensor Cijksatisfies the following symmetries

Cijk= −Cikj, Cijk+ Cjki+ Ckij= 0 , (1.4)

moreover it is trace–free in any two indices,

gijCijk= gikCijk= gjkCijk= 0 , (1.5)

by its skew–symmetry and Schur lemma.

We suppose now that (Mn, g(t)) is a Ricci flow in some time interval, that is, the time–dependent metric

g(t) satisfies

∂tgij= −2Rij.

We have then the following evolution equations for the Christoffel symbols, the Ricci tensor and the scalar curvature (see for instance [7]),

∂tΓ k ij = −gksiRjs− gksjRis+ gkssRij ∂tRij = ∆Rij− 2R kl Rkijl− 2gpqRipRjq (1.6) ∂tR = ∆R + 2|Ric| 2.

All the computations which follow will be done in a fixed local frame, not in a moving frame.

Acknowledgments. The first and second authors were partially supported by the Italian FIRB Ideas “Analysis and Beyond”.

Note1.1. We remark that Huai-Dong Cao also, independently by us, worked out the computation of the evo-lution of the Cotton tensor in dimension three, in an unpublished note.

(3)

2 The Evolution Equation of the Cotton Tensor in 3D

The goal of this section is to compute the evolution equation under the Ricci flow of the Cotton tensor Cijkin

dimension three (see [5] for the evolution of the Weyl tensor), the general computation in any dimension is postponed to section 4.

In the special three–dimensional case we have,

Rijkl= Rikgjl− Rilgjk+ Rjlgik− Rjkgil−R

2(gikgjl− gilgjk) , (2.1) Cijk=∇kRij−∇jRik−1

4 ∇kRgij−∇jRgik , (2.2)

hence, the evolution equations (1.6) become

∂tΓ k ij= − gksiRjs− gksjRis+ gkssRij ∂tRij= ∆Rij− 6g pq RipRjq+ 3RRij+ 2|Ric|2gij− R2gij ∂tR = ∆R + 2|Ric| 2.

From these formulas we can compute the evolution equations of the derivatives of the curvatures assuming, from now on, to be in normal coordinates,

∂tlR = ∇l∆R + 2∇l|Ric| 2, ∂tsRij = ∇s∆Rij− 6∇sRipRjp− 6RipsRjp+ 3∇sRRij+ 3R∇sRij +2∇s|Ric|2gij−∇sR2gij+ (∇iRsp+∇sRip−∇pRis)Rjp+ (∇jRsp+∇sRjp−∇pRjs)Rip = ∇s∆Rij− 5∇sRipRjp− 5RipsRjp+ 3∇sRRij+ 3R∇sRij +2∇s|Ric|2gij−∇sR2gij+ (∇iRsp−∇pRis)Rjp+ (∇jRsp−∇pRjs)Rip = ∇s∆Rij− 5∇sRipRjp− 5RipsRjp+ 3∇sRRij+ 3R∇sRij +2∇s|Ric|2gij−∇sR2gij+ CspiRjp+ CspjRip+ Rjp[∇iRgsp−∇pRgis]/4 + Rip[∇jRgsp−∇pRgjs]/4 ,

where in the last passage we substituted the expression of the Cotton tensor. We then compute, ∂tCijk = ∂tkRij ∂tjRik ∂tkRgij−∇jRgik/4 = ∇kRij− 5∇kRipRjp− 5RipkRjp+ 3∇kRRij+ 3R∇kRij +2∇k|Ric|2gij−∇kR2gij+ CkpiRjp+ CkpjRip +Rjp[∇iRgkp−∇pRgik]/4 + Rip[∇jRgkp−∇pRgjk]/4 −∇j∆Rik+ 5∇jRipRkp+ 5RipjRkp− 3∇jRRik− 3R∇jRik −2∇j|Ric|2gik+∇jR2gik− CjpiRkp− CjpkRip −Rkp[∇iRgjp−∇pRgij]/4 − Rip[∇kRgjp−∇pRgkj]/4 +(RijkR − RikjR/2 − ∇k∆R + 2∇k|Ric|2gij/4 + ∇j∆R + 2∇j|Ric|2gik/4 = ∇k∆Rij− 5∇kRipRjp− 5RipkRjp+ 3∇kRRij+ 3R∇kRij +3∇k|Ric|2gij/2 −∇kR2gij+ CkpiRjp+ CkpjRip +RjkiR/4 − RjppRgik/4 + RikjR/4 − RippRgjk/4 −∇j∆Rik+ 5∇jRipRkp+ 5RipjRkp− 3∇jRRik− 3R∇jRik −3∇j|Ric|2gik/2 +∇jR2gik− CjpiRkp− CjpkRip

(4)

−RkjiR/4 + RkppRgij/4 − RijkR/4 + RippRgkj/4 +(RijkR − RikjR/2 −∇k∆Rgij/4 +∇j∆Rgik/4 = ∇k∆Rij− 5∇kRipRjp− 5RipkRjp+ 13∇kRRij/4 + 3R∇kRij +3∇k|Ric|2gij/2 −∇kR2gij+ CkpiRjp+ CkpjRip− RjppRgik/4 −∇j∆Rik+ 5∇jRipRkp+ 5RipjRkp− 13∇jRRik/4 − 3R∇jRik −3∇j|Ric|2gik/2 +∇jR2gik− CjpiRkp− CjpkRip +RkppRgij/4 −∇k∆Rgij/4 +∇j∆Rgik/4 and Cijk= ∆kRij− ∆jRik− ∆kRgij/4 + ∆jRgik/4 , hence, ∂tCijk− ∆Cijk = ∇k∆Rij−∇j∆Rik− ∆kRij+ ∆jRik −∇k∆Rgij/4 +∇j∆Rgik/4 + ∆kRgij/4 − ∆jRgik/4 −5∇kRipRjp− 5RipkRjp+ 13∇kRRij/4 + 3R∇kRij +3∇k|Ric|2gij/2 −∇kR2gij+ CkpiRjp+ CkpjRip− RjppRgik/4 +5∇jRipRkp+ 5RipjRkp− 13∇jRRik/4 − 3R∇jRik −3∇j|Ric|2gik/2 +∇jR2gik− CjpiRkp− CjpkRip +RkppRgij/4

Now to proceed, we need the following commutation rules for the derivatives of the Ricci tensor and of the scalar curvature, where we will employ the special form of the Riemann tensor in dimension three given by formula (2.1), ∇kRij− ∆kRij = ∇3kllRij−∇3lklRij+∇3lklRij−∇3llkRij = −RkppRij+ RkliplRjp+ RkljplRip+∇3lklRij−∇3llkRij = −RkppRij+ RikjR/2 + RjkiR/2 −RkpiRjp− RkpjRip+ RlplRjpgik+ RlplRipgjk −RlilRjk− RljlRik− R∇jRgik/4 − R∇iRgjk/4 +R∇iRjk/2 + R∇jRik/2 +∇l RklipRpj+ RkljpRpi  = −RkppRij+ RikjR/2 + RjkiR/2 −RkpiRjp− RkpjRip+ RlplRjpgik+ RlplRipgjk −RlilRjk− RljlRik− R∇jRgik/4 − R∇iRgjk/4 +R∇iRjk/2 + R∇jRik/2 +∇l RikRlj− RilRkj+ RplRpjgik− RpkRpjgil− gikRRlj/2 + gilRRjk/2 +RjkRli− RjlRki+ RplRpigjk− RpkRpigjl− gjkRRli/2 + gjlRRik/2  = −RkppRij+ RikjR/2 + RjkiR/2 −RkpiRjp− RkpjRip+ RlplRjpgik+ RlplRipgjk −RlilRjk− RljlRik− R∇jRgik/4 − R∇iRgjk/4 +R∇iRjk/2 + R∇jRik/2 −∇iRpkRpj+∇iRRjk/2 + gikRpllRpj −RpkiRpj− gikR∇jR/4 + R∇iRjk/2 −∇jRpkRpi+∇jRRik/2 + gjkRpllRpi −RpkjRpi− gjkR∇iR/4 + R∇jRik/2

(5)

= −RkppRij+ RikjR + RjkiR −2RkpiRjp− 2RkpjRip+ 2RlplRjpgik+ 2RlplRipgjk −RlilRjk− RljlRik− RpjiRpk− RpijRpk −R∇jRgik/2 − R∇iRgjk/2 + R∇iRjk+ R∇jRik and ∇kR − ∆kR = RkllppR = −RkppR .

Then, getting back to the main computation, we obtain

∂tCijk− ∆Cijk = −RkppRij+ RikjR + RjkiR −2RkpiRjp− 2RkpjRip+ 2RlplRjpgik+ 2RlplRipgjk −RlilRjk− RljlRik− RpjiRpk− RpijRpk −R∇jRgik/2 − RiRgjk/2 + RiRjk+ RjRik +RjppRik− RijkR − RkjiR +2RjpiRkp+ 2RjpkRip− 2RlplRkpgij− 2RlplRipgkj +RlilRkj+ RlklRij+ RpkiRpj+ RpikRpj +R∇kRgij/2 + RiRgkj/2 − RiRkj− RkRij +RkppRgij/4 − RjppRgik/4 −5∇kRipRjp− 5RipkRjp+ 13∇kRRij/4 + 3R∇kRij +3∇k|Ric|2gij/2 −∇kR2gij+ CkpiRjp+ CkpjRip− RjppRgik/4 +5∇jRipRkp+ 5RipjRkp− 13∇jRRik/4 − 3R∇jRik −3∇j|Ric|2gik/2 +∇jR2gik− CjpiRkp− CjpkRip+ RkppRgij/4 = CkpiRjp+ CkpjRip− CjpiRkp− CjpkRip +[2RlplRjp+ 3R∇jR/2 − RjppR/2 − 3∇j|Ric|2/2]gik +[−2RlplRkp− 3R∇kR/2 + RkppR/2 + 3∇k|Ric|2/2]gij −RkpiRjp+ RjpiRkp− 3∇kRipRjp− 4RipkRjp+ 9∇kRRij/4 + 2R∇kRij +3∇jRipRkp+ 4RipjRkp− 9∇jRRik/4 − 2R∇jRik

Now, by means of the very definition of the Cotton tensor in dimension three (2.2) and the identities (1.4), we substitute Ckpj− Cjpk= − Ckjp− Cjpk= CpkjlRjp=jRlp+ Cpjl+1 4 ∇lRgpj−∇jRgpl  ∇lRkp=∇kRlp+ Cpkl+1 4 ∇lRgpk−∇kRgpl  ∇iRjp=∇jRip+ Cpji+1 4 ∇iRgjp−∇jRgip  ∇iRkp=∇kRip+ Cpki+1 4 ∇iRgkp−∇kRgip 

in the last expression above, getting

∂tCijk− ∆Cijk = RjpCkpi− RkpCjpi+ RipCpkj

+h2RlpjRlp+ Cpjl+∇lRgpj/4 −∇jRgpl/4  + 3R∇jR/2 − RjppR/2 − 3∇j|Ric|2/2 i gik +h− 2RlpkRlp+ Cpkl+∇lRgpk/4 −∇kRgpl/4 

(6)

− 3R∇kR/2 + RkppR/2 + 3∇k|Ric|2/2 i gij −RkpjRip+ Cpji+∇iRgjp/4 −∇jRgip/4  +RjpkRip+ Cpki+∇iRgkp/4 −∇kRgip/4  −3∇kRipRjp− 4RipkRjp+ 9∇kRRij/4 + 2R∇kRij +3∇jRipRkp+ 4RipjRkp− 9∇jRRik/4 − 2R∇jRik

= Rjp Ckpi+ Cpki − Rkp Cjpi+ Cpji + RipCpkj

+2RlpCpjlgik− 2RlpCpklgij

+R∇jR −∇j|Ric|2/2gik−R∇kR −∇k|Ric|2/2gij

−2∇kRipRjp− 4RipkRjp+ 2∇kRRij+ 2R∇kRij

+2∇jRipRkp+ 4RipjRkp− 2∇jRRik− 2R∇jRik.

then, we substitute again

kRjp=∇pRkj+ Cjpk+1 4 ∇kRgjp−∇pRgjk  ∇jRkp=∇pRjk+ Ckpj+1 4 ∇jRgkp−∇pRgkj  ∇kRij=∇iRkj+ Cjik+1 4 ∇kRgij−∇iRgjk  ∇jRik=iRjk+ Ckij+1 4 ∇jRgik−∇iRgkj , finally obtaining

∂tCijk− ∆Cijk = Rjp Ckpi+ Cpki − Rkp Cjpi+ Cpji + RipCpkj

+2RlpCpjlgik− 2RlpCpklgij +R∇jR −j|Ric|2/2gik−R∇kR −∇k|Ric|2/2gij −2∇kRipRjp− 4RippRkj+ Cjpk+∇kRgjp/4 −∇pRgjk/4  +2∇kRRij+ 2RiRkj+ Cjik+kRgij/4 −iRgjk/4 +2∇jRipRkp+ 4RippRjk+ Ckpj+∇jRgkp/4 −∇pRgkj/4  −2∇jRRik− 2RiRjk+ Ckij+jRgik/4 −iRgkj/4 = Rjp Ckpi+ Cpki − Rkp Cjpi+ Cpji + RipCpkj

+4Rip Ckpj− Cjpk + 2R Cjik− Ckij  +2RlpCpjlgik− 2RlpCpklgij +R∇jR/2 −∇j|Ric|2/2gik−R∇kR/2 −∇k|Ric|2/2gij −2∇kRipRjp+ 2∇jRipRkp +∇kRRij−∇jRRik

= Rjp Ckpi+ Cpki − Rkp Cjpi+ Cpji + 5RipCpkj

+2RCijk+ 2RlpCpjlgik− 2RlpCpklgij

+R∇jR/2 −∇j|Ric|2/2gik−R∇kR/2 −∇k|Ric|2/2gij

+2∇jRipRkp− 2∇kRipRjp

+∇kRRij−∇jRRik,

where in the last passage we used again the identities (1.4).

Hence, we can resume this long computation in the following proposition, getting back to a generic coordinate basis.

(7)

Proposition 2.1. During the Ricci flow of a 3–dimensional Riemannian manifold(M3, g(t)), the Cotton tensor

satisfies the following evolution equation

∂t− ∆Cijk = gpqRpj(Ckqi+ Cqki) + 5gpqRipCqkj+ gpqRpk(Cjiq+ Cqij) (2.3)

+2RCijk+ 2RqlCqjlgik− 2RqlCqklgij +1 2∇k|Ric| 2g ij−1 2∇j|Ric| 2g ik+ R 2∇jRgik− R 2∇kRgij +2gpqRpkjRqi− 2gpqRpjkRqi+ RijkR − RikjR .

In particular if the Cotton tensor vanishes identically along the flow we obtain,

0 = ∇k|Ric|2gijj|Ric|2gik+ RjRgik− RkRgij (2.4) +4gpqRpkjRqi− 4gpqRpjkRqi+ 2RijkR − 2RikjR .

Corollary 2.2. If the Cotton tensor vanishes identically along the Ricci flow of a 3–dimensional Riemannian manifold(M3, g(t)), the following tensor

|Ric|2gij− 4RpjRpi+ 3RRij−7

8R

2g

ij

is a Codazzi tensor (see [1, Chapter 16, Section C]). Proof. We compute in an orthonormal basis,

4RpkjRpi− 4 RpjkRpi+ 2RijkR − 2RikjR = 4∇j(RpkRpi) − 4∇k(RpjRpi) − 4RpijRpk+ 4RpikRpj + 2RijkR − 2RikjR = 4∇j(RpkRpi) − 4∇k(RpjRpi) + Rpi(4Cpjk+∇kRgpj−∇jRgpk) + 2RijkR − 2RikjR = 4∇j(RpkRpi) − 4∇k(RpjRpi) + 3RijkR − 3RikjR = 4∇j(RpkRpi) − 4∇k(RpjRpi) + 3∇k(RRij) − 3∇j(RRik) − 3R(∇kRij−∇jRik) = 4∇j(RpkRpi) − 4∇k(RpjRpi) + 3∇k(RRij) − 3∇j(RRik) − 3R(4Cijk+∇kRgij−∇jRgik)/4 = 4∇j(RpkRpi) − 4∇k(RpjRpi) + 3∇k(RRij) − 3∇j(RRik) −3 8∇kR 2g ij+3 8∇jR 2g ik.

Hence, we have, by the previous proposition,

0 =∇k|Ric|2gijj|Ric|2gik+ 4j(RpkRpi) − 4k(RpjRpi) + 3k(RRij) − 3j(RRik) −7 8∇kR 2g ij+7 8∇jR 2g ik,

which is the thesis of the corollary.

Remark2.3. All the traces of the 3–tensor in the LHS of equation (2.4) are zero.

Remark2.4. From the trace–free property (1.5) of the Cotton tensor and the fact that along the Ricci flow there

holds

∂t− ∆gij= 2Rij,

we conclude that the following relations have to hold

gij(∂t− ∆)Cijk = −2RijCijk,

gik(∂t− ∆)Cijk = −2RikCijk,

gjk(∂t− ∆)Cijk = −2RjkCijk= 0 .

They are easily verified for formula (2.3).

Corollary 2.5. During the Ricci flow of a 3–dimensional Riemannian manifold(M3, g(t)), the squared norm of the Cotton tensor satisfies the following evolution equation, in an orthonormal basis,

∂t− ∆



|Cijk|2 = −2|∇Cijk|2− 16CipkCiqkRpq+ 24CipkCkqiRpq+ 4R|Cijk|2

(8)

Proof.

∂t− ∆|Cijk|2 = −2|∇Cijk|2+ 2CijkRipgpqCqjk+ 2CijkRjpgpqCiqk+ 2CijkRkpgpqCijq

+2CijkhgpqRpj(Ckqi+ Cqki) + 5gpqRipCqkj+ gpqRpk(Cjiq+ Cqij)

+2RCijk+ 2RqlCqjlgik− 2RqlCqklgij +1 2∇k|Ric| 2g ij−1 2∇j|Ric| 2g ik+R 2∇jRgik− R 2∇kRgij +2gpqRpkjRqi− 2gpqRpjkRqi+ RijkR − RikjR i

= −2|∇Cijk|2+ 2(Ckij+ Cjki)Ripgpq(Ckqj+ Cjkq)

+2CijkRjpgpqCiqk+ 2CikjRkpgpqCiqj

+2Cijkh2gpqRpj(Ckqi+ Cqki) + 5gpqRipCqkj

i

+4R|Cijk|2+ 8gpqCijkRpkjRqi+ 4CijkRijkR

= −2|∇Cijk|2− 16CipkCiqkRpq+ 24CipkCkqiRpq+ 4R|Cijk|2

+8CijkRpkjRpi+ 4CijkRijkR

where in the last line we assumed to be in a orthonormal basis.

3 Three–Dimensional Gradient Ricci Solitons

The structural equation of a gradient Ricci soliton (Mn, g,f) is the following

Rij+∇ijf = λgij, (3.1)

for some λR.

The soliton is said to be steady, shrinking or expanding according to the fact that the constant λ is zero, positive or negative, respectively.

It follows that in dimension three, for (M3, g,f) there holds

Rij =lRijlf+ 2λRij− 2|Ric|2gij+ R2gij− 3RRij+ 4RisRsj (3.2) R =lRlf + 2λR − 2|Ric|2 (3.3)iR = 2Rlilf (3.4) Cijk = Rlkgij 2 ∇lf − Rljgik 2 ∇lf + Rijkf− Rikjf+Rgik 2 ∇jfRgij 2 ∇kf (3.5) = ∇kR 4 gij− ∇jR 4 gik+  Rij−R 2gij  ∇kfRikR 2gik  ∇jf.

In the special case of a steady soliton the first two equations above simplify as follows,

Rij =lRijlf− 2|Ric|2gij+ R2gij− 3RRij+ 4RisRsj R =lRlf− 2|Ric|2.

Remark3.1. We notice that, by relation (3.5), we have Cijkif = ∇kR∇jf 4 − ∇jR∇kf 4 + Rijifkf− R 2∇jfkf− Rikifjf+ R 2∇kfjf = ∇jR∇kf 4 − ∇kR∇jf 4 ,

where in the last passage we used relation (3.4). It follows that Cijkifjf = h∇f,∇Ri 4 ∇kf− |∇f|2 4 ∇kR .

(9)

Hence, if the Cotton tensor of a three–dimensional gradient Ricci soliton is identically zero, we have that at every point where∇R is not zero,f andR are proportional.

This relation is a key step in (yet another) proof of the fact that a three–dimensional, locally conformally flat, steady or shrinking gradient Ricci soliton is locally a warped product of a constant curvature surface on a interval of R, leading to a full classification, first obtained by H.-D. Cao and Q. Chen [4] for the steady case and H.-D. Cao, B.-L. Chen and X.-P. Zhu [3] for the shrinking case (actually this is the last paper of a series finally classifying, in full generality, all the three-dimensional gradient shrinking Ricci solitons, even without the LCF assumption).

Proposition 3.2. Let(M3, g, f ) be a three–dimensional gradient Ricci soliton. Then, |Cijk|2 =l|Cijk|2∇lf + 2|∇Cijk|2− 2R|Cijk|2

−6CijkRijkR + 8CjskCjikRsi− 16CjskCkijRsi− 8CijkRlkjRil.

Proof. First observe that

|Cijk|2= 2Cijk∆Cijk+ 2|∇Cijk|2.

Using relations (3.5), (3.2) and, repeatedly, the trace–free property (1.5) of the Cotton tensor, we have that Cijk∆Cijk = ∆(Rijkf − Rikjf)Cijk

= (∆Rijkf + Rij∆kf + 2∇lRijlkf)Cijk −(∆Rikjf+ Rik∆jf+ 2∇lRikljf)Cijk = (∇sRijsf− 3RRij+ 4RisRsj)∇kfCijk +Rij∆kfCijk+ 2∇lRijlkfCijk −(∇sRiksf− 3RRik+ 4RisRsk)∇jfCijk −Rik∆jfCijk− 2∇lRikljfCijk = (∇sRijkf−∇sRikjf)∇sfCijk −3R(Rijkf− Rikjf)Cijk +4Ris(Rsjkf − Rskjf)Cijk +(Rijllkf− Riklljf)Cijk +2(∇lRijlkf−∇lRikljf)Cijk = (∇sRijkf−∇sRikjf)∇sfCijk +(−3R)|Cijk|2 +4Ris(Rsjkf − Rskjf)Cijk +(Rijllkf− Riklljf)Cijk +2(∇lRijlkf−∇lRikljf)Cijk,

where we used the identity

(Rijkf − Rikjf)Cijk=|Cijk|2 (3.6)

which follows easily by equation (3.5) and the fact that every trace of the Cotton tensor is zero. Using now equations (3.1), (3.5), (1.5), (1.4), and (3.4), we compute

(∇sRijkf−∇sRikjf)∇sfCijk = (∇s(Rijkf) − Rijskf)∇sfCijk

−(∇s(Rikjf) − Riksjf)∇sfCijk

= (∇s(Rijkf− Rikjf) + Rij(Rsk))∇sfCijk

−(Rik(Rsj))∇sfCijk

(10)

= 1 2∇s|Cijk| 2 sf+1 2RijkRCijk− 1 2RikjRCijk 4Ris(Rsjkf− Rskjf)Cijk = 4Ris(Csjk−1 4∇kRgsj+ 1 4∇jRgsk+ R 2∇kfgsj− R 2∇jfgsk)Cijk = 4Ris(−Cjks− Cksj)(−Cjki− Ckij) − RijkRCijk

+RikjRCijk+ 2RRijkfCijk− 2RRikjfCijk

= 8RisCjskCjik− 8RisCjskCkij

−RijkRCijk+ RikjRCijk+ 2R|Cijk|2

(Rijllkf− Riklljf)Cijk = (Rijl(−Rlk) − Rikl(−Rlj))Cijk = −1 2RijkRCijk+ 1 2RikjRCijk 2(∇lRijlkf−∇lRikljf)Cijk = 2((Cijl+∇jRil+1 4∇lRgij− 1 4∇jRgil)(−Rlk))Cijk −2((Cikl+∇kRil+1 4∇lRgik− 1 4∇kRgil)(−Rlj))Cijk = −2CijlCijkRlk− 2CijkRlkjRil+1

2CijkRikjR +2CiklCijkRlj+ 2CijkRljkRil−1

2CijkRijkR = −2CiljCikjRlk− 2CijkRlkjRil+1

2CijkRikjR −2CilkCijkRlj+ 2CijkRljkRil−1

2CijkRijkR.

Hence, getting back to the main computation and using again the symmetry relations (1.4), we finally get Cijk∆Cijk = 1 2∇s|Cijk| 2 sf− R|Cijk|2 −3 2CijkRijkR + 3 2CijkRikjR +4CjskCjikRsi− 8CjskCkijRsi −2CijkRlkjRil+ 2CijkRljkRil = 1 2∇s|Cijk| 2 sf− R|Cijk|2

−3CijkRijkR + 4CjskCjikRsi− 8CjskCkijRsi− 4CijkRlkjRil

where in the last passage we applied the skew–symmetry of the Cotton tensor in its last two indexes. The thesis follows.

4 The Evolution Equation of the Cotton Tensor in any Dimension

In this section we will compute the evolution equation under the Ricci flow of the Cotton tensor Cijk, for every

n–dimensional Riemannian manifold (Mn, g(t)) evolving by Ricci flow.

Among the evolution equations (1.6) we expand the one for the Ricci tensor,

∂tRij= ∆Rij2n n− 2g pq RipRjq+ 2n (n − 1)(n − 2)RRij+ 2 n− 2|Ric| 2g ij − 2 (n − 1)(n − 2)R 2g ij− 2RpqWpijq.

(11)

Then, we compute the evolution equations of the derivatives of the curvatures assuming, from now on, to be in normal coordinates, ∂tlR = ∇l∆R + 2∇l|Ric| 2, ∂tsRij = ∇s∆Rij2n n− 2∇sRipRjp2n n− 2RipsRjp+ 2n (n − 1)(n − 2)sRRij + 2n (n − 1)(n − 2)R∇sRij+ 2 n− 2∇s|Ric|2gij− 2 (n − 1)(n − 2)sR 2g ij −2∇sRklWkijl− 2RklsWkijl+ (∇iRsp+∇sRip−∇pRis)Rjp +(∇jRsp+∇sRjp−∇pRjs)Rip = ∇s∆Rijn+ 2 n− 2∇sRipRjpn+ 2 n− 2RipsRjp+ 2n (n − 1)(n − 2)sRRij + 2n (n − 1)(n − 2)R∇sRij+ 2 n− 2∇s|Ric|2gij− 2 (n − 1)(n − 2)sR 2g ij −2∇sRklWkijl− 2RklsWkijl+ (∇iRsp−∇pRis)Rjp+ (∇jRsp−∇pRjs)Rip = ∇s∆Rijn+ 2 n− 2sRipRjpn+ 2 n− 2RipsRjp+ 2n (n − 1)(n − 2)sRRij + 2n (n − 1)(n − 2)R∇sRij+ 2 n− 2s|Ric| 2g ij− 2 (n − 1)(n − 2)sR 2g ij

−2∇sRklWkijl− 2RklsWkijl+ CspiRjp+ CspjRip

+ 1

2(n − 1)Rjp[∇iRgsp−∇pRgis] + 1

2(n − 1)Rip[∇jRgsp−∇pRgjs] , where in the last passage we substituted the expression of the Cotton tensor.

We then compute, ∂tCijk = ∂tkRij ∂tjRik− 1 2(n − 1) ∂tkRgij−∇jRgik  = ∇k∆Rijn+ 2 n− 2kRipRjpn+ 2 n− 2RipkRjp+ 2n (n − 1)(n − 2)kRRij + 2n (n − 1)(n − 2)R∇kRij+ 2 n− 2∇k|Ric| 2g ij− 2 (n − 1)(n − 2)kR 2g ij

−2∇kRplWpijl− 2RplkWpijl+ CkpiRjp+ CkpjRip

+ Rjp 2(n − 1)[∇iRgkp−∇pRgik] + Rip 2(n − 1)[∇jRgkp−∇pRgjk] −∇j∆Rik+ n+ 2 n− 2∇jRipRkp+ n+ 2 n− 2RipjRkp2n (n − 1)(n − 2)jRRik2n (n − 1)(n − 2)R∇jRik− 2 n− 2j|Ric| 2g ik+ n2 − 1∇jR 2g ik

−2∇kRplWpijl− 2RplkWpijl− CjpiRkp− CjpkRip

− Rkp 2(n − 1)[∇iRgjp−∇pRgij] − Rip 2(n − 1)[∇kRgjp−∇pRgkj] +n1 − 1(RijkR − RikjR  − ∇kR + 2k|Ric|2 gij 2(n − 1)+ ∇j∆R + 2∇j|Ric| 2 gik 2(n − 1) = ∇k∆Rijn+ 2 n− 2kRipRjpn+ 2 n− 2RipkRjp + 5n − 2 2(n − 1)(n − 2)kRRij+ 2n (n − 1)(n − 2)R∇kRij + n (n − 1)(n − 2)k|Ric| 2g ij− 2 (n − 1)(n − 2)kR 2g ij

(12)

− 1 2(n − 1)RpjpRgik −∇j∆Rik+ n+ 2 n− 2∇jRipRkp+ n+ 2 n− 2RipjRkp5n − 2 2(n − 1)(n − 2)jRRik2n (n − 1)(n − 2)R∇jRikn (n − 1)(n − 2)j|Ric| 2g ik+ 2 (n − 1)(n − 2)jR 2g ik

−CjpiRkp− CjpkRip+ 2∇jRplWpikl+ 2RpljWpikl

+ 1 2(n − 1)lRRlkgij− 1 2(n − 1)k∆Rgij+ 1 2(n − 1)j∆Rgik and Cijk= ∆kRij− ∆jRik− 1 2(n − 1)∆kRgij+ 1 2(n − 1)∆jRgik, hence, ∂tCijk− ∆Cijk = ∇k∆Rij−∇j∆Rik− ∆kRij+ ∆jRik − 1 2(n − 1)(∇k∆Rgij−∇j∆Rgik− ∆kRgij+ ∆jRgik) −nn+ 2 − 2(∇kRipRjp+ RipkRjp) + 5n − 2 2(n − 1)(n − 2)kRRij + 2n (n − 1)(n − 2)R∇kRij + n (n − 1)(n − 2)k|Ric| 2g ij− 2 (n − 1)(n − 2)kR 2g ij

+CkpiRjp+ CkpjRip− 2∇kRplWpijl− 2RplkWpijl

− 1 2(n − 1)RjppRgik +nn+ 2 − 2(∇jRipRkp+ RipjRkp) − 5n − 2 2(n − 1)(n − 2)jRRik2n (n − 1)(n − 2)R∇jRikn (n − 1)(n − 2)j|Ric| 2g ik+ 2 (n − 1)(n − 2)jR 2g ik

−CjpiRkp− CjpkRip+ 2∇jRplWpikl+ 2RpljWpikl

+ 1

2(n − 1)RkppRgij

Now to proceed, we need the following commutation rules for the derivatives of the Ricci tensor and of the scalar curvature, where we will employ the decomposition formula of the Riemann tensor (1.1).

k∆Rij− ∆kRij = ∇3kllRij−∇3lklRij+∇3lklRij−∇3llkRij = −RkppRij+ RkliplRjp+ RkljplRip +∇3lklRij∇3llkRij = −RkppRij+ 1 2(n − 2)(RikjR + RjkiR) −n1 − 2(RkpiRjp+ RkpjRip− RlplRjpgik− RlplRipgjk) −n1 − 2(RlilRjk+ RljlRik) − 1 2(n − 1)(n − 2)(R∇jRgik+ R∇iRgjk) + 1 (n − 1)(n − 2)(R∇iRjk+ R∇jRik) +∇l RklipRpj+ RkljpRpi  +WkljplRip+ WklipjRjp

(13)

= −RkppRij+ 1 2(n − 2)(RikjR + RjkiR) −n1 − 2(RkpiRjp+ RkpjRip− RlplRjpgik− RlplRipgjk) −n1 − 2(RlilRjk+ RljlRik) − 1 2(n − 1)(n − 2)(R∇jRgik+ R∇iRgjk) + 1 (n − 1)(n − 2)(R∇iRjk+ R∇jRik) +∇l 1 n− 2(RkigplRpj+ RplgkiRpj− RligkpRpj− RkpgliRpj) − 1 (n − 1)(n − 2)(RRpjgkiglp− RRpjgkpgil) + WklipRpj +n1 − 2(RkjglpRpi+ RlpgkjRpi− RljgkpRpi− RkpgljRpi) − 1 (n − 1)(n − 2)(RRpigkjgpl− RRpigkpglj) + WkljpRpi  +WkljplRip+ WklipjRjp = −RkppRij+ 1 2(n − 2)(RikjR + RjkiR) −n1 − 2(RkpiRjp+ RkpjRip− RlplRjpgik− RlplRipgjk) −n1 − 2(RlilRjk+ RljlRik) − 1 2(n − 1)(n − 2)(R∇jRgik+ R∇iRgjk) + 1 (n − 1)(n − 2)(R∇iRjk+ R∇jRik) +n1 − 2(∇pRkiRpj+ RkijR/2 +∇pRgkiRpj/2 +RlplRpjgik−∇iRRjk/2 − RpipRkj−∇iRkpRpj −RkpiRpj) − 1 (n − 1)(n − 2)(∇pRRpjgik+ R∇jRgik/2 −∇iRRkj− R∇iRjk) +nn− 3 − 2CkipRpj+ WkliplRpj +n1 − 2(∇pRkjRpi+ RkjiR/2 +∇pRgkjRpi/2 +RlpgkjlRpi−∇jRRki/2 − RpjpRki−∇jRkpRpi− RkpjRpi) − 1 (n − 1)(n − 2)(∇pRRpigkj+ R∇iRgjk/2 −∇jRRki− R∇jRki) +nn− 3 − 2CkjpRpi+ WkljplRpi +WkljplRip+ WklipjRjp = −RkppRij+ n+ 1 2(n − 1)(n − 2)RkjiR − 2 n− 2RkpjRip +n2 − 2RlplRpigjk− 1 n− 2RpjpRik− 1 (n − 1)(n − 2)R∇iRgjk + 2 (n − 1)(n − 2)R∇jRik+ n+ 1 2(n − 1)(n − 2)jRRki− 2 n− 2RkpiRjp +n2 − 2RlplRpjgik− 1 n− 2RpipRjk− 1 (n − 1)(n − 2)R∇jRgik + 2 (n − 1)(n − 2)R∇iRjk+ 2WkljplRpi+ 2WkliplRpj + n− 3 2(n − 1)(n − 2)(∇pRgikRpj+∇pRgjkRpi) +nn− 3 − 2(CkipRpj+ CkjpRpi) − 1 n− 2(∇iRkpRpj+∇jRkpRpi)

(14)

and

kR − ∆kR = RkllppR = −RkppR .

Then, getting back to the main computation, we obtain

∂tCijk− ∆Cijk = −RkppRij+ n+ 1 2(n − 1)(n − 2)RkjiR −n2 − 2RkpjRip+ 2 n− 2RlplRpigjkn1 − 2RjppRik− 1 (n − 1)(n − 2)R∇iRgjk + 2 (n − 1)(n − 2)R∇jRik+ n+ 1 2(n − 1)(n − 2)jRRkin2 − 2RkpiRpj+ 2 n− 2RlplRpjgikn1 − 2RpipRkj− 1 (n − 1)(n − 2)R∇jRgik + 2 (n − 1)(n − 2)R∇iRjk+ 2WkljplRpi+ 2WkliplRpj + n− 3 2(n − 1)(n − 2)(∇pRgikRpj+∇pRgjkRpi) +nn− 3 − 2(CkipRpj+ CkjpRpi) −n1 − 2(∇iRkpRjp+∇jRkpRpi) +RjppRikn+ 1 2(n − 1)(n − 2)RkjiR + 2 n− 2RjpkRipn2 − 2RlplRpigkj+ 1 n− 2RpkpRij + 1 (n − 1)(n − 2)R∇iRgjk− 2 (n − 1)(n − 2)R∇kRijn+ 1 2(n − 1)(n − 2)kRRij+ 2 n− 2RjpiRkpn2 − 2RlppRpkgij+ 1 n− 2RpipRkj + 1 (n − 1)(n − 2)R∇kRgij− 2 (n − 1)(n − 2)R∇iRkj −2WjlkplRpi− 2WjliplRpkn− 3 2(n − 2)(n − 2)(∇pRgijRpk+∇pRgjkRpi) −nn− 3 − 2(CjipRpk+ CjkpRpi) + 1 n− 2(∇iRpjRpk+∇kRjpRpi) + 1 2(n − 1)(RkppRgij− RjppRgki) − n+ 2 n− 2(∇kRpiRpj+ RpikRpj) + n (n − 1)(n − 2)k|Ric| 2g ij+ 5n − 2 2(n − 1)(n − 2)kRRij + 2n (n − 1)(n − 2)R∇kRij− 2 (n − 1)(n − 2)kR 2g ij −2∇kRplWpijl− 2RplkWpijl +CkliRlj− 1 2(n − 1)lRRljgik+ CkljRli +nn+ 2 − 2(∇jRpiRpk+ RpijRpk) − n (n − 1)(n − 2)j|Ric| 2g ki5n − 2 2(n − 1)(n − 2)jRRik2n (n − 1)(n − 2)R∇jRik+ 2 (n − 1)(n − 2)jR 2g ik

(15)

+2∇jRplWpikl+ 2RpljWpikl −CjliRlk+ 1 2(n − 1)lRRlkgij− CjlkRli = n1 − 2(RpiCjkp+ RpkCjip− CkipRpj− CkjpRpi) +hn2 − 2RlplRpj+ 3 2(n − 1)(n − 2)jR 2 − 1 2(n − 2)pRRpjn (n − 1)(n − 2)j|Ric| 2i gik −hn2 − 2RlplRpk+ 3 2(n − 1)(n − 2)kR 2 − 1 2(n − 2)pRRpkn (n − 1)(n − 2)k|Ric| 2i gijnn− 3 − 2RkppRij+ n− 3 n− 2RpjpRik +nn − 2RkpjRpi+ n+ 1 n− 2jRpkRpi− 2 n− 2R∇jRik4n − 3 2(n − 1)(n − 2)jRRik− 1 n− 2RkpiRpj+ 1 n− 2RpjiRpknn − 2RjpkRipn+ 1 n− 2∇kRjpRip+ 2 n− 2R∇kRij + 4n − 3 2(n − 1)(n − 2)kRRij+ 2WkliplRpj+ 2WkljplRpi− 2WjlkplRpi −2WjliplRpk− 2∇kRplWpijl− 2RplkWpijl+ 2∇jRplWpikl+ 2RpljWpikl

Now, by means of the very definition of the Cotton tensor (1.2), the identities (1.4), and the symmetries of the Weyl tensor, we substitute

Ckpj− Cjpk= − Ckjp− Cjpk= CpkjlRjp=jRlp+ Cpjl+ 1 2(n − 1)lRgpj−∇jRgpl  ∇lRkp=kRlp+ Cpkl+ 1 2(n − 1)lRgpk−∇kRgpl  ∇iRjp=∇jRip+ Cpji+ 1 2(n − 1)iRgjp−∇jRgip  ∇iRkp=∇kRip+ Cpki+ 1 2(n − 1)iRgkp−∇kRgip  ∇pRij=∇jRpi+ Cijp+ 1 2(n − 1)pRgji−∇jRgpi  ∇pRik=∇kRpi+ Cikp+ 1 2(n − 1)pRgki−∇kRgpi 

in the last expression above, getting

∂tCijk− ∆Cijk = 1 n− 2(RpiCpkj+ RpkCjip− CkipRpj) +hn2 − 2Rlp  ∇jRlp+ Cpjl+ 1 2(n − 1)lRgpj − 1 2(n − 1)jRgpl)  + 3 2(n − 1)(n − 2)jR 2 − 1 2(n − 2)pRRpjn (n − 1)(n − 2)j|Ric| 2i gik −hn2 − 2Rlp  ∇kRpl+ Cpkl+ 1 2(n − 1)lRgpk − 1 2(n − 1)kRgpl  + 3 2(n − 1)(n − 2)kR 2 − 1 2(n − 2)pRRpkn (n − 1)(n − 2)k|Ric| 2i gij

(16)

nn− 3 − 2Rkp  Cijp+∇jRip+ 1 2(n − 1)(∇pRgij−∇jRgip)  +nn− 3 − 2Rpj  Cikp+∇kRip+ 1 2(n − 1)(∇pRgik−∇kRgip)  +nn − 2RkpjRpi+ n+ 1 n− 2∇jRpkRpi− 2 n− 2R∇jRik4n − 3 2(n − 1)(n − 2)jRRikn1 − 2Rkp  ∇jRip+ Cpji+ 1 2(n − 1)(∇iRgjp−∇jRgip)  +n1 − 2Rpj  ∇kRip+ Ckpi+ 1 2(n − 1)(∇iRgkp−∇kRgip)  −nn − 2RjpkRipn+ 1 n− 2∇kRjpRip+ 2 n− 2R∇kRij + 4n − 3 2(n − 1)(n − 2)kRRij

+2CpljWpikl− 2CplkWpijl− 2CpilWjklp

−2WjklpiRpl− 2RplkWpijl+ 2RpljWpikl

= n1

− 2 RpiCpkj+ Rpk(Cjip− Cpji− (n − 3)Cijp) + Rpj(Cpki− Ckip+ (n − 3)Cikp) 

+n2

− 2CpjlRplgik− 2

n− 2CpklRplgij− 2CpjlWpikl+ 2CpklWpijl− 2CpilWjklp +gik h ∇jR2 (n − 1)(n − 2)− 1 (n − 1)(n − 2)j|Ric| 2i −gij h ∇ kR2 (n − 1)(n − 2)− 1 (n − 1)(n − 2)k|Ric| 2i −n2 − 2RjpkRipn+ 1 n− 2kRjpRip+ 3n − 1 2(n − 1)(n − 2)kRRij+ 2 n− 2R∇kRij +n2 − 2RkpjRip+ n+ 1 n− 2jRkpRip3n − 1 2(n − 1)(n − 2)jRRik− 2 n− 2R∇jRik −2WjklpiRlp− 2RlpkWpijl+ 2RpljWpikl.

then, we substitute again

kRjp=∇pRkj+ Cjpk+ 1 2(n − 1)kRgjp−∇pRgjk  ∇jRkp=∇pRjk+ Ckpj+ 1 2(n − 1)jRgkp−∇pRgkj  ∇kRij=∇iRkj+ Cjik+ 1 2(n − 1)kRgij−∇iRgjk  ∇jRik=∇iRjk+ Ckij+ 1 2(n − 1)jRgik−∇iRgkj , finally obtaining ∂tCijk− ∆Cijk = 1

n− 2 RpiCpkj+ Rpk(Cjip− Cpji− (n − 3)Cijp) + Rpj(Cpki− Ckip+ (n − 3)Cikp) 

+n2

− 2CpjlRplgik− 2

n− 2CpklRplgij− 2CpjlWpikl+ 2CpklWpijl− 2CpilWjklp

+gik h ∇jR2 (n − 1)(n − 2)− 1 (n − 1)(n − 2)j|Ric| 2i −gij h ∇ kR2 (n − 1)(n − 2)− 1 (n − 1)(n − 2)k|Ric| 2i −n2 − 2RjpkRipn+ 1 n− 2RippRkjn+ 1 n− 2RipCjpkn+ 1 2(n − 1)(n − 2)RijkR + n+ 1 2(n − 1)(n − 2)RippRgjk

(17)

+ 3n − 1 2(n − 1)(n − 2)kRRij+ 2 n− 2R(∇iRjk+ Cjik+ 1 2(n − 1)(∇kRgij−∇iRgjk)) +n2 − 2RkpjRip+ n+ 1 n− 2RippRkj+ n+ 1 n− 2RipCkpj+ n+ 1 2(n − 1)(n − 2)jRRikn+ 1 2(n − 1)(n − 2)RippRgjk3n − 1 2(n − 1)(n − 2)jRRikn2 − 2R(∇iRjk+ Ckij+ 1 2(n − 1)(∇jRgik−∇iRgjk)) −2WjklpiRlp− 2RlpkWpijl+ 2RpljWpikl = n1

− 2(Rpk(Cjip− Cpji− (n − 3)Cijp) − Rpj(Ckip− Cpki− (n − 3)Cikp) +(n + 2)RpiCpkj) +n2

− 2(CpjlRplgik− CpklRplgij) + 2

n− 2RCijk −2WpiklCpjl+ 2WpijlCpkl− 2CpilWjklp

+gik h ∇jR2 2(n − 1)(n − 2)− 1 (n − 1)(n − 2)j|Ric| 2i −gij h ∇ kR2 2(n − 1)(n − 2)− 1 (n − 1)(n − 2)k|Ric| 2i −n2 − 2RjpkRip+ 1 n− 2kRRij +n2 − 2RkpjRip− 1 n− 2jRRik +2RlpjWpikl− 2RlpkWpijl,

where in the last passage we used again the identities (1.4) and the fact that WjklpiRlp= WjkpliRpl= WjkpliRlp= −WjklpiRlp.

Hence, we can resume this long computation in the following proposition, getting back to a generic co-ordinate basis.

Proposition 4.1. During the Ricci flow of a n–dimensional Riemannian manifold(Mn, g(t)), the Cotton tensor satisfies the following evolution equation

∂t− ∆Cijk = n1

− 2g

pq

Rpj(Ckqi+ Cqki+ (n − 3)Cikq)

+(n + 2)gpqRipCqkj− gpqRpk(Cjqi+ Cqji+ (n − 3)Cijq)

 +n2 − 2RCijk+ 2 n− 2R ql Cqjlgikn2 − 2R ql Cqklgij + 1 (n − 1)(n − 2)k|Ric| 2g ij− 1 (n − 1)(n − 2)j|Ric| 2g ik + R (n − 1)(n − 2)jRgik− R (n − 1)(n − 2)kRgij +n2 − 2g pq RpkjRqin2 − 2g pq RpjkRqi+ n1 − 2RijkR − 1 n− 2RikjR

−2gpqWpiklCqjl+ 2gpqWpijlCqkl− 2gpqWjklpCqil+ 2gpqRpljWqikl− 2gpqRplkWqijl.

In particular if the Cotton tensor vanishes identically along the flow we obtain,

0 = 1 (n − 1)(n − 2)k|Ric| 2g ij− 1 (n − 1)(n − 2)j|Ric| 2g ik + R (n − 1)(n − 2)jRgik− R (n − 1)(n − 2)kRgij +n2 − 2g pq RpkjRqin2 − 2g pq RpjkRqi+n1 − 2RijkR − 1 n− 2RikjR +2gpqRpljWqikl− 2gpqRplkWqijl,

(18)

while, in virtue of relation(1.3), if the Weyl tensor vanishes along the flow we obtain (compare with [5,

Proposi-tion 1.1 and Corollary 1.2])

0 = 1 (n − 1)(n − 2)k|Ric| 2g ij− 1 (n − 1)(n − 2)j|Ric| 2g ik + R (n − 1)(n − 2)jRgik− R (n − 1)(n − 2)kRgij +n2 − 2g pq RpkjRqin2 − 2g pq RpjkRqi+ n1 − 2RijkR − 1 n− 2RikjR .

Corollary 4.2. During the Ricci flow of a n–dimensional Riemannian manifold(Mn, g(t)), the squared norm of the Cotton tensor satisfies the following evolution equation, in an orthonormal basis,

∂t− ∆|Cijk|2 = −2|∇Cijk|2−n16 − 2CipkCiqkRpq+ 24 n− 2CipkCkqiRpq +n4 − 2R|Cijk|2+ 8 n− 2CijkRpkjRpi+ 4 n− 2CijkRijkR +8CijkRlpjWpikl− 8CijkCpjlWpikl− 4CjpiCljkWpikl.

∂t− ∆|Cijk|2 = −2|∇Cijk|2+ 2CijkRipgpqCqjk+ 2CijkRjpgpqCiqk+ 2CijkRkpgpqCiqk

+2Cijk

h 1

n− 2(Rpj(Ckpi+ Cpki+ (n − 3)Cikp) +(n + 2)RpiCpkj− Rpk(Cjpi+ Cpji+ (n − 3)Cijp))

+n2 − 2RCijk+ 2 n− 2RqlCqjlgik− 2 n− 2RqlCqklgij + 1 (n − 1)(n − 2)k|Ric| 2g ij− 1 (n − 1)(n − 2)j|Ric| 2g ik + R (n − 1)(n − 2)jRgik− R (n − 1)(n − 2)kRgij +n2 − 2RqkjRqi− 2 n− 2RqjkRqi+ 1 n− 2RijkR − 1 n− 2RikjR

−2WpiklCpjl+ 2WpijlCpkl− 2WjklpCpil+ 2RpljWpikl− 2RplkWpikl

i = −2|∇Cijk|2− n16 − 2CipkCiqkRpq+ 24 n− 2CipkCkqiRpq +n4 − 2R|Cijk| 2+ 8 n− 2CijkRpkjRpi+ 4 n− 2CijkRijkR +8CijkRlpjWpikl− 8CijkCpjlWpikl− 4CjpiCljkWpikl.

Remark4.3. Notice that if n = 3 the two formulas in Proposition 4.1 and Corollary 4.2 become the ones in

Proposition 2.1 and Corollary 2.5.

5 The Bach Tensor

The Bach tensor in dimension three is given by

Bik=∇jCijk.

Let Sij= Rij2(n−1)1 Rgijbe the Schouten tensor, then

Bik=∇jCijk=∇j(∇kSij−∇jSik) =∇jkSij− ∆Sik. (5.1)

We compute, in generic dimension n,jCijk =jkRij 1

(19)

= +RjkilRjl+ RjkjlRil+∇kjRij− 1 2(n − 1)kjRgij− ∆Sik = +n1 − 2  Rijgkl− Rjlgki+ Rklgij− Rkigjl− R (n − 1)(gijgkl− gjlgki)  Rjl+ WjkilRjl +RklRil+1 2∇kiR − 1 2(n − 1)kiR − ∆Sik = +n1 − 2(RjiRjk−|Ric| 2g ik+ RklRil− RRik) − R (n − 1)(n − 2)Rik+ R2 (n − 1)(n − 2)gik +WjkilRjl+ RklRil+ n− 2 2(n − 1)kiR − ∆Sik = nn − 2RijRkjn (n − 1)(n − 2)RRik− 1 n− 2|Ric| 2g ik+ R 2 (n − 1)(n − 2)gik +WjkilRjl+ n− 2 2(n − 1)kiR − ∆Sik.

From this last expression, it is easy to see that the Bach tensor in dimension 3 is symmetric, i.e. Bik = Bki.

Moreover, it is trace–free, that is, gikB

ik= 0 as gik∇Cijk= 0.

Remark5.1. In higher dimension, the Bach tensor is given by

Bik= n1

− 2(∇jCijk− RjlWijkl) .

We note that, since RjlWijkl = RjlWklij = RjlWkjil, from the above computation we get that the Bach tensor

is symmetric in any dimension; finally, as the Weyl tensor is trace-free in every pair of indexes, there holds

gikBik= 0.

We recall that Schur lemma yields the following equation for the divergence of the Schouten tensor ∇jSij= n− 2 2(n − 1)iR . (5.2) We write ∇kjCijk=∇kjkSij−∇kjjSik= [∇j,∇k]∇jSik, therefore, ∇kjCijk = RjkjllSik+ RjkiljSlk+ RjkkljSli = RkllSik+ RjkiljSlk− RjljSli =  1 n− 2(Rijgkl− Rjlgik+ Rklgij− Rikgjl) − 1 (n − 1)(n − 2)R(gijgkl− gikgjl) + Wjkil  ∇jSlk = n1 − 2(−RjljSil+ RkliSkl) + WjkiljSlk = n1 − 2Rjl(∇iSlj−∇jSil) + WjkiljRkl = n1 − 2RjlClji+ WiljkjRkl,

where we repeatedly used equation (5.2), the trace–free property of the Weyl tensor and the definition of the Cotton tensor. Recalling that ∇kWijkl=kWklij= −n− 3 n− 2Clij= n− 3 n− 2Clji,

the divergence of the Bach tensor is given by ∇kBik = n1 − 2∇k(∇jCijk− RjlWijkl) = 1 (n − 2)2RjlCjlin− 3 (n − 2)2CjliRjl = − n− 4 (n − 2)2CjliRjl.

In particular, for n = 3, we obtainkBik=kBki= RjlCjliand, for n = 4, we get the classical resultkBik=kBki= 0.

Riferimenti

Documenti correlati

This relation is a key step in (yet another) proof of the fact that a three–dimensional, locally conformally flat, steady or shrinking gradient Ricci soliton is locally a warped

In detail, we analyze the efficacy measured as application timeto-solution of power capping to maintain the same power budget using i RAPL controller and ii a simple fixed

Previous studies 166 demonsti·ated that mechanisms responsible to resistance includes specific mutations within blaKPc 167 gene and that emerged after ceftazidime/avibactam

The objective of the research is to compare indoor comfort conditions of two kitchens (in which internal gains are defined and taking into account a traditional use of the kitchen in

Thus, unlike in the compact K¨ ahler case, the invariant does not quite describe whether compatible parak¨ ahler Einstein metrics have zero or non-zero scalar curvature.. This is

This difference between West Flemish and German follows, if we assume, as I have argued in chapter 3, that in West Flemish only finite verbs can move to the head of AspP.. Else

In keeping with the indications laid down by the Recommendation, the Italian implementation plan determines that young people “should be introduced into the Guarantee