• Non ci sono risultati.

mization, Journal of Global Optimization, 18, 265-274

N/A
N/A
Protected

Academic year: 2021

Condividi "mization, Journal of Global Optimization, 18, 265-274"

Copied!
8
0
0

Testo completo

(1)

[1] A. A. V. V., (2001): Italia Atlante Stradale, Istituto Geografico De Agostini [2] F.S. Bai, Z.Y. Wu, (2006): Convexification and concavification for a class of non-monotone optimization problems, Pacific Journal of Optimization, 2, n. 2, 205-223

[3] M. S. Bazaraa, C. M. Shetty, (1976): Foundations of optimization, Lecture Notes in Economics and Mathematical Systems, 122, Springer-Verlag [4] R. Blanquero, E. Carrizosa, (2000): On Covering Methods for d.c. Opti-

mization, Journal of Global Optimization, 18, 265-274

[5] R. Blanquero, E. Carrizosa, (2002): A D.C. biobjective location model, Journal of Global Optimization, 23, 139-154

[6] I. Bomze, M. Locatelli, (2004): Undominated d.c. Decompositions of Quadratic Functions and Applications to Branch-and-Bound Approaches, Computational Optimization and Applications, 28, 227-245

[7] R. Cambini, F. Salvi, (2009): Solving a class of low rank d.c. programs via a branch and bound approach: a computational experience, Technical Report n. 320, Department of Statistics and Applied Mathematics, University of Pisa, submitted to Operations Research Letters

[8] R. Cambini, F. Salvi, (2009): Solving a class of low rank d.c. programs via a branch and reduce approach: a computational study, Technical Report n. 321, Department of Statistics and Applied Mathematics, University of Pisa, submitted to Central European Journal of Operations Research [9] R. Cambini, F. Salvi, (2009): A branch and reduce approach for solving

a class of low rank d.c. programs, Journal of Computational and Applied Mathematics, vol.233, pp.492-501, ISSN 0377-0427

[10] R. Cambini, C. Sodini, (2002): A finite algorithm for a particular d.c.

quadratic programming problem, Annals of Operations Research 117, 33-49 [11] R. Cambini, C. Sodini, (2003): A finite algorithm for a class of nonlinear

multiplicative programs, Journal of Global Optimization 26, 279-296 [12] R. Cambini, C. Sodini, (2005): Decomposition methods for solving noncon-

vex quadratic programs via branch and bound, Journal of Global Optimiza-

tion 33, 313-336

(2)

[13] R. Cambini, C. Sodini, (2007): A unifying approach to solve a class of parametrically-convexifiable problems, Generalized convexity and re- lated topics, 149-166, Lecture Notes in Econom. and Math. Systems, 583, Springer, Berlin

[14] R. Cambini, C. Sodini, (2007): A sequential method for a class of box constrained quadratic programming problems, Math Meth Oper Res DOI 10, 1007/s00186-007-0173-x, Springer

[15] R. Cambini, C. Sodini, (2008): A computational comparison of some branch and bound methods for indefinite quadratic programs, Central European Journal of Operations Research, 16, No. 2, 139-152

[16] R. Cambini, C. Sodini: Global optimization of a generalized quadratic pro- gram, Submitted to JOGO

[17] R. Cambini, C. Sodini, (2007): A parametric approach in global optimiza- tion: the optimal level solutions method, Operational Research Society of India 40

th

Annual Convention, New Delhi, December 4-6

[18] R. Cambini, C. Sodini,(2008): A Branch and Bound approach for a class of d.c. programs, Report n. 301, Department of Statistics and Applied Math- ematics, University of Pisa.

[19] E. Carrizosa, (2001): An optimal bound for d.c. programs with convex con- straints, Mathematical Methods of Operations Research, 54, 47-51

[20] P. C. Chen, P. Hansen, B. Jaumard, H. Tuy (1992): Solution of the Multifa- cility Weber and Conditional Weber Problems by d.c. Programming Cahier du GERAD G-92-35, Ecole Polytechnique, Montreal, Quebec, Canada [21] G. Cornuejols, R. T¨ ut¨ unc¨ u, (2007): Optimization methods in finance, Cam-

bridge University Press

[22] N. Dinh, G. Vallet, T.T.A. Nghia, (2008): Farkas-type results and duality for d.c. programs with convex constraints, Journal of Convex Analysis, 15, n. 2, 235-262

[23] R. Ellaia, J. B. Hiriart-Urruty (1986): The Conjugate of the Difference of Convex Functions Journal of Optimization Theory and Applications, Vol.

49, pp. 493-498

[24] A. Ellero: Soluzioni ottime di livello in programmazione frazionaria e in alcune sue generalizzazioni: aspetti teorici ed algoritmici, Tesi di Dottorato di Ricerca in Matematica applicata ai problemi economici V ciclo, Univer- sita’ degli Studi di Trieste, Universita’ degli Studi di Venezia, Facolta’ di Economia e Commercio, Anno Accademico 1991-1992

[25] J. E. Falk, K. R. Hoffman, (1976): A successive underestimation method for concave minimization problems, Mathematics for Operations Research, Vol. 1, No. 3 August

[26] J. E. Falk, R. M. Soland, (1969): An algorithm for separable nonconvex

programming problems, Management Science, 15, 550-569

(3)

[27] J. E. Falk, R. M. Soland, (1972): An algorithm for locating approximate global solutions of nonconvex, separable problems, Working Paper Serial T-262, Program in Logistics, The George Washington University

[28] A. Ferrer, J.E. Martinez-Legaz, (2009): Improving the efficiency of d.c.

global optimization by improving the d.c. representation of the objective function, Journal of Global Optimization, 43, n. 4, 513-531

[29] C.A. Floudas, P. M. Pardalos, (1999): Handbook of Test Problems in Local and Global Optimization, Nonconvex Optimization and Its Applications, vol. 33, Springer Berlin

[30] A. Francois, H. Abdeikader, L. T. Hoai An, M. Said, (2007): Application of lower bound direct method to engineering structures, Journal of Global Optimization, vol. 37, 609-630, Springer

[31] P. Hartman, (1959): On Functions Representable as a Difference of Convex Functions Pacific Journal of Mathematics, Vol. 9, pp. 707-713

[32] Hiriart, J. B. Urruty, (1985): Generalized Differentiability, Duality and Op- timization for problems dealing with Differences of convex functions, Lec- tures Notes in Economics and Mathematical Systems, 256, 37-69, Springer- Verlag Berlin

[33] L. T. Hoai An, (1994): Analyse numerique des algorithmes de l’optimisation d.c. approches locales et globales. Code et simulations numeriques en grande dimension, Applications, These de Doctorat de l’Universite de Rouen [34] L. T. Hoai An, (2000): An efficient algorithm for globally minimizing a

quadratic function under convex quadratic constraints, Mathematical Pro- gramming Series A 87, 401-426

[35] L. T. Hoai An, (2003): Solving Large Scale Molecular Distance Geometry Problems by a Smoothing Technique via the Gaussian Transform and d.c.

Programming, Journal of Global Optimization,27,375-397

[36] L. T. Hoai An et al, (2002): Towards Tikhonov regularization of non linear ill posed problems: a d.c. programming approach, C. R. Acad. Sci. Paris, Ser. 1 335, 1073-1078

[37] L. T. Hoai An, M. T. Belghiti, P. D. Tao, (2007): A new efficient algorithm based on d.c. programming and DCA for clustering, Journal of Global Op- timization, 37, 593-608

[38] L. T. Hoai An, L. M. Hoai, P. D. Tao, (2007): Optimization based d.c.

programming and DCA for hierarchical clustering, European Journal of Operations Research, 183, 1067-1085

[39] L. T. Hoai An, N. T. Phuc, P. D. Tao, (2007): A continuous d.c. program- ming approach to the strategic supply chain design problem from qualified partner set, European Journal of Operational Research, 183, 1001-1012 [40] L. T. Hoai An, M. Ouanes, (2006): Convex quadratic underestimation and

branch and bound for univariate global optimization with one nonconvex

constraint, RAIRO Operations Research, 40, 285-302

(4)

[41] L. T. Hoai An, P. D. Tao, (1997): Solving a class of linearly constrained indefinite quadratic problems by d.c. algorithms, Journal of Global Opti- mization, 11, 253-285

[42] L. T. Hoai An, P. D. Tao, (1998): D.C. programming approach for multi- commodity network optimization problems with step increasing cost func- tions, Journal of Global Optimization, 22, 205-232

[43] L. T. Hoai An, P. D. Tao, (1998): A branch and bound method via d.c. op- timization algorithms and ellipsoidal technique box constrained nonconvex quadratic problems, Journal of Global Optimization, 13, 171-206

[44] L. T. Hoai An, P. D. Tao, (2005): The d.c. (Difference of Convex Func- tions) Programming and DCA Revisited with d.c. Models of Real World Nonconvex Optimization Problems, Annals of Operations Research, 133, 23-46

[45] L. T. Hoai An, P. D. Tao, (2008): A continuous approach for the concave cost supply problem via d.c. programming and DCA, European Journal of Operational Research, 156, 325-338

[46] L. T. Hoai An, P. D. Tao, D. N. Hao, (2003): Solving an Inverse Problem for an Elliptic Equation by d.c. programming, Journal of Global Optimization, 25, 407-423

[47] L. T. Hoai An, P. D. Tao, (2005): The d.c. (Difference of Convex Func- tions) Programming and DCA Revisited with d.c. Models of Real World Nonconvex Optimization Problems, Annals of Operations Research 133, 23-46

[48] L. T. Hoai An, P. D. Tao, L. D. Muu, (1996): Numerical solution for opti- mization over the efficient set by d.c. optimization algorithms, Operations Research Letters, 19, 117-128

[49] L. T. Hoai An, P. D. Tao, L. D. Muu, (1998): A combined d.c. optimization- ellipsoidal branch and bound algorithm for solving nonconvex quadratic pro- gramming problems, Journal of Combinatorial Optimization, 2, 9-28 [50] L. T. Hoai An, P. D. Tao, L. D. Muu, (2003): Simplicially-Constrained

d.c. Optimization over Efficient and Weakly Efficient Sets, Journal of Op- timization Theory and Applications, Vol.117, No. 3, 503-531

[51] L. T. Hoai An, P. D. Tao, N. G. Thoai, (2002): Combination between global and local methods for solving an optimization problem over the efficient set, European Journal of Operational Research, 142, 258-270

[52] Honggang Xue, Chengxian Xu, Fengmin Xu, (2004): A Branch and Bound Algorithm for Separable Concave Programming Journal of Computational Mathematics, 22, 895-904

[53] X. Honggang, X. Chengxian, (2005): A branch and bound algorithm for

solving a class of D-C programming Applied Mathematics and Computa-

tion, 165, 29-302

(5)

[54] R. Horst, (1978): A new approach for separable nonconvex minimization problems including a method for finding the global minimum of a function of a single variable, Proceedings in Operations Research, 7, 39-47, Physica, Heidelberg

[55] R. Horst, (1988): Deterministic Global Optimization with partition sets whose feasibility is not known: application to concave minimization, reverse convex constraints, d.c. programming, and Lipschitz optimization Journal of Optimization Theory and Applications, Vol. 58, pp. 11-37

[56] R. Horst, (1990): Deterministic methods in constrained global optimiza- tion: some recent advances and new fields of application, Naval Research Logistics, Vol. 37, 433-471

[57] R. Horst, P. M. Pardalos, (1995): Handbook of Global Optimization, Non- convex Optimization and Its Applications, vol. 2, Kluwer Academic Pub- lishers, Dordrecht

[58] R. Horst, P. M. Pardalos, N. V. Thoai, (1995): Introduction to Global Optimization, Kluwer Academic Publishers

[59] R. Horst, N. V. Thoai, (1989): Modification, Implementation and Compar- ison of three Algorithms for Globally Solving Linearly Constrained Concave Minimization Problems, Computing, 42, 271-289

[60] R. Horst, N. V. Thoai, (1999): DC programming: Overview, Journal of Optimization Theory and Applications, vol. 103, No 1, 1-43

[61] R. Horst,N.V. Thoai, (2004): On an optimality condition in d.c. optimiza- tion. Errata to : “D.c. programming: overview”, Journal of Optimization Theory and Applications, 121, n. 1, 211

[62] R. Horst, H. Tuy, (1990): Global optimization deterministic approaches, Springer-Verlag

[63] V. Jeyakumakar, B.M. Glover, (1996): Characterizing global optimality for d.c. optimization problems under convex inequality constraints, Journal of Global Optimization, 8, n. 2, 171-187

[64] B. Kalantari, J. B. Rosen, (1987): An algorithm for global minimization of linearly constrained concave quadratic functions, Mathematics of Oper- ations Research, 12, 544-561

[65] R. Karuppiah, I. E. Grossman, (2008): A Lagrangean based branch-and- cut algorithm for global optmization of nonconvex mixed-integer nonlinear programs with decomposable structures, Journal of Global Optimization, vol. 41, 163-186, Springer

[66] F. A. A. Khayyal, H. D. Sherali, (2000): On finitely terminating branch and bound algorithms for some global optimization problems, SIAM Journal Optimization, vol. 10, No. 4, 1049-1057

[67] H. Konno, P.T. Thach, H. Tuy, (1997): Optimization on low rank non-

convex structures, Nonconvex Optimization and Its Applications, vol. 15,

Kluwer Academic Publishers, Dordrecht

(6)

[68] H. Konno, A. Wijayanayake, (2002): Portfolio optimization under d.c.

transaction costs and minimal transaction unit constraints, Journal of Global Optimization, 22, 137-154

[69] M. Laghdir, (2005): Optimality conditions in d.c.-constrained optimization, Acta Mathematica Vietnamica, 30, n. 2, 169-179

[70] M. Laghdir, N. Benkenza, (2004): Duality in constrained d.c.-optimization via duality in reverse convex programming, Journal of Nonlinear and Con- vex Analysis, 5, n. 2, 275-283

[71] M. Laghdir, N. Benkenza, (2005): Duality in d.c.-constrained programming via Toland’s duality approach, Serdica Mathematical Journal, 29, n. 2, 167- 176

[72] B. Lemaire, M. Volle, (1998): Duality in d.c. programming, Nonconvex Optimization and its Applications, 27

[73] M. Locatelli, N. V. Thoai, (2000): Finite Branch-and-Bound Algorithms for Concave Minimization over Polytopes, Journal of Global Optimization, 18, 107-128

[74] D. T. Luc, (1988): Theory of vector optimization, Lecture Notes in Eco- nomics and Mathematical Systems, 319, Springer-Verlag

[75] P. Mahey, T. Q. Phong, H. P. L. Luna, (2001): Separable convexification and DCA techniques for capacity and flow assignement problems, RAIRO Operations Research, 35, 269-281

[76] P. E. Maing` e, A. Moudafi, (2008): Convergence of new inertial proximal methods for d.c. programming, SIAM Journal Optimization, Vol. 19, No.

1, 397-413

[77] M. Minoux, (1986): Mathematical Programming Theory and Algorithms, Wiley-Intersciences Publication

[78] V. H.Nguyen, J. J. Strodiot, N. V. Thoai, (1985): On an optimum shape design problem, Technical Report 85/5, Department of Mathematics, Fac- ultes Universitaieres de Namur

[79] P. M. Pardalos, H. E. Romeijn, H. Tuy, (2000): Recent developments and trends in global optimization, Journal of Computational and Applied Math- ematics, 124, 209-228

[80] P. M. Pardalos, J. B. Rosen, (1987): Constrained global optimization: algo- rithms and applications, Lecture Notes in Computer Science, 268, Springer- Verlag, Berlin

[81] J. Parker, N. V. Sahinidis, (1998): A Finite Algorithm for Global Mini- mization of Separable Concave Programs, Journal of Global Optimization, 12, 1-36

[82] T.Q. Phong, L.T. Hoai An, P.D. Tao, (1995): Decomposition branch and

bound method for globally solving linerearly constrained indefinite quadratic

minimization problems, Operations Research Letters, 17, pp. 215-220

(7)

[83] T.Q. Phong, P.D. Tao, L.T. Hoai An, (1995): A method for solving d.c.

programming problems. Application to fuel mixture nonconvex optimization problem, Journal of Global Optimization, 6, pp. 87-105

[84] H.S. Ryoo, N. V. Sahinidis, (1996): A branch-and-reduce approach to global optimization, Journal of Global Optimization, vol. 8, pp. 107-138

[85] R.T. Rockafellar, (1972): Convex Analysis, Princeton University Press, second edition

[86] R.T. Rockafellar, (1981): Theory of Subgradients and Its Applications to Problems of Optimization: Convex and Nonconvex Functions, Heldermann Verlag, Berlin

[87] H.S. Ryoo, N. V. Sahinidis, (2003): Global optimization of multiplicative programs, Journal of Global Optimization, vol. 26, pp. 387-418

[88] R. M. Soland, (1971): An algorithm for separable nonconvex programming problems II: nonconvex constraints, Management Science, 17, 759-773 [89] P.G. Szabo, E. Sprecht, (2007): Packing up to 200 equal circles in a square,

Models and Algorithms for Global Optimization, 141-156, Springer Op- tim. Appl., 4, Springer New York

[90] P.D. Tao, L.T Hoai, F. Akoa, (2008): Combining DCA (DC Algorithms) and interior point techniques for large-scale nonconvex quadratic program- ming, Optimization Methods and Software, 23, n. 4, 609-629

[91] P. D. Tao, L. T. Hoai An, (1996): Difference of convex functions optimiza- tion algorithms (DCA) for globally minimizing nonconvex quadratic forms on Euclidean balls and spheres, Operations Research Letters, 19, 207-216 [92] P. D. Tao, L. T. Hoai An, (1998): A d.c. optimization algorithm for solving

the trust-region subproblem, SIAM Journal Optimization, Vol. 8, No. 2, 476-505

[93] M. Tawarmalani, N. V. Sahinidis, (2005): A polyhedral branch and cut approach to global optimization, Mathematical Programming Series B, 103, 225-249

[94] P. T. Thach (1988): The Design Centering Program as a d.c. Programming Problem Mathematical Programming, Vol. 41, pp. 229-248

[95] N. V. Thoai, (1987): On canonical d.c. programs and applications Essays on Nonlinear Analysis and Optimization Problems, Institute of Mathematics, Hanoi, Vietnam, pp. 88-100

[96] N. V. Thoai, (1998): On Tikhonov’s Reciprocity Principle and Optimal- ity Conditions in d.c. Optimization Journal of Mathematical Analysis and Applications, Vol. 25, pp. 673-678

[97] N. V. Thoai, (2002): Convergence and Application of a Decomposition

Method Using Duality Bounds for Nonconvex Global Optimization, Jour-

nal of Optimization Theory and Applications, Vol. 113, No. 1, 165-193

(8)

[98] H. Tuy, (1991): Effect of the subdivision strategy on convergence and effi- ciency of some global optimization algorithms, Journal of Global Optimiza- tion, 1, 23-36

[99] H. Tuy, (1995): Canonical d.c. programming problem: Outer approximation methods revisited, Operations Research Letters, 18, 99-106

[100] H. Tuy, (1996): A general d.c. approach to location problems, State of the art in global optimization, edited by C.A. Floudas, P. M. Pardalos, Nonconvex Optimization and Its Applications, vol. 7, pp. 413-432, Kluwer Academic Publishers, Dordrecht

[101] H. Tuy, (1998): Convex Analysis and Global Optimization, Nonconvex Optimization and its Applications, vol. 22, Kluwer Academic Publishers, Dordrecht

[102] H. Tuy, (2003): On global optimality conditions and cutting plane algo- rithms, Journal of Optimization Theory and Applications, 118, n. 1, 201- 216

[103] S. Weber, T.Schule, C. Schnorr, (2005): Prior learning and convex- concave regularization of binary tomography, Proceedings of the workshop on Discrete Tomography and its applications, 313-327 (electronic), Elec- tron. Notes Discrete Math. 20, Elsevier, Amsterdam

[104] X.H. Zhang, C.Z. Cheng, (2009): Some Farkas-type results for fractional

programming problems with d.c. functions, Nonlinear Analysis: Real World

Applications, 10, n. 3, 1679-1690

Riferimenti

Documenti correlati

The central and crucial goals of mBRCs are the collection, preservation and distribution of microbial strains, together with the supply and exchange of related information [5].

This problem leads to registration of sparse and noisy clouds at different scales, and cannot be handled with previous stochastic methods for rigid registra- tion [AMCO08,

Based on these findings, to avoid that the brand knowledge covers up the COO effect, the brands used as stimuli for the experiment are not particularly famous in the

position of the center of the i-th sphere around the central one. We maximize a decision variable α ≥ 0 which represents the minimum pairwise sphere separation distance in the N

The Secretary of State or the Minister makes a statement before the plenary session of each chamber before the floor is opened for discussion with senators and MPs who

Overall, the collec- tive attention renders the inflow of people getting aware more dy- namic, since the equation of this flow is formally calculated as the multiplication of the

Se ci mettiamo da questo punto di vista, allora nell'iscrizione da Alicarnasso prima esaminata è sicuramente preferibile l'interpunzione adottata da Rose 20 , che mette un punto

The linear radiant heat transfer coefficient can be generally considered constant for any kind of low temperature heating and high temperature cooling systems (floor, ceiling