• Non ci sono risultati.

Lecture II

N/A
N/A
Protected

Academic year: 2022

Condividi "Lecture II"

Copied!
27
0
0

Testo completo

(1)

A. Rivetti – INFN Sezione di Torino

Lecture II

Lecture II:

Linear circuit theory review

• Amplifier basics

• MOS small signal model

(2)

A. Rivetti – INFN Sezione di Torino

Nodal analysis

Is R1 Vs

R2 R3

R4

Nodal analysis provides a systematic and reliable method to calculate all voltages and currents in a linear circuit

Nodal analysis

(3)

A. Rivetti – INFN Sezione di Torino

Writing nodal equations

R2 R4

Is R1 R3 Vs

v1 v2





 

 

 

0 0

4 2 3

2 2

1 2

2 2 1

1 1

R V R v v

R v v

R v R v v

I

s s

Nodal analysis

(4)

A. Rivetti – INFN Sezione di Torino

Writing the circuit matrix

Is R1 Vs

R2 R3

R4 v1 v2























V R I v

v R

R R

R

R R

R

s s

2 4 1

4 3

2 2

2 2

1

1 1

1 1

1 1

1

Nodal analysis

(5)

A. Rivetti – INFN Sezione di Torino

Solving the circuit matrix

R R

R R

R R

R

4 3

2 2

2 2

1

1 1

1 1

1 1

1

R R

R

V R I R

s s

4 3

2 4

2

1 1 1 1

1

V R R

R I R

s s

4 2

2 1

2 1

1 1

 

1

v

1

 

2

v

2

Nodal analysis

(6)

A. Rivetti – INFN Sezione di Torino

Another example

Is

Vs

R1

R2

R3 R4

Nodal analysis

(7)

A. Rivetti – INFN Sezione di Torino

Lecture II

Lecture II:

Linear circuit theory review

• Amplifier basics

• MOS small signal model

(8)

A. Rivetti – INFN Sezione di Torino

Amplifier characteristic

) ( )

) ( ( )

( t a

0

a

1

x t a

2

x t

2 ...

a x t

y

n n

 The input-output characteristic of an amplifier is usually a non-linear function

 Over some interval of the input signal, this function can be approximated by a polynomial:

 For narrow range of the input signal, we may write:

) ( )

( t a

0

a

1

x t y

The above expression does not obey the superposition principle

Amplifier basics

(9)

A. Rivetti – INFN Sezione di Torino

Small signal model

 If a0 does not depend on the signal, we can write:

) ( )

( t a

1

x t

y

 This is an expression that obeys the superposition principle

 The small signal model takes into account only variations of signals within a circuit

 The small signal equivalent circuit can be studied with the methods of linear circuit analysis

Amplifier basics

(10)

A. Rivetti – INFN Sezione di Torino

Voltage amplifier

Vs(t) Ri

Rs

Vi(t) Vout

 AV = Vout/Vi

 Input impedance high (ideally infinite)

 Output impedance small (ideally zero)

Amplifier basics

(11)

A. Rivetti – INFN Sezione di Torino

VA small signal model

AVVi Vout

Vs(t) RI

RS

Vi(t)

RO

RL

Note: impedances may also be complex

Amplifier basics

(12)

A. Rivetti – INFN Sezione di Torino

Current amplifier

 AV = Iout/Ii

 Input impedance small (ideally zero)

 Output impedance high (ideally infinite)

Rs Ii(t) Ri Iout

Is(t)

Amplifier basics

(13)

A. Rivetti – INFN Sezione di Torino

CA small signal model

Note: impedances may also be complex

Amplifier basics

Rs Ii(t) Ri

Is(t) Is(t) Ro Iout(t) RL

(14)

A. Rivetti – INFN Sezione di Torino

Transconductance amplifier

Vs(t) Ri

Rs

Vi(t) Iout

 AV = Iout/Vi

 Input impedance high (ideally infinite)

 Output impedance high (ideally infinite)

 Important: the gain is not a number

Amplifier basics

(15)

A. Rivetti – INFN Sezione di Torino

TCA small signal model

Note: impedances may also be complex

Amplifier basics

Vs(t) RI

RS

Vi(t) Is(t) Ro Iout(t) RL

(16)

A. Rivetti – INFN Sezione di Torino

Transimpedance amplifier

 AV = Vout/Ii

 Input impedance small (ideally zero)

 Output impedance small (ideally zero)

 Note: Gain is not a number

Amplifier basics

Rs Ii(t) Ri Vout

Is(t)

(17)

A. Rivetti – INFN Sezione di Torino

TA small signal model

Note: impedances may also be complex Rs Ii(t) Ri

Is(t) AVVi Vout

RO

RL

Amplifier basics

(18)

A. Rivetti – INFN Sezione di Torino

Lecture II

Lecture II:

Linear circuit theory review

• Amplifier basics

• MOS small signal model

(19)

A. Rivetti – INFN Sezione di Torino

Simplified small signal DC model

RS

gm

VGS

IDS

= = n COX W

L (VGS – VTH) 2 n COX W

L IDS

=

The MOS transistor in saturation can be seen as a voltage controlled current source

Vs(t) Vs(t) gmVs

MOS small signal DC model

(20)

A. Rivetti – INFN Sezione di Torino

Practical example

What is the equivalent small signal model of this?

W=100 m L=10 m

nCOX=190 A/V2 VTH=0.6 V

Vdrain=2.5 V Vgate=1.25 V

MOS small signal DC model

Vgate

Vdrain

Vs

(21)

A. Rivetti – INFN Sezione di Torino

Gm simulation(1)

MOS small signal DC model

Vs=1mV pk-pk 355.7

356.7

0 1 2

time (S)

current (A)

(22)

A. Rivetti – INFN Sezione di Torino

Gm simulation (2)

MOS small signal DC model

Vs=250mV pk-pk 355

660

current (A)

0 1 2

time (S)

(23)

A. Rivetti – INFN Sezione di Torino

Output impedance

MOS small signal DC model

Vgate

Vdrain

Vs

r0

(24)

A. Rivetti – INFN Sezione di Torino

Including the output impedance

RS

gm

VGS

IDS

= = n COX W

L (VGS – VTH) 2 n COX W

L IDS

=

ro 1

IDS

=

The MOS transistor in saturation can be seen as a voltage controlled current source with finite output impedance

Vs(t) Vs(t) gmVs ro

MOS small signal DC model

(25)

A. Rivetti – INFN Sezione di Torino

Bulk transconductance

gmb

VBS

IDS

= = n COX W

L (VGS – VTH)

VSB

VTH

= gm

2F + VSB

MOS small signal DC model

RS

Vs(t) Vs(t) gmVs ro gmbvbs

For a more accurate model, the bulk effect must also be taken into account

(26)

A. Rivetti – INFN Sezione di Torino

Small signal DC model

The saturated MOS transistor is a voltage controlled current source with finite output impedance

RS

Vs(t) Vs(t) gmVs ro gmbvbs

gm models the gate transconductance

gmb models the bulk transconductance (the bulk effect)

MOS small signal DC model

(27)

A. Rivetti – INFN Sezione di Torino

Some numbers…

gm

VGS

IDS

= = 2 n COX W

L IDS ro 1

IDS

= IDS = 100A, W/L=50, nCOX=190A/V2

=0.01V-1 gm = 1mS ro = 1M

MOS small signal DC model

Riferimenti

Documenti correlati

validation of the presented HIL architecture in terms of capacity to reproduce on the test rig braking and traction phases (under degraded adhesion conditions), thanks to the

Among the observed asteroids, only (21238) Panarea and (105041) 2000 KO41 present spectra compatible with basaltic material, while different classification is suggested for the rest

Questo lavoro di tesi ha lo scopo di analizzare in che modo la vicenda Xylella è stata raccontata su quattro quotidiani presi in esame (“la Repubblica”, “Nuovo Quotidiano di

“di un’altra era” accentua una distanza ironica dai tempi dei racconti: gli anni finali della seconda guerra mondiale, che hanno segnato la vita dell’autore, gli sono

Univariable regression analysis showed a significant correlation between aortic PWV and extent of stent graft coverage, (P < 0.001), but no significant effect of baseline

Per quanto riguarda la parte dinamica, è necessario condurre uno studio più accurato sulla parte muscolare del modello o utilizzare future versioni del software OpenSim più

Our main result is a necessary and sufficient condition for left invertibility and uniform left invertibility for joint contractive systems.. In addition, an algorithm is proposed

More precisely the condition under which left invertibility and left D-invertibility are equivalent is that the elements of the dynamic matrix of the system form an