A. Rivetti – INFN Sezione di Torino
Lecture II
Lecture II:
•
Linear circuit theory review• Amplifier basics
• MOS small signal model
A. Rivetti – INFN Sezione di Torino
Nodal analysis
Is R1 Vs
R2 R3
R4
Nodal analysis provides a systematic and reliable method to calculate all voltages and currents in a linear circuit
Nodal analysis
A. Rivetti – INFN Sezione di Torino
Writing nodal equations
R2 R4
Is R1 R3 Vs
v1 v2
0 0
4 2 3
2 2
1 2
2 2 1
1 1
R V R v v
R v v
R v R v v
I
s s
Nodal analysis
A. Rivetti – INFN Sezione di Torino
Writing the circuit matrix
Is R1 Vs
R2 R3
R4 v1 v2
V R I v
v R
R R
R
R R
R
s s
2 4 1
4 3
2 2
2 2
1
1 1
1 1
1 1
1
Nodal analysis
A. Rivetti – INFN Sezione di Torino
Solving the circuit matrix
R R
R R
R R
R
4 3
2 2
2 2
1
1 1
1 1
1 1
1
R R
R
V R I R
s s
4 3
2 4
2
1 1 1 1
1
V R R
R I R
s s
4 2
2 1
2 1
1 1
1
v
1
2
v
2Nodal analysis
A. Rivetti – INFN Sezione di Torino
Another example
Is
Vs
R1
R2
R3 R4
Nodal analysis
A. Rivetti – INFN Sezione di Torino
Lecture II
Lecture II:
•
Linear circuit theory review• Amplifier basics
• MOS small signal model
A. Rivetti – INFN Sezione di Torino
Amplifier characteristic
) ( )
) ( ( )
( t a
0a
1x t a
2x t
2 ...a x t
y
n n The input-output characteristic of an amplifier is usually a non-linear function
Over some interval of the input signal, this function can be approximated by a polynomial:
For narrow range of the input signal, we may write:
) ( )
( t a
0a
1x t y
The above expression does not obey the superposition principle
Amplifier basics
A. Rivetti – INFN Sezione di Torino
Small signal model
If a0 does not depend on the signal, we can write:
) ( )
( t a
1x t
y
This is an expression that obeys the superposition principle
The small signal model takes into account only variations of signals within a circuit
The small signal equivalent circuit can be studied with the methods of linear circuit analysis
Amplifier basics
A. Rivetti – INFN Sezione di Torino
Voltage amplifier
Vs(t) Ri
Rs
Vi(t) Vout
AV = Vout/Vi
Input impedance high (ideally infinite)
Output impedance small (ideally zero)
Amplifier basics
A. Rivetti – INFN Sezione di Torino
VA small signal model
AVVi Vout
Vs(t) RI
RS
Vi(t)
RO
RL
Note: impedances may also be complex
Amplifier basics
A. Rivetti – INFN Sezione di Torino
Current amplifier
AV = Iout/Ii
Input impedance small (ideally zero)
Output impedance high (ideally infinite)
Rs Ii(t) Ri Iout
Is(t)
Amplifier basics
A. Rivetti – INFN Sezione di Torino
CA small signal model
Note: impedances may also be complex
Amplifier basics
Rs Ii(t) Ri
Is(t) Is(t) Ro Iout(t) RL
A. Rivetti – INFN Sezione di Torino
Transconductance amplifier
Vs(t) Ri
Rs
Vi(t) Iout
AV = Iout/Vi
Input impedance high (ideally infinite)
Output impedance high (ideally infinite)
Important: the gain is not a number
Amplifier basics
A. Rivetti – INFN Sezione di Torino
TCA small signal model
Note: impedances may also be complex
Amplifier basics
Vs(t) RI
RS
Vi(t) Is(t) Ro Iout(t) RL
A. Rivetti – INFN Sezione di Torino
Transimpedance amplifier
AV = Vout/Ii
Input impedance small (ideally zero)
Output impedance small (ideally zero)
Note: Gain is not a number
Amplifier basics
Rs Ii(t) Ri Vout
Is(t)
A. Rivetti – INFN Sezione di Torino
TA small signal model
Note: impedances may also be complex Rs Ii(t) Ri
Is(t) AVVi Vout
RO
RL
Amplifier basics
A. Rivetti – INFN Sezione di Torino
Lecture II
Lecture II:
•
Linear circuit theory review• Amplifier basics
• MOS small signal model
A. Rivetti – INFN Sezione di Torino
Simplified small signal DC model
RS
gm
VGS
IDS
= = n COX W
L (VGS – VTH) 2 n COX W
L IDS
=
The MOS transistor in saturation can be seen as a voltage controlled current source
Vs(t) Vs(t) gmVs
MOS small signal DC model
A. Rivetti – INFN Sezione di Torino
Practical example
What is the equivalent small signal model of this?
W=100 m L=10 m
nCOX=190 A/V2 VTH=0.6 V
Vdrain=2.5 V Vgate=1.25 V
MOS small signal DC model
Vgate
Vdrain
Vs
A. Rivetti – INFN Sezione di Torino
Gm simulation(1)
MOS small signal DC model
Vs=1mV pk-pk 355.7
356.7
0 1 2
time (S)
current (A)
A. Rivetti – INFN Sezione di Torino
Gm simulation (2)
MOS small signal DC model
Vs=250mV pk-pk 355
660
current (A)
0 1 2
time (S)
A. Rivetti – INFN Sezione di Torino
Output impedance
MOS small signal DC model
Vgate
Vdrain
Vs
r0
A. Rivetti – INFN Sezione di Torino
Including the output impedance
RS
gm
VGS
IDS
= = n COX W
L (VGS – VTH) 2 n COX W
L IDS
=
ro 1
IDS
=
The MOS transistor in saturation can be seen as a voltage controlled current source with finite output impedance
Vs(t) Vs(t) gmVs ro
MOS small signal DC model
A. Rivetti – INFN Sezione di Torino
Bulk transconductance
gmb
VBS
IDS
= = n COX W
L (VGS – VTH)
VSB
VTH
= gm
2F + VSB
MOS small signal DC model
RS
Vs(t) Vs(t) gmVs ro gmbvbs
For a more accurate model, the bulk effect must also be taken into account
A. Rivetti – INFN Sezione di Torino
Small signal DC model
The saturated MOS transistor is a voltage controlled current source with finite output impedance
RS
Vs(t) Vs(t) gmVs ro gmbvbs
gm models the gate transconductance
gmb models the bulk transconductance (the bulk effect)
MOS small signal DC model
A. Rivetti – INFN Sezione di Torino
Some numbers…
gm
VGS
IDS
= = 2 n COX W
L IDS ro 1
IDS
= IDS = 100A, W/L=50, nCOX=190A/V2
=0.01V-1 gm = 1mS ro = 1M
MOS small signal DC model