• Non ci sono risultati.

Stochastic Mechanics 6 CFU I Part 29.10.2007 Exercise 1 Let X

N/A
N/A
Protected

Academic year: 2021

Condividi "Stochastic Mechanics 6 CFU I Part 29.10.2007 Exercise 1 Let X"

Copied!
1
0
0

Testo completo

(1)

Stochastic Mechanics 6 CFU I Part 29.10.2007

Exercise 1Let X1and X2 two Gaussian random variables with mean m1, m2and variance σ21 and σ22 respec- tively. Prove that Y = aX1+ bX2(a, b ∈ R) is a Gaussian random variable and calculate its mean value and its variance. (hint: use characteristic functions).

Exercise 2 Three coins are tossed 5c, 10c, 20c, let X be random variable which indicates the total amount shown and Y the number of tails, give the definition of E(X | Y ) and calculate its possible values.

Exercise 3Give the definition of Brownian motion for a process Wt and verify that Wˆt=√

cWt

c c >0, t ≥ 0 is a Brownian motion.

Exercise 4Let g = t(1 − t), t ∈ [0, 1] calculate aRt

0gdWt (give the formula) b E(Rt

0gdWt) c E(Rt

0gdWt)2

Exercise 5Give the definition of Ito Stochastic integral for a step function and prove its properties.

1

Riferimenti

Documenti correlati

Alcune funzioni hanno derivate di tutti gli ordini (ad es. polinomi, che si annullano da una certa derivata in poi, le funzioni seno e coseno che si ripetono ciclicamente, la

Gli interi k che soddisfano (*) parametrizzano precisamente le soluzioni della prima congruenza che sono anche soluzioni della seconda: in altre parole le soluzioni del

[r]

[r]

a Let X be the number of tosses of a fair coin up to and including the first toss

[r]

[r]

[r]