• Non ci sono risultati.

ARTICLE IN PRESS

N/A
N/A
Protected

Academic year: 2021

Condividi "ARTICLE IN PRESS"

Copied!
10
0
0

Testo completo

(1)

Available

online

at

ScienceDirect

www.sciencedirect.com

Modern

and

contemporary

art

An

insight

into

the

mechanical

properties

of

selected

commercial

oil

and

alkyd

paint

films

containing

cobalt

blue

Laura

Fuster-López

a,∗

,

Francesca

Caterina

Izzo

b

,

Valentina

Damato

b

,

Dolores

J.

Yusà-Marco

a

,

Elisabetta

Zendri

b

aUniversitatPolitècnicadeValència,InstitutoUniversitariodeRestauracióndelPatrimonio,CaminodeVeras/n,46022Valencia,Spain bCa’FoscariUniversityofVenice,DepartmentofEnvironmentalSciences,InformaticsandStatistics,ViaTorino155/b,Venice,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received6February2018 Receivedinrevisedform 18December2018 Accepted18December2018 Availableonlinexxx Keywords: Modernoilpaints Commercialformulations Cobaltblue Driers Mechanicalproperties GC-MS

a

b

s

t

r

a

c

t

Pigmentsandbindersareknowntoinfluencedryingandageingmechanismsofpaintfilms.However,the studyofthelong-termmechanicalbehaviourofpaintfilmsanditsrelationshipwithpaintdegradation andconservationstillneedsfurtherinvestigation.Thispaperpresentsaninsightintotheroleofcobalt bluepigmentinthemechanicalpropertiesofsomemodernpaintfilmsbystudyingselectedcommercial oilandalkydpaintfilmscontainingcobaltblue.Inaddition,severalrepresentativemock-upscontaining cobaltbluemixedwithdryingandsemi-dryingoilsandsomecommonadditiveswerealsotestedfor comparisonpurposes.Opticalmicroscopy,SEM-EDX,XRF,VIS-reflectancespectroscopy,FTIR-ATRand GC-MSanalysiswerecarriedouttoidentifypigments,binders,additivesandfillers.Uniaxialtensile measurementswereruntotestthemechanicalperformanceofthestudiedpaintfilms.Thedifferencesin themechanicalbehaviourledtotheevaluationofthediscrepanciesfoundinthechemicalandphysical propertiesofthedifferentformulationsstudied.

©2018ElsevierMassonSAS.Allrightsreserved.

1. Cobaltblue 1.1. Introduction

Thepresenceofwrinkles,cracks,flakinganddelaminationis usually registered in modern and contemporary oil and alkyd paintings. Theyareusually theconsequence ofcomplex failure mechanismsasaresultofchemicaldegradationprocesses[1–6] andchangesinthemechanicalanddimensionalpropertiesofthe paintfilmovertimeandwheretheenvironmentdoesnot neces-sarilyplayaparticularrole[7–10].

Previousstudieshaveshownacorrelationbetweenthe differ-entcomposition,dryingandagingoflipidicbindingmediaandthe changesinthemechanicalpropertiesinpaintfilmsovertime.The mechanicalpropertiesmayalsobemodified bytheionicbonds formedbypigmentswiththecross-linkednetworkofthemedium. Thesechangesarerelatedtotheon-goingchemicalprocessesthat oilpaintfilmsexperience.Ingeneral,oilpaintfilmsbecomestiffer over time whichis an indicationofthe progressiveincrease of modulusofelasticity(E)andultimatetensilestrength(UTS),anda

∗ Correspondingauthor.

E-mailaddress:laufuslo@crbc.upv.es(L.Fuster-López).

decreaseinthestraintofailureor,inotherwords,withadecreasing abilitytoelongatebeforebreaking[11–13].Pigmentsgovernsuch changesandtheirmagnitudebutalsodeterminehowearlysuch changeswilltakeplaceinthedryingprocessofagivenpaintfilm [14,15].Forexample,somepigmentscanreactwiththefreefatty acidsandvariouscompoundsformedduringoxidation andmay inhibitthediffusionofoxygeninthepaintfilmaswellasthe evap-orationofvolatilecompoundsfromthefilm[13].Pigmentsmade fromreactivemetalsactascatalysts,whichacceleratedrying.This isthecase,forinstance,ofcobalt-basedpigment.

Cobalt Blue pigment, known as Pigment PB 28, is a cobalt (II) oxide-aluminium oxide, or cobalt (II) aluminate, CoAl2O4 madebysinteringcobalt(II)oxidewithaluminaattemperatures above1200◦C.CobaltbluewassynthesizedbyThénard in1803 andimmediatelymanufacturedonacommercialscale;itrapidly becameonethemostcommonbluepigmentsusedinmodernart [16,17],despitebeingrelativelyexpensive.Thiscouldexplain even-tualcasesofpigmentadulteration(eitherwithorganicorinorganic pigments)throughouthistorysuchasthemixturewithartificial ultramarine(PB29,Na8-10Al6Si6O2-4S2-4)[18].Cobaltbluepigment isalsoasurfacesiccative.Itisthemostcommonlyusedprimary drierandthemostactive.Itactsasanoxidationcatalystsinceits exhibitsmorethanoneoxidationstate.Asotherprimarydriers, cobaltbluepigmentcatalyzescross-linkingofthemediumand

-https://doi.org/10.1016/j.culher.2018.12.007

(2)

Table1

Commercialoilandalkydpaintsamplesstudied(fromMecklenburg’sPaintReferenceCollection).

Sample Manufacture

descriptiona

Thickness Castingdate Tensiletestsrun(different samplescutfromthesame pieceofcastpaint)in

Observations GR-CB-ARLO GRUMBACHER® ArtistsOil Colors Cobaltblue, PB28 Alkalirefined linseedoil 250␮m 1999 2001(Mecklenburgetal., 2013)[11] 2017(thisstudy) GA-CB-ARLO GAMBLIN® ArtistsOil Colours Cobaltblue, PB28 Alkalirefined linseedoil 250␮m 1999 2001(Mecklenburgetal., 2013)[11] 2017(thisstudy) GA-CB-LIT GAMBLIN® ArtistsOil Colours Cobaltblue, PB28

Linseedoil 230␮m 1999 2001(Mecklenburgetal., 2013)[11] 2017(thisstudy) Significant wrinklesobserved onthesurface Darkertone WN-CB WINSOR& NEWTON® ArtistsOil Colours Cobaltblue, PB28 Linseed/safflower oils 340␮m 1998 2001(Mecklenburgetal., 2013)[11] Toosticky Itwasnotpossible totestitin2017 WN-ALK W&N® Alkyd Paint Cobaltblue, PB28

Alkydresin 200␮m 1998 2001(Mecklenburgetal., 2013)[11] 2017(thisstudy) Microprotuberances onthesurface WN-GR-ALK W&N® Griffin Artists’Alkyd Paint Cobaltblue, PB28

Alkyd 160␮m 1999 2001(Mecklenburgetal., 2013)[11]

2017(thisstudy) CB:cobaltblue;WN:Winsor&Newton®

;GA:Gamblin®

;GR:Grumbacher®

;LSO:linseed/saffloweroils;ARLO:alkalirefinedlinseedoil;LO:linseedoil;LIT:withthe commercialadditionofLitharge.

aBasedonmanufacturers’datasheetsavailableinthe1980–1990’s.

withinthisprocess-hydroxyl,carbonylandcarboxylicgroupsare formedacceleratingthedryingofthesurface.

ThisdoubleroleofCoAl2O4(asapigmentandasiccative)has evidentimplicationsintheconservationpractice,inparticularin theformationofsuperficialwrinkles.Thepresenceofsurface wrin-klesinpaintfilmshastraditionallybeenexplainedasaconsequence oftheplasticflowexperiencedbythepaintfilmduetotheexcess ofbinderandlowpigmentvolumeconcentration(PVC),and there-foreusuallyassociatedtolongdryingtimes.Nevertheless,thereare othersourcesforthewrinkledappearanceofcobaltbluepaintfilms suchasitssiccativenature.Beingcobaltblueasurfacesiccative,it tendstocreateaninitialsurfacefilmthatslowsdownthediffusion ofoxygeninthebulkofthepaint,leadingoftentoadistinctiveeffect intheformofwrinkles(seefiguresinTables1and2).Inthislatter case,wrinklesoccurnaturallyasaconsequenceofpigment-binder interactionduringthedryingprocessandwherePVCnot necessar-ilyhasanyinfluence.Bothmechanismsarechallengingbutrequire adifferentapproachinday-to-dayconservationpractice.

1.2. Aimofthisstudy

Inthispaper,themechanicalpropertiesofselectedcommercial oilandalkydpaintscontainingcobaltbluepigmentarestudied.For thispurpose,manufacturedformulationsandcustom-madepaint reconstructionswereprepared.Theaimofthisstudywastoassess thedifferentmechanicalbehaviourofthepaintfilmstestedandto gainaninsightintocomplexpaintformulations.Theinfluenceof someprimaryfactorssuchastheamountandtypeofpigmentand binder,thepresenceandtypeofadditivesaswellasthehydrolysis mechanismsexperiencedmayhaveinthelong-termmechanical behaviourofthepaintfilmsstudiedisdiscussed.

2. Materialsandmethods

2.1. Paintsamplesandsamplepreparation

Inthisresearch,threedifferentsetsofcobaltbluepaintfilms werestudied.

We selected four cobalt blue oil samples manufactured by Grumbacher,GamblinandWinsor&Newton(W&N)andtwocobalt bluealkydoilpaintfilmsfromW&NbelongingtotheMecklenburg’s PaintReferenceCollectionattheSmithsonianMuseum Conserva-tionInstitute(USA).Theoilfilmstestedanddiscussedinthispaper werepreparedlateinthe1990’sonpolyesterfilmandallowedto dryincontrolledenvironmentalconditionssincethen(Table1).

A second set of samplesconsists of four commercialcobalt blueoilpaintsmanufacturedbyTitan,W&N,Talens-VanGoghand MaimeriasreportedinTable2.Thepaintswerepurchasedand castin2014onpolyester filmandallowedtodryincontrolled environmentalconditions.

Thethirdsetofsamplesconsistsoffivecustom-madepaintfilm reconstructions,(Table3).1LwaspreparedmixingcobaltbluePB28 andcoldpressedlinseedoil(CPLO)fromKremer.2L,3Land4Lwere preparedsimilarlybutwiththeprogressiveincorporationof addi-tives:25%ofthetotalamountofpigmentwereinorganicfillers (mixtureofcalcite,gypsumandkaolin).Fivepercentaluminum stearateand10%castorwax(i.e.hydrogenatedcastoroilpurchased fromSigma-Aldrich)werealsoaddedtogainaninsightintothe effectsspecificadditivescaninduceinthemechanicalproperties ofagivencobaltblueoilpaintfilm.Thepaintfilmlabelledas5F waspreparedbymixingCPLOwithsunflowerandsaffloweroils (Sigma-Aldrich)togetherwithalltheabove-mentionedadditives. Thisformulationisconsistentwiththecomplexmixturesoforganic

(3)

Table2

Commercialoilpaintsamplesstudied(2014).

Sample Manufacture

description

Thickness Castingdate Tensiletestsrunin Observations

WN-CB178 W&N® Artists’ Paint Cobaltblue, PB28 Linseed/ saffloweroils 165␮m 2014 2016(thisstudy) MA-CB Maimeri® Artisti374 Cobaltblue, PB28

Oil 132␮m 2014 2016(thisstudy) Toofragiletobe tested TI-CB Titan® Coloral óleoextrafino 52 Cobaltblue, PB28 +PB29

Oil 350␮m 2014 2016(thisstudy)

TA-CB Talens-Van Gogh® Oil Colour511 Cobaltblue, PB28

Oil 90␮m 2014 2016(thisstudy)

Table3

Representativecustom-madecobaltoilpaintfilms(2014).

Sample Description Thickness Castingdate Tensiletestsrunin

1.L CPLO (54.5%)

CobaltbluePB28 (45.5%)

Noadditive 250␮m 2014 2017(thisstudy)

2.L CPLO (50%)

CobaltbluePB28 (50%)

CaCO3+CaSO4+2SiO2·Al2O3·2(OH2)(25%

ofpigment) 150␮m 2014 2017(Thisstudy) 3.L CPLO (50%) CobaltbluePB28 (50%)

CaCO3+CaSO4+2SiO2·Al2O3·2(OH2)(25%

ofpigment)+[CH3(CH2)16COO]3Al(5%of pigment) 140␮m 2014 2017(thisstudy) 4.L CPLO (50%) CobaltbluePB28 (50%)

CaCO3+CaSO4+2SiO2·Al2O3·2(OH2)(25%

ofpigment)+[CH3(CH2)16COO]3Al(5%of

pigment)+castorwax(10%ofpigment)

110␮m 2014 2017(thisstudy) 5.F CPLO+ safflower+ sunflower (50%) CobaltbluePB28 (50%)

CaCO3+CaSO4+2SiO2·Al2O3·2(OH2)(25%

ofpigment)+[CH3(CH2)16COO]3Al(5%of

pigment)+castorwax(5%ofpigment)

190␮m 2014 2017(thisstudy)

andinorganiccompoundsthatcanbefoundinmanufacturedpaints

[3,19].

2.2. Analyticaltechniquesandmethods

Theselectedpaintfilmswerestudiedbythejointuseof sev-eralanalyticaltechniquestoobtaindataabouttheircomposition, morphologyandmechanicalbehaviour.

Tensile tests were conducted using custom built miniature tensiletesters[21].Averagesamplemeasurementswere6.5mm (width)×0.30mm(thickness)and7.5mm(gaugelength). Aver-agethickness and widthwere measuredthree timesalong the gaugelengthwithboth a Mitutoyo103–137 micrometerand a digital callipergauge micrometer.Two samplesfrom thesame paintstripscastinthe1990sandtested byMecklenburginthe veryearlystagesoftheirdryingprocess[20,21]weretestedfor thisstudythusallowingthemonitoringofchangesinducedafter havingbeendryingfor18yearsinacontrolledenvironment.For thispurpose,thepolyesterfilmwasremovedandthetestswere runonfreeunsupportedpaintfilms.Thesampleswereclamped

in thetesting gauges and allowedtocome into equilibrium in thechamberfor48hat50±0.5%RHand23±0.5◦Cpriorto test-ing.ATesto608-H2thermohygrometertogetherwithaprecision hygrometer(MitchellOptidew VisionHighPerformance Optical Dew-PointTransmitter)monitoredrelativehumidityand tempera-tureinthechamber.Allthetestswereconductedatthesamestrain rate.Incrementsof0.0625mmstrainwereappliedprogressivelyat 30-secondintervals.Testwereperformedat3.75mm/minspeed. Load-displacementdatawereconvertedtostressandstrainvalues usingacustomizedMicrosoftExcelspreadsheet.

Microsamplesoffreefilmsweretakenfromthedriedpaints andobservedwithaLeicaDMRmicroscopeinreflectedlight(25× to400×magnification).

AJeolJSM6300scanningelectronmicroscopeoperatingwith aLink-Oxford-Isisenergy-dispersiveX-raymicroanalysissystem was used to observe surface and cross sections of the films (20kV accelerating voltage, 2.10–9A beam current and 15mm distance).Elementalsemi-quantitativeweightpercentageswere calculated by EDX probe according to ZAF matrix correction [22–24].

(4)

Table4

Resumeoftheresultsofthechemicalcharacterizationofthecommercialoilandalkydpaintsamplesstudied(fromMecklenburg’sPaintReferenceCollection). Samples Optical

microscopy

SEM observations

EDX VIS-reflectance FTIR-ATR(D2nd) GC-MS Considerations GR-CB-ARLO Lowroughness

Lightblue Cross-section: compactfilm. Darktoneonthe bottomand lightercloseto thesurface

Fine granulometry withsomecoarse grains Organicmaterial concentratedon thesurface Homogeneous distributionofAl andCo

Co,Al,Ca,P,Si, Mg

%Co=21

Cobaltblue Dryingoil Carboxylatesand freefattyacids (stearates) CoAl2O4

Silicates Calciumsulphate

Saturatedmonocarboxylic (lauric,myristic,palmitic, stearic)anddicarboxylic (suberic,azelaic,sebacic)acids; unsaturated(oleic)

Acids;glycerol P/S=0.8 A/P=2.5 O/S«0.1 GA-CB-ARLO Plainandglossy

surface Lightblue Cross-section: compactfilmand uniformtome Homogeneous andcompact granulometry (wellgrinded: 1␮m) Uniform distributionofCo andAlparticles

Co,Al,Ca,Si %Co=24

Cobaltblue Dryingoil Carboxylatesand freefattyacids (calcium sterate?) Calcium carbonate Calciumsulphate CoAl2O4 Saturatedmonocarboxylic (lauric,myristic,palmitic, stearic)anddicarboxylic (pimelic,suberic,azelaic, sebacic)acids;unsaturated (oleic)

Acids;glycerol P/S=1.1 A/P=2.3 O/S«0.1 GA-CB-LIT Darkblueand

opaquesurface Wrinklesonthe surface Cross-section: heterogeneous tone(lighterin themiddle) Homogeneous andfine granulometry: uniform distributionofCo andAlparticles +Pbparticles

Co,Al,Pb,S,Fe, Ca

%Co=14

Cobalt blue+litharge

Dryingoil(free fattyacidsand Carboxylates) CaCO3

CoAl2O4

Saturatedmonocarboxylic (lauric,myristic,palmitic, stearic)anddicarboxylic (pimelic,suberic,azelaic, sebacic)acids;unsaturated (oleic)

Acids;tracesofglycerol P/S=1.6 A/P=4.2 O/S«0.1 WN-CB Homogeneous surface Lightblue Cross-section: heterogeneous tone Very homogeneous andfine granulometry Concentrationof organicmaterial Uniform distributionofCo andAl

Co,Al,Ca,Mg,Si, K,S,Fe %Co=18

Cobaltblue Dryingoil Aluminium stearate (carboxylates) CoAl2O4 Silicates DOLOMITE Saturatedmonocarboxylic (lauric,myristic,palmitic, stearic)anddicarboxylic (pimelic,suberic,azelaic, sebacic)acids;unsaturated (oleic)

Acids;glycerol;long-chain monocarboxylic(behenicand arachidic)acids

P/S=2.8 A/P=2.1 O/S=0.4 WN-GR-ALK Plainand

homogeneous surface Medium-light blue Cross-section: compactfilm Homogeneous andfine granulometry: verycompact Uniform distributionofCo andAl

Co,Al,Ca,Zn,Si, K,Mg,Fe %Co=24 Cobalt blue+white pigment (probablyzinc white) Alkydresin, carboxylates(Zn soaps) CoAl2O4 Silicates Saturatedmonocarboxylic (palmitic,stearic)and dicarboxylic(suberic,azelaic, sebacic)acids;unsaturated (oleic)

Acids;glycerol;

pentaerythritol;phtalicacid; 12-hydroxystearicacid P/S=1.6

A/P=1.9 O/S=0.1 WN-ALK Plainand

homogeneous surface Medium-light blue Cross-section: compactdraft and heterogeneous toneforlighter particles Presenceof surfacecracking Fine granulometry anduniform distributionofCo andAl

Co,Al,Ca,Fe,S, Mg,Zn %Co=21 Cobalt blue+white pigment (probablyzinc white) Alkydresin Carboxylates (Stearateof Aluminum) CoAl2O4 Calciumand magnesium carbonates Saturatedmonocarboxylic (palmitic,stearic)and dicarboxylic(pimelic,suberic, azelaic,sebacic)acids; unsaturated(oleic) Acids;glycerol;

pentaerythritol;phtalicacid; 12-hydroxystearicacid P/S=1.7 A/P=1.9 O/S«0.1 WN-CB178 Glossyand wrinkledsurface Medium-dark blue Cross-section: dividedintwo, darktoneonthe surface Presenceof surfacecracking Fine granulometry anduniform distributionofCo andAl Co,Al,Mg,Cl,Cr, K %Co=18

Cobaltblue Dryingoil (partially unsaturated) Carboxylates (aluminium stearate) CoAl2O4 Silicates Calciumsulphate Dolomite Saturatedmonocarboxylic (lauric,myristic,palmitic, stearic)anddicarboxylic (suberic,azelaic,sebacic)acids; unsaturated(oleic)

Acids;glycerol;long-chain monocarboxylic(behenicand arachidic)acids

P/S=2.5 A/P=1.4 O/S=1.3

Linseedoiland safflower/sunflower

(5)

Table4(Continued) Samples Optical

microscopy

SEM observations

EDX VIS-reflectance FTIR-ATR(D2nd) GC-MS Considerations MA-CB Glossyand

wrinkledsurface Lightblue Cross-section: stratifiedsurface Fine granulometry andhomogenous Lighterparticles ofadditive Co-concentred onbulkandAlon thesurface

Al,Co,Si,Na,Zn, Cl

%Co=24

Cobaltblue Dryingoil (partially unsaturated) Carboxylates (aluminiumand zincstearate) CoAl2O4 (Green Phtalocianine?) Silicates Saturatedmonocarboxylic (lauric,myristic,palmitic, stearic)anddicarboxylic (suberic,azelaic,sebacic)acids; unsaturated(oleic)

Acids;glycerol P/S=1.9 A/P=2.1 O/S=0.5 TI-CB Glossysurface

Medium-dark tone Cross-section: compactand homogeneous draft Heterogeneous granulometry withbigger particlesofCa Surfacecracking Uniform distributionofCo andAl

Co,Al,Ca,Si,S, Na,K,Fe %Co=9 Cobalt blue+ultramarine Dryingoil (partially unsaturated) Carboxylates (aluminium stearate) CoAl2O4 Ultramarineblue Calciumsulphate Silicates Calcium carbonate Saturatedmonocarboxylic (lauric,myristic,palmitic, stearic)anddicarboxylic (suberic,azelaic,sebacic)acids; unsaturated(oleic)

Acids;glycerol P/S=1.8 A/P=1.4 O/S=1.3

TA-CB Satinsurface Darkand uniformtone Cross-section: heterogeneous tone(lighterin themiddle) Homogeneous granulometry andsuperficial cracking Uniform distributionofCo andAl

Co,Al,Ca,Zn,Mg %Co=10

Cobaltblue Dryingoil (partially unsaturated) Carboxylates (zincstearate) CoAl2O4 Silicates Calcium carbonate Saturatedmonocarboxylic (lauric,myristic,palmitic, stearic)anddicarboxylic (suberic,azelaic,sebacic)acids; unsaturated(oleic)

Acids;glycerol P/S=0.9 A/P=0.7 O/S=1.8

Fig.1. a:stressversusstrainplotsofcobaltbluecommercialoilpaintfilmstestedin1998–99;b:stressversusstrainplotsofcobaltbluecommercialoilpaintfilmstested in2017.

FTIR-ATR analyses were performed with a Thermo Nicolet

Nexus670FTIRspectrophotometercombinedwithaSmartOrbit

SingleReflectionDiamondATRaccessory,from4000to400cm−1 for128scanswith4cm−1resolution.Spectrawereelaboratedwith Omnic8.0.intherange1800–1600cm−1,thesecondderivativewas calculated.

ATraceGC2000instrumentwithacapillarySupelcoEquity-5

column,30m,0.25mm,0.5␮minterfacedwithaTraceMS2000

wasemployedforGC-MSanalysis.Thetemperatureprogramme

wassetfrom80◦Cto300◦C 10◦C/min.TheMSwasruninFull

Scan mode (m/z40–600), 1.9 scans/s.The transfer line wasat

280◦Cand thesourcetemperature was150◦C. Electron ionisa-tionenergywas70eV.QuantitativeGC-MSanalysiswasperformed usingnonadecanoicacidastheinternalstandard.Theoilsamples weretransestherifiedusing(trifluoromethylphenyl) trimethylam-moniumhydroxide,overnightreactionasdescribedin[2,16].The molarratiosamongstthemostsignificantfattyacidswere calcu-lated:palmitictostearicacid(P/S),azelaictopalmiticacid(A/P),

oleictostearicacid(O/S)ratioswereconsideredandcomparedto previousresultsobtainedbytheauthorson20thcenturyartistsoil paintsasdescribedin[2,3,25].

3. Resultsanddiscussion

Table 4 reports a detailed summary of the multi-analytical chemical-physicalresultsonthestudiedpaintfilms.

Althoughtheselectedpaintshavesimilarcommercialnames andweresoldas“cobaltblue”paints,theirsurfaceappearanceis quitedifferent(seepicturesinFigs.1and2)andtheirformulations arerathercomplex.

Theanalyticalresultscanbebrieflysummarisedhighlighting: • theuseofdifferentbindingmedia(foroilpaints:rangingfrom

traditionallinseedoiltolessdryingoils,suchassafflowerand sunfloweroils;foralkyds:alkydresinanddryingoils);

(6)

Fig.2. a:chromatogramGR-CB-ARLO;b:chromatogramWN-CB-ALK.

Fig.3.Stressversusstrainplotsofcobaltbluecommercialoilpaintfilmscastin2014.

• theadditionof inorganicand organicpigmentstocobaltblue (suchas,forinstance,ultramarineblue);

• variablepercentagesofcobalt;

• thepresenceofextendersandfillers(suchassilicates,calcium sulphate, calcium carbonate, dolomite,etc) dispersing agents (suchasmetalstearates)andotheradditives(zincwhite).

Thesefindingsareconsistentwiththeliteratureaboutthe anal-ysisofmodernandcontemporaryoil-basedpaints[1–6,15,19].

Asconcernsthemechanicalmeasurements,notallthepaints weretested.Freefilmswereobtainedandtestedforallsamples exceptforWN-CB(fromthe1990s),Talens-VanGoghandMaimeri (castedin2014),becauseitwasnotpossibletodetachthepaint filmsfromthepolyestersubstrate.

3.1. Commercialcobaltblueoilpaintfilms

Fig.1apresentsthestress-straincurvesofGR-CB-ARLOand GA-CB-ARLOpaintsamplestestedbyMecklenburgetal.after2years drying[21].BothGamblinandGrumbacherpaintfilmspresenta weakbehaviourwithverylittlestrength(lessthan0.5MPa)and1% elongation.Thelowmodulusofelasticityobservedcouldindicatea veryyoung(andnotcompletelycross-linked)oilpaintfilm.Fig.1b showsthemechanicalpropertiesofthesamepaintfilmsafter18 yearsdrying.Surprisingly,theypresentthesameweakbehaviour (lessthan0.5MPa)depictedinFig.1a,togetherwithasignificant increaseinplasticity(from0.01mm/mmstrainobservedin2001 inboth samplesto0.04mm/mm and0.05mm/mmobserved in 2017forGrumbacherand Gamblin,respectively).In bothcases, onecouldexpectstifferandstrongerpaintfilmsasaconsequence

(7)

Fig.4.Secondderivativeofthe1800–1600cm−1range(sampleWN-CB178).

oflongerdryingtimesandthereforeamorecrosslinkedstructure, asusuallyobservedinoilpaints.Nevertheless,theincreased plas-ticitycouldbeaconsequenceoftheearlyhydrolysisexperienced bytheoilpaintfilm[26].

GA-CB-LIT(aGamblinpaintsamplecontaininglitharge,PbO, andcastin1999)wastestedforcomparisonpurpose.Previous stud-ies[12,13,20]shownthat,eveninsmallamounts(upto1.6%),PbO isaneffectivedrierforoils(linseed,poppyseed,walnutand saf-flower)traditionallyusedbyartists.Itcanspeedupthedryingof oil-basedpaintsandinducesignificantdifferencesintheir mechan-icalproperties.Nevertheless,thisdoesnotnecessarilymeanthatit contributestoformbetterpaintfilms.

In this study,it wasinteresting tocompare cobaltblue and lithargesiccative properties.Evenifcobalt hasalready relevant siccativeproperties,lithargeseemstoenhancethem.Resultshave shownthatthepresenceofalowamountoflithargepromotesthe thoroughdryingofGA-CB-LITinthebulkbutalsointhesurface. Thiscouldalsoberelatedtoitswrinkledappearance.

Consideringthelipidicbindingmedia,itisinterestingthat Gam-blinandGrumbacherwerefoundtocontainalkalirefinedlinseed oil(i.e.arawlinseedoiltreatedwithalkalitoreducethefree acid-itybyformation ofwater-solublesalts,which aresubsequently removedbywashing).Aspreviouslystated,differentdryingspeeds canbeobservedasafunctionoftherefiningprocessoflinseedoil: therefininginalkalioracidicmediumsmakeslinseedoildrytwo timesfasterthancoldpressedoils[12,13].Moreover,thelowP/S ratiosofGrumbacherandGamblin(0.8and1.1,respectively)could berelatedtotheadditionofdispersingagents(suchasaluminium stearates),asreportedinpreviousstudies[2,3,15,19].Thesemetal soapsaregenerallyusedtoraisetheacidityoftheoilandtowet pig-ments,inparticularwhenaddedtoformulationscontainingalkali refinedlinseedoilswithareducedamountoffreefattyacids[27]. Fromamechanicalpointofview,theirpresencecouldbe respon-siblefortheincreaseinplasticityobservedwithageinsamples GR-CB-ARLOandGA-CB-ARLO[1,2,27].

AnotherconsiderationarisesobservingtheA/Pratiosfor GR-CB-ARLO,GA-CB-ARLOandGA-CB-LIT(2.5,2.3,and4.2,respectively). HighA/Pratios(higherinGA-CB-LITduetothecatalyticactionof leadions) areusuallyrelatedtoa highdegreeofchain scission whichcouldalsoexplainalesscrosslinked(andthereforemore flexible)paintfilm[28](seeFig.2).

Fig.3representsthestress-straincurvesofthreecobaltblue Titan,W&NandTalens-VanGoghcommercialoilpaintfilmscast

in2014(correspondingtosamplesTI-CB,WN-CB178andTA-CB, respectively),andtestedafter3yearsdrying.Ashighlightedbythe curves,thesamplesshowsignificantdifferencesintheir mechani-calproperties.

ThefirstaspectthatdeservesattentionistheUTS:W&Nisabout morethan twotimesstronger (2.5MPa)than Titanand Talens-VanGogh(1MPaand0.7MPa,respectively).

ApossibleexplanationislinkedtotheGC-MS resultsonthe organicfraction.Talens-VanGogh,MaimeriandTitanpaintfilms werefoundtobeboundinlinseedoil,sincetheirP/Sratiosare con-sistentwithlinseedoilvalues(Table4).However,theP/Sratiofor W&Npaintis2.5and,togetherwitharelevantpresenceof spe-cificfattyacids(arachidicbehenicacids)initscomposition,may indicatethepresenceofsafflowerand/orsunfloweroilinthepaint formulation[3,15].AsimilarP/Sratio(2.8)wasfoundinWN-CB, castin1998,whichisinaccordancewiththeinformationprovided inW&N’sdatasheetsinwhichamixtureoflinseedandsafflower oilsisdeclared.

Theuseofslowdryingoilssuchassafflowerand/orsunflower oilinpaintsdecreasethespeedofdrying.Arelativelyyoungpaint filmcontainingsafflowerand/orsunfloweroilswouldbeexpected to remain flexible (even plastic) during a long period of time. Nevertheless,thesteppercurveobtainedforsamplesWN-CB178 deservesfurtherattention.AsreportedinFTIR-ATRspectrumof Fig.4,thepresenceofdolomitewasdetectedwhichisan indica-tionofthepresenceoffillers.Ahighpigmentvolumeconcentration could have counteracted the action of the slow drying oil by speedingupitsdryingaswellasthestiffeningofthepaintfilm [15].

Talens-VanGogh,beingapparentlystiffer,appearedtobe sig-nificantlyweakerthanW&NandTitan filmsfrom2014(Fig.3). AspreviouslyobservedinGR-CBandGA-CBfilms,theP/Sratio<1 ofTalens-VanGoghcouldsuggesttheadditionofmetalstearates, visiblealsobyFTIR.EDX elementalanalysishashighlightedthe presenceofZinc,likelyintheformofzincoxide(orzincwhite), whichisfrequentlyaddedincommercialpaintformulationsasa whitener/extender.Inallthreemock-ups,itisrelevanttonotethat, havingbeendryingforonly3years,theirUTSissignificantlyhigher (2.5MPaforW&Nand1MPainthecaseof Titan)thantheUTS observedinthesamplesbelongingtotheMecklenburg’scollection testedafter18years(∼0.35MPa).ThepresenceofZnOwhitemakes paintfilmsbecomebrittleintheirearlydryingstagesbutalsoto causedelaminationproblems.Zinc,beinganothermetalcompound

(8)

Fig.5. a:SEMMA-CB:CoandAlparticlesdistribution;b:SEMGA-CB-ARLO:CoandAlparticlesdistribution.

existinginmorethanonevalencestate,speedsupthedryingrate ofdryingoils[29–31].

Regardingtheroleofcobaltbluepigmentinthemechanical per-formanceoftheselectedoilpaintfilms,thereareseveralaspects tobehighlighted.CobaltBluewasidentifiedinallthecommercial samplesstudied(Table4)asindicatedbythetypicalIRabsorptions ofcobaltoxide(c.a.640,543andasidekickat800cm−1)andof alu-miniumoxide(486cm−1)andtheVIS-Reflectancespectrashowing thetypicalweakinflectionat480nmandthreesub-bandsat548, 583,and627nm[32,33].InthecaseofTitan,ultramarinebluewas detectedaswell.Thisisinterestingsinceitisknownthat–asit happenswithcobalt–,ultramarinehasaveryhighoilindex pig-mentandthereforeahighoilcontent.Cobaltbluepigmentpresents averyhighoil-absorptionindex,whichmeansthatitneedsa sig-nificantamountofoiltoformauniformpaintfilm[16].Thiscanbe relatedtotheactivityofmetalcations.Sincethecatalyticactivity duringoxidativepolymerizationfallswitha decreasing propor-tionalcontentofcobaltcationsdissolvedintheorganicphase,itcan

beexpectedthatcobaltoilpaintfilms,beinghighlyabsorbent,will experienceslowdryingtimes.Thepresenceofahigheroilcontent couldexplainthelowerE-modulusandhigherflexibilityobserved forTI-CB[16,34].

SEManalysisevidencedauniformdistributionofcobaltand alu-miniumparticlesexceptforMA-CB,wherecobaltparticlesseemto bemoreconcentratedonthebulk,whereasaluminiumparticles tendtoconcentrateonsurface(Fig.5).EDXanalysisrevealedan extremelyvariable%Coprobablyduetothepresenceofother com-poundsinthedifferentpaintmatrixes(Table4).Inaddition,both thesizeandshapeofpigmentparticlesaswellasthechemical com-positionofothermineralspresentinthematrixmightcontribute tomakethecatalyticactivitydecrease. ˇSim ˚unkováetal.suggest thattherateofpolymerizationofthedryingoilincreaseswithPVC anditisdifferentforthevarioustypesofcobaltbluepigment[35]. OtherstudiesrefertotheinfluenceofPVCinthemechanical prop-ertiesofpaintfilms.Forexample,ahighPVCwillmakepaintfilms bestifferandhavealowerfailurestrain.Nevertheless,abovethe

(9)

Fig.6. a,b,c:stressversusstrainplotsofcobaltbluecommercialalkydpaintfilmscastinthelate1990’sindifferentdryingstages.

Fig.7. Stressversusstrainplotsofcobaltbluerepresentativecustom-madesamples.

CriticalPigmentVolumeConcentration(CPVC),paintfilmspresent alowUTSandfailurestrainbutalsoapoorlyboundpigment[36]. 3.2. Commercialcobaltbluealkydpaintsfilms

Fig.6ashowsthestress-straincurveofW&NAlkydPaintand W&NGriffinArtists’AlkydPaint(samplesWN-ALKandWN-GR-ALK respectively).Cobaltbluealkydcommercialpaintstestedinthis studyaremorethantentimesstronger,stifferandelongablethan commercialcobaltblueoilpaintsstudiedaftersimilardryingtimes. Alkydresinsareoil-modifiedalkydpolyestersor,inotherwords, artificialdryingoilsthatautoxidizeandcross-linkdependingon theirdegreeofunsaturation[5].AccordingtotheGC-MSresults, WN-ALKandWN-GR-ALKcontainanalkyd resinmodified with linseedoil(P/S=1.6and1.7,respectively)andhydrogenatedcastor oil(alsoknownascastorwax)whosemarker–12-hydroxystearic acid–,wasfoundinbothsamples[37].Thiswax-likematerialis oftenaddedinoilandalkyd-basedpaintformulationsasa stabi-lizerorrheologyadditivetopreventoilseparation.Thepresence ofwaxymaterialsasstabilizersisknowntoincreasethe wettabil-ityofthepigment,asasortoflubricant,increasingoilabsorption [34,35].Thiscouldexplainthehighfailurestrainsobserved.

Anotherrelevantaspectisthepresenceofzincwhiteinboth samples(Table4).Asexplainedpreviously,zincionsaresufficient mobiletointeractwithcobaltandmake thepaintfilmbecome stifferinarelativelyshortperiodoftime[14] asFig.6ashows. Fig.6bshowstheevolvingmechanicalpropertiesofWN-ALKin dif-ferentdryingstages(after2,8and18years).Asitcanbeobserved, thesamplebecomesstifferandstrongerovertimeandthesame appliesforWN-GR-ALK(Fig.6c).

3.3. Cobaltbluecustom-madepaintfilmreconstructions

Aseriesofrepresentativemock-upsampleswerepreparedin 2014(Table3)aimingatgaininganinsightintotheroleeach com-ponentplaysinthemechanicalbehaviourofagivenoilpaintfilm. Fig.7ashowsthestress-straincurveofthesamples1L,2L,3L,4L and5F.Inthecaseof1L,2L,3Land4Ladetailedlookattheelastic regionofthedifferentstress-straincurves(Fig.7b)suggestthat2L (thesamplewiththeadditionoffillers)istheonewitha highE-Modulus.Eveniffurthertestsareneeded,thisincreasedstiffness

couldberelatedtothefactthattheadditionoffillers(untilacertain CVPV)canmodifythePVCofthesampleformulatedwithbinder andpigmentaloneaspreviouslyexplained.

Theadditionofstearates (3L)showsacurvewithalower E-ModulusbutthatreachesahigherUTSthan2L,whereas4L(sample containing stearates and 10% castor wax) is more flexible and presentsalowerUTS.Itcanbeobservedthat2L,3L,4Lpresent aconsiderabledeformationatbreak(0.15mm/mm)ifcompared withcommercialoilstested(0.05mm/mm)andcouldbeduetothe factthattherepresentativesampleswerefreshoilstestedshortly afterbeingcast(2years).

Finally,Sample5FcontainingamixtureofCPLO,safflowerand sunfloweroilsistwiceelongablethanthesamplesmadewithonly CPLO(1Lto4L),whichisinagreementwithpreviousstudiesabout theuseofslowdryingoilsandthereforethesignificantplasticity theyusuallypresent.Thisisparticularlytrueifwecompare5Fwith 4L,whichwaspreparedwithasimilaramountofpigment,fillers andadditivesbutwithadifferentmedium

4. Conclusionsandfutureperspectives

Thisstudyprovidesaninsightintothemechanicalproperties ofselectedcobaltbluepaintformulations.Besidesthecomplexity ofdefiningthecompositionofmodernoilandalkydpaintfilms labelledas“cobaltblue”paints,thereareoftenencountered syn-ergiccircumstancesthatmakeitdifficulttodiscriminateasingle causeforthechangesobservedintheirmechanicalperformance overtime.

For theoilpaintfilmsstudied,theinfluenceof thedifferent degreeofunsaturationofthelipidbindersinthemechanical prop-ertiesofthepaintfilmswasshown.Alkydpaintstestedwerefound tobemorethantentimesstrongerandstifferthanthecommercial cobaltblueoilpaintsstudiedaftersimilardryingtimes.Theyalso showedahigherelongationatbreak.Thiscouldbegovernedbythe differentbindingmediumbutalsobythepresenceofzincwhite, thatmighthavecontributedtomakethealkydpaintfilmbecome stifferinarelativelyshortperiodoftime.

Theamountofcobaltpresentmostlyaffectsitsdegreeof dis-persioninthelipidbinder.Thispointsoutthatagivencompound –either acting aspigment or as a siccative– might induce dif-ferent mechanical properties in the resulting paint film as the

(10)

stress-straincurvesobtainedfromtheexaminedcommercial for-mulationshaveshown.Ithasbeenobservedthatagreaterquantity ofpigmentabsorbedbythedryingoilcorrespondstoamore impor-tantcatalyticactivity(i.e.agreaterdryingspeedwithaconsequent increase inthe stiffness ofthe paintfilm).Furthermore,it was alsoobservedthattheadditionofotherdryingagentsmodifiesthe activityofcobalt.Asignificantexampleislithargethatcompetes withcobaltactingmainlyinthebulkofthepaintcreatingastiffer filmthatoxidizesfaster.Nevertheless,resultsshowedinthispaper makeitdifficulttoconfirmtowhatextentthequantityofcobalt influencestheconditionofthepaintfilmsexamined.

Asobservedinthecustom-madecobaltoilpaintfilmsstudied, additiveshaveshown toplay asignificantrolein the mechani-calpropertiesofthepaintfilmsstudied.Forexample,asignificant amountofdispersingagentswasfoundinthestudiedcommercial formulationsprobablyaddedtoslowdownthespeedofthedrying process.

Furtherresearchisneededtogainaninsightintothe relation-shipbetweenUTSthedryingofthefilms(forexamplethroughthe evaluationoftheA/Pratios)andintotheroleofadditivesinthe mechanicalperformanceofcommercialpaintfilms.

Acknowledgements

The authors are deeply indebted to Dr. M.F.Mecklenburg (MuseumConservationInstitute-SmithsonianInstitution,USA)for providingthesamplestestedinthisstudyandfortheequipment donated.Thisstudywascarriedoutaspartoftheresearchproject HAR2016-75131-PgrantedbytheMinsteriodeEconomia,Industria yCompetitividad(MICINN/FEDER)andwasalsopossiblethanksto thefinancialsupportfromCa’FoscariUniversityofVenice(Premio GiovaniRicercatori).

References

[1]TJSLearner,AnalysisofModernPaints,TheChemistryofModernPaint,Oil,The GettyConservationInstitute,LosÁngeles,USA,2004.

[2]FCIzzo,20thCenturyArtists’OilPaints:AChemical-PhysicalSurvey,Dottorato diricercainScienzeChimiche,UniversitàCa’Foscari,Venezia,2010. [3]FC Izzo, K van den B, H van Keulen, B Ferriani, E Zendri, Modern oil

paints–formulations,organicadditivesanddegradation:somecasestudies, in:KJvandenBerg,ABurnstock,MdeKeijzer,JKrueger,TLearner,AdeTagle, GHeydenreich(Eds.),IssuesinContemporaryOilPaint,SpringerInternational Publishing,Switzerland,2016,pp.75–104.

[4]JJBoon,FGHoogland,JVanDerHorst,Massspectrometryofmodernpaints, in:Modernpaintsuncovered:proceedingsfromTheModernPaints Uncov-eredSymposiumorganizedbytheGettyConservationInstitute,Tate,andthe NationalGalleryofArt,TateModern,London,2007.

[5]RPloeger,TheCharacterizationandStabilityofArtists’AlkydPaints(PhD Dis-sertation),UniversityofTorino,2008.

[6]Keune,Katrien,andGwendolynBoevé-Jones.It’ssurreal:zincoxide degrada-tionandmisperceptionsinSalvadorDalí’sCouplewithCloudsintheirHeads, 1936.IssuesinContemporaryOilPaint.Springer,Cham,2014.283–294. [7]SKeck,Mechanicalalterationofthepaintfilm,Stud.Conserv.14.1(1969)9–30. [8]AKarpowicz,In-planedeformationsoffilmsofsizeonpaintingsintheglass

transitionregion,Stud.Conserv.34.2(1989)67–74.

[9]AKarpowicz,Astudyondevelopmentofcracksonpaintings,J.Am.Inst. Con-serv.29.2(1990)169–180.

[10]D.Rogala,S.Lake,C.Maines,M.Mecklenburg,Conditionproblemsrelatedto zincoxideunderlayers:examinationofselectedabstractexpressionist paint-ingsfromthecollectionoftheHirshhornMuseumandsculpturegarden, SmithsonianInstitution,JournaloftheAmericanInstituteforConservation49 (2)(2010)96–113.

[11]DErhardt,CSTumosa,MFMecklenburg,Naturalandacceleratedthermalaging ofoilpaintfilms,Stud.Conserv.45(sup.1)(2000)65–69.

[12]M.F.Mecklenburg,C.S.Tumosa,D.Erhardt,Thechangingmechanical proper-tiesofagingoilpaints,inP.B.Vandiver,J.L.Mass,A.Murray,eds.Materials IssuesinArtandArchaeologyVII:SymposiumheldNovember30–December 3, 2004,Boston,Massachusetts,USA,Warrendale,Pennsylvania.Materials ResearchSociety,(2005),pp.13–24.

[13]D.Erhardt,C.S.Tumosa,M.F.Mecklenburg,Long-termchemicalandphysical processinoilpaintfilms,Stud.Conserv.50(2005)143–150.

[14]M.F.Mecklenburg,C.S.Tumosa,E.Vicenzi,Theinfluenceofpigmentsandion migrationonthedurabilityofdryingoilandalkydpaints.In:Mecklenburg,M., ElenaCharola,A.&Koestler,R.J.,Eds.Newinsightsintothecleaningof paint-ings,(2012)UniversidadPolitécnicadeValencia.SmithsonianContributionsto MuseumConservation.

[15]L.Fuster-López,F.C.Izzo,M.Piovesan,D.J.YusaMarco,L.Sperni,E.Zendri,Study ofthechemicalcompositionandthemechanicalbehaviorof20thcentury com-mercialartists’oilpaintscontainingmanganese-basedpigments,Microchem. J.124(2014)962–973.

[16]A.Roy,Cobaltblue,inartists’pigments,inB.Berrie(Ed.),Ahandbookoftheir historyandcharacteristics,Vol.4,OxfordUniversityPress,NationalGalleryof Art,Washington(2007),pp.151-178.

[17]J.Plesters,UltramarineBlue,NaturalandArtificial,inA.Roy(ed),Artists’ Pig-ments,AHandbookoftheirHistoryandCharacteristics,vol.2,NationalGallery ofArt,Washington,ArchetypePublications,London,(1993),37-61. [18]FDelamare,TheDiscoveryofThenard’s(Cobalt)Blue,ATimeforScientists,in

BluePigments:5000YearsofArtandIndustry,cap.6,ArchetypePublications, 2013,pp.195–206.

[19]FCIzzo,BFerriani,KJVandenBerg,HVanKeulen,EZendri,20thcenturyartists’ oilpaints:thecaseoftheOliibyLucioFontana,J.Cult.Herit.15(5)(2014) 557–563.

[20]MFMecklenburg,CSTumosa,Anintroductionintothemechanicalbehavior ofpaintingsunderrapidloadingconditions,in:MFMecklenburg(Ed.),Artin Transit:StudiesintheTransportofPaintings,London,NationalGalleryofArt, WashingtonDC,1991,pp.137–171.

[21]MF Mecklenburg,LFuster-López,Estudio delasPropiedadesMecánicasy DimensionalesdelosMaterialesPictóricos,UniversidadPolitécnicade Valen-cia,2013.

[22]SMansour,UseofZAFandPAPmatrixcorrectionmodelsforthedetermination ofcarboninsteelsbyelectronprobemicroanalysis,X-RaySpectrom.18(6) (1989)263–266.

[23]LOsete-Cortina,MTDoménech-Carbó,ADoménech,DJYusá-Marco,HAhmadi, MultimethodanalysisofIranianIlkhanateceramicsfromtheTakht-eSoleyman palace,Anal.Bioanal.Chem.397(2010)319–329.

[24]MPiovesan,Pittureadolioabasedi“Terrad’ombranaturale”e“Terrad’ombra bruciata”:studiodelleformulazioniindustrialiedelcomportamentotermico emeccanico(MAthesis),Univ.CaFoscari,Venezia,2014.

[25]KR Sutherland, Derivatisation using m-(trifluoromthyl)phenyltrimethylammonium hydroxideoforganicmaterials inartworksforanalysisbygaschromatography-massspectrometry:unusual reactionproductswithalcohols,J.Chromatogr.A1149(2007)30–37. [26]JDJvandenBerg,AnalyticalChemicalStudiesonTraditionalLinseedOilPaints,

AMOLFFOM,GeborenteWoerden,MOLARTReports,2002.

[27]CSTumosa,Abriefhistoryofaluminumstearateasacomponentofpaint,WAAC Newslett.23(3)(2001)10–11.

[28]MCCorbeil,KHelwig,JPoulin,JeanPaulRiopelle:TheArtist’sMaterials,Ed. GettyConservationInstitute,LosÁngeles,USA,2011,pp.55–56.

[29]CSTumosa,MFMecklenburg,Theinfluenceofleadionsonthedryingofoils, Rev.Conserv.6(2005).

[30]GOsmond,Zincwhite:areviewofzincoxidepigmentpropertiesand implica-tionsforstabilityinoil-basedpaintings,AICCMBull.33(1)(2012)20–29. [31]GOsmond,ZincWhiteandtheInfluenceofPaintCompositionforStabilityin

OilBasedMedia.IssuesinContemporaryOilPaint,Springer,Cham,2014,pp. 263–281.

[32]MBacci,MPicollo,Non-destructivespectroscopicdetectionofCobalt(II)in paintingsandglasses,Stud.Conserv.41(1996)136–144.

[33]MBacci,DMagrinia,MPicollo,AstudyofthebluecolorsusedbyTelemaco Signorini(1835–1901),J.Cult.Herit.10(2)(2009)275–280.

[34]RMayer,TheArtist’sHandbookofMaterialsandTechniques,Ed.Viking,New York,USA,1991.

[35]E ˇSim ˚unková,JBrothánková-Bucifalová,JZelinger,Theinfluenceofcobaltblue pigmentsonthedryingoflinseedoil,Stud.Conserv.30(4)(1985)161–166. [36]E.Hagan,M.Charalambides,T.J.S.Learner,A.Murray,C.Young,FactorsAffecting

theMechanicalProprietiesofModernPaints,inT.S.J.LearnerP.Smithen,J.W. Krueger,R.Shilling,ModernPaintsUncovered,ProceedingsfromtheModern PaintsUncoveredSymposiumorganizedbytheGettyConservationInstitute, TateandtheNationalGalleryofArt,London,(2006)pp.227-235.

[37]JSMills,RWhite,TheOrganicChemistryofMuseumObjects,Seriesin Conser-vation&Museology,seconded.,Butterworth-Heinemann,London,1994.

Riferimenti

Documenti correlati

Liquid membranes have shown great potentiel in this way especially in cases where metal concentrations are relatively low and other techniques cannot be applied

[r]

Previous studies [4,25] demonstrated that gilthead sea bream fed a diet supplemented with 900 mg Zn/Kg feed had a significantly lower weight than fish fed with a control diet

BIOMASS CO-FIRING IN PULVERIZED COAL BOILERS, DEVELOPMENT OF A SIMPLIFIED. MODEL FOR PREDICTION OF BOILER

Completamento di parole, ordinamento

It is noteworthy that the expression of ChREBP, SREBP-1c, FAS, and ACC is decreased in the adipose tissue of human obese subjects and of experimental models of obesity with

7) corrispondere all'Amministrazione concedente il canone annuo nonché tutte le ulteriori somme previste dal provvedimento di concessione. La concessione è, infatti,

Il sistema monoparete ALUTEK è composto da elementi componibili rigidi monoparete, realizzati in alluminio smaltato bianco di spessore minimo 1 mm.. Viene utilizzato come canale