You are here!
Planets before 1995…
small rocky planets close to the Sun
gas-giant planets more distant from the star
IRIS / Voyager R = 4.3 cm-1 Voyager /UVS
• Solving mass continuity equation
– –
– Kzz = K0n-, 0.5
• Temperature profile from thermochemical calculation
• Chemical reactions from, for example, Yung and DeMore (1999)
i i zz i
i i
atm zz i
i i zz i
i
i nw
T K D z
n T H
K H
n D K
z D
n + + +
¶ - ¶ +
-
¶ + -¶
= (1 ) ]
[ )
( )
( a
j
i i i
i P L
z t
n = -
¶ + ¶
¶
¶ j
Solar system:
small rocky planets close to the Sun gas-giant planets more distant from the star
Sun
51 Pegas: a gas-giant very close to its parent star (hot- Jupiter)
() M. Mayor & D. Queloz, 1995, Nature 378 p. 355
51 Peg
51 Peg b
Mercury Venus Earth
Radial velocity + Transit Surveys Radial velocity + Transit Surveys
(Corot, Kepler, ground) (Corot, Kepler, ground)
Microlensing, direct detec.
Microlensing, direct detec.
GAIA -> 10
GAIA -> 1044 new planets! new planets!
~700 Exoplanets!
12
More than 1200 planetary candidates discovered by
Kepler!
Exoplanets are common…
Mayor & Queloz, 1995
Deming et al., 2005 Charbonneau et al.,
2005
Microlensing
Beaulieu et al., 2005
Direct detection Direct detection
109 photons in the visible
106 photons in the infrared
Where are those planets?
Where are those planets?
The lightest
1.9 Earth masses (Gliese581d) The heaviest
+5000 Earth masses (HD 202206 b) The shortest year
1 day + 5 hours (OGLE-TR-56 b) The longest year
100 years (PSR B1620-26 b) The closest to the Earth 10 light years (Epsilon Eridani)
The farest to the Earth
22000 light years (OGLE-390 b)
1 light-year = 10 000 billion km
Equal opportunity for Super- Equal opportunity for Super-
Earths
Earths
Sertorio & Tinetti, 2002 Williams et al., 2002
Duffy, Tinetti, Liang, in prep
Combining eccentricity and tilt
Transit lightcurve
Transit of the planet with the longest year:
from ULO
Transit hunters Transit hunters
Earth-size planet transiting Sun-type star ~ 0.01 %
COROT (CNES/ESA) launch Dec. 2006
Corot 7b, First transiting super Earth Kepler (NASA)
launch 2009
Taken from Bill Borucki’ s 25 presentation
Taken from Bill Borucki’ s presentation
Taken from Bill Borucki’ s 27 presentation
Radial velocity & Occultation
Period = 3.524738 days Period = 3.524738 days
Mass = 0.69 ±0.05 M
Mass = 0.69 ±0.05 MJupiterJupiter
Radius = 1.35 ±0.04 Radius = 1.35 ±0.04 RRJupiter Jupiter
Density = 0.35 ±0.05 Density = 0.35 ±0.05 g/cmg/cm33
HD 209458b
HD 209458b
Sotin, Grasset & Mocquet;
Kuchner & Seager;
Ice
Silicate Carbon
Galileo « Sidereus Nuncius » 1610 Galileo (the mission), 1989
Kipping, 2008, 2009, 2010, 2011;
Kipping et al., 2009;
Charbonneau et al.,
2009; Winn et al., 2011
There is more to mass and radius…
41
Neptune/GJ436
Kepler 10b
CoRoT-7b
GJ1214
Earth
A new class of planets with masses between the Earth mass and the 10 Earth masses
–“ Super-Earths” – seem to be quite common but absent from our Solar System
55 Cnc e
artist’s impressions!
Are they Habitable?
Are they Habitable?
Mayor et al., 2009;
Wordsworth et al, 2011
GJ 581d (model)
Wordsworth et al. (2011)
Hanel et al. (1970)
The acquisition of
spectroscopic data of the Earth from artificial
satellites has changed the old question of whether
the phenomenon of
terrestrial life is unique or not…
IRIS / Voyager R = 4.3 cm-1
Samuelson et al. (1983)
Titan
Planet with no atmosphere
=
R p = R
=
R p = R
Planet with no
atmosphere
=
R p = R
Planet with no
atmosphere
R p = R
R p = R’ R p = R’’
=
=
=
Spectral signature of a Spectral signature of a
transiting planet transiting planet
R
p2/R
s2
Molecule a Molecule b Planetary limb~0.01-0.1%
Secondary transit – emission spectroscopy
Time
Flux
~ Fp/Fs(Rp2/Rs2)
Flux
Wavelength
Individual lightcurves
Different transit depths
Spectral signature of an exoplanet
Time
Borucki et al., 2009 Knutson et al., 2007 HD189733b
Spitzer
Combined light star-
planet
Harrington et al., Science, 2006
Hubble-STIS
589. nm Wavelength (nm)
0.0232±0.0057
%
0.0131±0.0038
%
Na in the atmosphere of Hot- Jupiters
Charbonneau et al., 2002
STIS: Ly
STIS: Lyaa HD 209458b HD 209458b
~9% absorption in the Ly
~9% absorption in the Lyaa line, line,
No red/blue shiftNo red/blue shift
Ben-Jaffel, ApJL, 2008
15% absorption in the Lya line
Vidal-Madjar et al., Nature, 2003 Ballester, Sing, Herbert, Nature,
2007
CII Transit Measurements
(Linsky et al. 2010)
SiIII Transit Measurements
(Linsky et al. 2010)
STIS: Ly
STIS: Lyaa HD 209458b HD 209458b
Planetary properties of the upper Planetary properties of the upper
atmosphere
atmosphere Stellar wind
Koskinen et al., 2010; Yelle, 2003;
Lecavelier et al., 2003; Lammer..2004, Tian et al. 2005,
Koskinen et al., Nature, 2008 Holmstrom et al., Nature, 2008
UV Science case
•Atoms and Ions.
Such observations may thus provide the best constraints on elemental abundance ratios (e.g., O/H, C/H, N/H) of these atmospheres.
•Mass Loss
The mass loss rates is determined by chemistry and dynamics in the upper
atmosphere that is driven by the UV flux of the host star. UV transit observations can be used to constrain the velocity profile of the escaping gas and thus mass loss rates.
•Star UV fluxes
The UV flux is the driver of photochemistry in the stratosphere/mesosphere region.
Most current models of photochemistry and dynamics in the upper atmosphere use unreliable scaling laws to simulate the fluxes of stars
O3
200 250 300
Tropopause Stratopause
Water Vapor
Ozone Absorption
Absorption 0
10 20 30 40 50 60
Net
Emission
Multiple scattering of reflected photons:
Rayleigh
scattering/clouds/surface types. Molecules with
electronic transitions
Photons emitted by the planet,
Molecules (roto- vibrational modes), thermal structure, clouds
Water in HD 209458b
Barman, 2007; Knutson et al., 2007 Barman, 2007; Knutson et al., 2007
Tinetti et al., Nature, 2007;
Tinetti et al., Nature, 2007;
Beaulieu et al., 2009
Terminator of
HD189733b & HD209458b
Burrows et al., 2010
Grillmair et al., Nature, 2008
HD189733b, day-side
Swain, Vasisht, Tinetti, Nature, 2008
HD189733b, terminator
Hubble + Spitzer legacy
HD189733b, terminator
Tinetti and Griffith, 2010
NICMOS,
Swain et al., 2008
Beaulieu et al., 2008 Desert et al., 2009
Agol et al., 2008
Knutson et al., 2008
H2O, CH4, CO2 /CO?
Beaulieu et al., 2011
Methane-rich atmosphere?
Hubble, Spitzer, ground…
Beaulieu et al., 2010
Methane-rich atmosphere?
No evidence of CO/CO2
Beaulieu et al., 2010
Degeneracy of solutions
Stevenson et al., Nature, 2010
Methane-rich atmosphere or methane poor?
Spectroscopy needed!
HD189733b, day-side
Swain et al, 2009
CO2
CH4 H2O
CH4
Transit spectroscopy, Hubble
Tinetti, et al., 2010
XO-1b
Tinetti, et al., 2010
Tinetti, et al., 2010
Tinetti, et al., 2010
Tinetti, et al., 2010
A non-parametric machine learning algorithm
Waldmann, ApJ, 2011
Waldmann, ApJ, 2011
A non-parametric machine learning algorithm
87
Na-K in the atmosphere of Hot-
JupitersGround-based observations
Redfield et al., 2007; Snellen et al., 2008; Sing et al., 2010
Carbon Monoxide?
Carbon Monoxide?
CO detection with VLT-Crires CO detection with VLT-Crires
Snellen et al., Nature, 2010
91
Super-Earth: GJ 1214b
~6 Earth masses, 450K
Bean et al., Nature, 2010
Non –LTE emission at 3.25 microns in HD 189733b
IRTF K-band IRTF L-
band Spitzer/IRA
C
Swain et al. Nature, 2010
Non –LTE methane emission at 3.25 microns
Drossart et al. 1999
Swain et al. 2010
HD 189733b
Cassini fly-by
Titan Jupiter
Saturn
Ground based facilities we use
IRTF, Hawaii, 3.0 meters TNG, La Palma, 3.58 metersMMT, Arizona, 4.8 meters
WHT, La Palma, 4.2 meters VLT, Chile, 8.2 meters LBT, Arizona, 8.4 meters
HD189733b GJ1214b / WASP 12b GJ1214b
GJ1214b HD198733b/HD209458b
WASP18b / GJ1214b
WASP 33b
NASA Infrared Telescope Facility (IRTF)
• 3.0 m primary mirror
• Mauna Kea
• optimized for NIR
SpeX instrument:
• Cross dispersion grism
• 1.9 – 4.2 microns
• Medium resolution R ~ 2000
K-band L-band
What we do from the ground:
96
Step1: Removing the telescope systematics
Before cleaningAfter cleaning
TIME
WAVELENGTH Waldmann et al in prep.
Swain et al. Nature 2010
HD 189733b – L band ground based spectroscopy
12th August 2007 Swain et al. Nature 2010
Swain et al. Nature 2010, Waldmann et al. 2011 12th August 2007 12th August 2007
HD 189733b – L band ground based spectroscopy
Swain et al. Nature 2010 Waldmann et al. in prep.
12th August 2007 12th August 2007 22nd June 2009
HD 189733b – L band ground based spectroscopy
Swain et al. Nature 2010, Waldmann et al. 2011
HD 189733b – L band ground based spectroscopy
12th August 2007 12th August 2007 22nd June 2009 12th July 2009
Swain et al. Nature 2010, Waldmann et al 2011.
HD189733b, transmission spectroscopy
Waldmann et al., ApJ, 2011
Ground-base spectroscopic observations
HD189733b, transmission spectroscopy
Waldmann et al., ApJ, 2011
Ground-base spectroscopic observations
HD189733b, transmission spectroscopy
Waldmann et al., ApJ, 2011
Ground-base spectroscopic observations
Methane fluorescence scheme
Non-LTE model by Drossart
HD189733b, transmission spectroscopy
Danielski et al., in prep.
Ground-base spectroscopic observations
Models & Degeneracy of solutions
Inverse models
(AIRS data)
Mid-lat
Polar Desert
Swain, et al., 2009; Griffith and Tinetti, 2010
HD209458b, day-side
Swain, et al., 2009; Griffith and Tinetti, 2010
Swain, et al., 2009; Griffith and Tinetti, 2010
Madhu & Seager, 2009;
Automatic spectral retrieval
Lee, Fletcher, Irwin, 2011;
Line et al., 2011
From NEMESIS retrieval code
EChO
Exoplanet Characterisation Observatory
ESA M3 mission candidate – assessment phase
ESA Science Team
G. Tinetti
P. Drossart
O. Krause
C. Lovis
G. Micela
M. Ollivier
I. Ribas
I. Snellen
B. Swinyard
EChO selected as ESA-M3, Feb.
2011
ESA internal study finished (thumbs up, technically)
Payload consortium proposal submitted:
UK, France, Italy, Spain, Denmark, Germany, Un. Liege, US
Planets studied by EChO
Temperature
Radius
‘ Hot’
(850-1500K)
‘ Warm’
(500-800K)
‘ Habitable Zone’
(250-350K)
Jupiter Neptun e
Super Earth
Planets studied by EChO
Temperature
Radius
‘ Hot’
(850-1500K)
‘ Warm’
(500-800K)
‘ Habitable Zone’
(250-350K)
Jupiter Neptun e
Super Earth
Tessenyi et al., ApJ, in press
Temperature
Radius
‘ Hot’
(850-1500K)
‘ Warm’
(500-800K)
‘ Habitable Zone’
(250-350K)
Jupiter Neptun e
Super Earth
Easy Easy OK
Easy/? Easy OK
Low
Resolution Low
Resolution Low Resolution / bright late stars
Planets studied by EChO
Tessenyi et al., ApJ, in press
EChO proposal, 2010
EChO proposal, 2010
EChO proposal, 2010
Habitable-zone for different stars
Tessenyi et al, ApJ, in press
Tessenyi et al, ApJ, in press
Molecules observed by EChO
EChO proposal, 2010
Venus phases, Galileo
EChO performances
Planets observed by EChO today & in 2020
EChO proposal, 2010; Tinetti et al., 2011
Repetita Iuvant: atmospheric dynamics
Cho et al, 2006
Atmospheric chemistry
Moses et al, 2010
We find water vapour, methane, CO, COWe find water vapour, methane, CO, CO22 present in the Hot-Jupiters analysed
present in the Hot-Jupiters analysed
There is a degeneracy of interpretation There is a degeneracy of interpretation mixing ratios/thermal profiles.
mixing ratios/thermal profiles.
More data at higher resolution are More data at higher resolution are desirable to break the degeneracy desirable to break the degeneracy
and also better line lists for methane, and also better line lists for methane, hydrocarbons, H
hydrocarbons, H22S, etc. @ 1000-2000KS, etc. @ 1000-2000K
Favorable Neptunes and Super-Earths can Favorable Neptunes and Super-Earths can already been studied with transit technique already been studied with transit technique
Join the EChO team!
Help us designing the best possible mission