• Non ci sono risultati.

Heat Exchanger Networks

N/A
N/A
Protected

Academic year: 2021

Condividi "Heat Exchanger Networks"

Copied!
57
0
0

Testo completo

(1)

Heat Exchanger Networks

Davide Manca

Lesson 3 of “Process Systems Engineering” – Master Degree in Chemical Engineering – Politecnico di Milano

(2)

,

( ) 1,...

streams

i i p i in out

Q   F CTT iN

Heat Exchanger Networks

Stream Physical cond. F Cp [kcal/h °C] Tin Tout Available Q 1.E3 kcal/h

1 Hot 1,000 250 120 130

2 Hot 4,000 200 100 400

3 Cold 3,000 90 150 -180

4 Cold 6,000 130 190 -360

TOTAL -10

(3)

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

90

HOT streams

COLD streams

Hohmann (1971) Linnhoff and Hindmarsh (1983) Umeda, Itoh and Shiroko (1978) Townsend and Linnhoff (1983)

Linnhoff and Flower (1978) Linnhoff, Dunford and Smith (1985)

(4)

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

90

Q 1

Q 2 Q 3 Q 4 Q 5

F

1

c

p1

=1,000 4,000 3,000 6,000

 

,

 

,

1,...

intervals

i i p HOT i i p COLD i i

Q     F C    F C      T iN

(5)

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

90

50

-40 -80

40 20

F

1

c

p1

=1,000 4,000 3,000 6,000

TOTAL = -10

1,000 Q

(6)

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

90

50

-40

-80

40 20

HOT UTILITY COL D UTILITY

(7)

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

90

50

-80

20 70

60 50

0

40

HO T UTI LITY COL D UTILITY

-40 10

40

(8)

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

90

-80

20 70

60 0

40

PINCH PINCH

HO T UTI LITY COL D UTILITY

50

40 50

-40 10

(9)

COLD Streams

T F Cp3 F Cp4 (F Cp)tot H H cumulative

90 60,000 60,000

130 3,000 3,000 120,000 180,000

150 3,000 6,000 9,000 180,000 360,000

190 6,000 6,000 240,000 600,000

HOT Streams

T F Cp1 F Cp2 (F Cp)tot H H cumulative

100 0 0

120 4,000 4,000 80,000 80,000

140 1,000 4,000 5,000 100,000 180,000

160 1,000 4,000 5,000 100,000 280,000

200 1,000 4,000 5,000 200,000 480,000

250 1,000 1,000 50,000 530,000

We introduce the reference enthalpy (equal to 0) at the LOWEST temperature of the HOT streams.

Once the QcMIN is known

(minimum heat to be subtracted by a utility) we fix it as the reference enthalpy for the COLD streams at their MINIMUM temperature.

Temperature-Enthalpy diagrams

(10)

Delta T min = 10 °C HOT Streams

COLD Streams

60

70

Temperature-Enthalpy diagrams

(11)

Temperature-Enthalpy diagrams

110

120

Delta T min = 20 °C HOT Streams

COLD Streams

(12)

Grand composite curve

Data from the cascade diagram. Use the values of the enthalpies for the hot and cold streams.

Cumulative values start symmetrically from the pinch condition

T Hot T Cold T Med H H cumulative

100 90 95 20 60

120 110 115 40 40

140 130 135 0 0

160 150 155 80 80

200 190 195 40 120

250 240 245 -50 70

(13)

Q Hot Min 70

60 Q Cold Min

PINCH

Above the PINCH

Below the PINCH

Grand composite curve

(14)

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

90

20 70

60 + Q

E

50

10 + Q

E

40 + Q

E

Q

E

Q

E

HOT UTILITY COL D UTILITY

50

40 -80 -40

• DO NOT transfer heat across the PINCH

• Add heat only ABOVE the PINCH

• Remove heat only BELOW the PINCH

(15)

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

90

-40

-80

40 20 70

20 40

10

0

PINCH

40

CW

PINCH

UTILITY PINCH

0

UTILITY PINCH

CW = Cold Water

HOT UTILITY STEAM

50

• Always add heat at the lowest possible temperature level relative to the PINCH

• Always remove heat at the highest possible temperature level relative to the PINCH

(16)

HOT UTILITY 70

STREAM 1 130

STREAM 2 400

COLD UTILITY 60

STREAM 4 360 STREAM 3

180

70 110 20 340 60

HOT

COLD

Number of exchangers = (Number of streams) + (Number of utilities) – 1 = 4 + 2 – 1 = 5

N.B.: this equation is not always correct…

(17)

HOT UTILITY 230

STREAM 1 130

STREAM 2 400

COLD UTILITY 220

STREAM 4 360 STREAM 3

180

230 130 180 220

HOT

COLD

Number of exchangers = (N. streams) + (N. utilities) – (N. independent problems) In this example, the independent problems are 2.

We have these groups: (2 + 3 + Cold Util.) and (Hot Util. + 1 + 4)

 Number of exchangers = 4 + 2 – 2 = 4

(18)

70-Q

E

340

60

HOT

COLD

HOT UTILITY 70

STREAM 1 130

STREAM 2 400

COLD UTILITY 60

STREAM 4 360 STREAM 3

180 110+Q

E

Q

E

20-Q

E

N. exchangers = (N. streams) + (N. utilities) + (N. loops) – (N. independent problems) In this case there is only one independent problem (the whole problem).

We can see a loop: Hot Util.  3  1  4  Hot Util.

 Number of exchangers = 4 + 2 + 1 – 1 = 6

(19)

• Within each interval of the T-H diagram we consider the involved streams.

• An interval is identified by vertical lines in the T-H diagram where the stream lines are straight and characterized by a constant slope.

• In general: 1/U = 1/h

hot

+ 1/h

cold

 A = Q/(U T

ML

)

• If there are multiple streams in any interval, we must consider the possible couplings.

• For instance, with two hot streams (1), (2) and two cold streams (3), (4) we have:

1/h

1

1/h

3

T

1

T

2

1/h

2

1/h

4

1/h

1

1/h

4

T

1

T

2

1/h

2

1/h

3

Case A Case B

1 1 3 2 2 4

1 2

1 2

1 2 3 4

1 1 1 1 1 1

and

1 1 1 1

A A

TOT A A A

ML A ML A

TOT A

ML

U h h U h h

Q Q

A A A

T U T U A Q

T h h h h

   

   

 

 

       

1 2 3 2 1 4

1 2

1 2

1 2 3 4

1 1 1 1 1 1

and

1 1 1 1

B B

TOT B B B

ML B ML B

TOT B

ML

U h h U h h

Q Q

A A A

T U T U A Q

T h h h h

   

   

 

 

       

Estimating areas

(20)

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

90

Above the PINCH

110 240 360

60

F

1

c

p1

=1,000 4,000 3,000 6,000

Q

tot

= 110+240-60-360 = -70

(21)

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

90

Below the PINCH

20 160 120

F

1

c

p1

=1,000 4,000 3,000 6,000

Q

tot

= 20+160-120 = 60

(22)

140 150 160 170 180 190 200 210 220 230 240 250

130 140 150 160 170 180 190 200 210 220 230 240

Matching the streams above the PINCH

110

60

F

1

c

p1

=1,000 3,000

3 1

Q = 60,000 = 1,000(T

1in

-140)

T

1in

= 200 > T

3out

+ 10 = 150 + 10 = 160 The pairing is FEASIBLE

140 150 160 170 180 190 200 210 220 230 240 250

130 140 150 160 170 180 190 200 210 220 230 240

240

60

F

2

c

p2

=4,000 3,000

3 2

Q = 60,000 = 4,000(T

2in

-140)

T

2in

= 155 < T

3out

+ 10 = 150 + 10 = 160 The pairing is NOT FEASIBLE

F H C pH  F C C pC

(23)

140 150 160 170 180 190 200 210 220 230 240 250

130 140 150 160 170 180 190 200 210 220 230 240

110 360

F

1

c

p1

=1,000 6,000

1 4

Actually: Q

eff

= 110,000 = 1,000(T

1in

-140) T

1in

= 250 > T

4out

+ 10 in fact T

4out

:

110,000 = 6,000(T

4out

-130)  T

4out

= 148.333 The pairing is FEASIBLE

140 150 160 170 180 190 200 210 220 230 240 250

130 140 150 160 170 180 190 200 210 220 230 240

240 360

F

2

c

p2

=4,000 6,000

4 2

Actually: Q

eff

= 240,000 = 4,000(T

2in

-140) T

2in

= 200 > T

4out

+ 10 in fact T

4out

: 240,000 = 6,000(T

4out

-130)  T

4out

= 170 The pairing is FEASIBLE

F H C pH  F C C pC

Matching the streams above the PINCH

(24)

3 1

Feasible pairings

with

4 1 with

4 2 with

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

90

110 240 360

60

F

1

c

p1

=1,000 4,000 3,000 6,000

Q = 60

1 2 3 4

Q = 240

(25)

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

90

Q = 50

H = 70

F

1

c

p1

=1,000 4,000 3,000 6,000

1 4

• 1 with 3: Q = 60,000 = 1,000(T

1in

-140)  T

1in

= 200 (exchanger 1 with 3)

• 1 has still: 110 – 60 = 50 Q = 50,000 = 1,000(T

1in

– 200)  T

1in

= 250 (exchanger 1 with 4)

• 4 with 2: Q = 240,000 = 6,000(T

4out

-130)  T

4in

= 170 (exchanger 1 with 4)

• 4 with 1: Q = 50,000 = 6,000(T

4out

-170)  T

4out

= 178.333 (exchanger 1 with 4)

(26)

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

90

110 240

60 360

F

1

c

p1

=1,000 4,000 3,000 6,000

Q = 60

1 2 3 4

Q = 240 Q = 50

H = 70

Above the PINCH we have:

(27)

100 110 120 130 140

100 110 120 130

90

20 120

F

1

c

p1

=1,000 3,000 4,000 3,000

Matching the streams below the PINCH

3 1

The maximum exchangeable heat is 20 Q = 20,000 = 3,000(130 – T

3 in

)

T

3 in

= 123.333 whilst T

1 out

= 120 The pairing is NOT FEASIBLE

100 110 120 130 140

100 110 120 130

90

160 120

2 3

The maximum exchangeable heat is 120

Q

3

= 120,000 = 3,000(130 – T

3 in

)  T

3 in

= 90 Q

2

= 120,000 = 4,000(140 – T

2 out

)  T

2 out

= 110 The pairing is FEASIBLE

F H C pH  F C C pC

Unfeasible condition

(28)

3 Feasible pairings 2 with

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

90

20

160 120

F

1

c

p1

=1,000 4,000 3,000 6,000

1 2 3

Q = 120

(29)

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

90

C = 20

C = 40

F

1

c

p1

=1,000 4,000 3,000 6,000

1 2

• 2 with 3: Q = 120,000 = 4,000(140 - T

2 out

)  T

2 out

= 110 (exchanger 2 with 3)

• 2 still has: 160 - 120 = 40 Q = 40,000 = 4,000(110 - T

2 out

)  T

2 out

= 100 (with cold utility)

• 1 is cooled with the cold utility

(30)

Below the PINCH we have:

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

90

F

1

c

p1

=1,000 4,000 3,000 6,000

1 2

120

3

Q = 120 C = 20

C = 40

20 160

(31)

The design with minimum energy requirement is…

F

1

c

p1

=1,000 4,000 3,000 6,000

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

90

Q = 120 120 C = 20

C = 40 20 160

110 240

60 360 Q = 60

Q = 240 Q = 50

H = 70 1

2 3

4

5

6

7

(32)

F

1

c

p1

=1,000 4,000 3,000 6,000

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

90

First loop

(33)

F

1

c

p1

=1,000 4,000 3,000 6,000

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

90

Second loop

(34)

F

1

c

p1

=1,000 4,000 3,000 6,000

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

90

Third loop

(35)

1 2

3 4

Example of loop

1 2 3 4

1=80 2=160

C.U.=60 3=180

20 60 40 120

1=80 2=160

C.U.=60 3=180

20-Q

E

60+Q

E

40+Q

E

120-Q

E

C.U. = Cold Utility

(36)

1 2 3

60+Q

E

120-Q

E

By setting Q

E

equal to 20…

1=80 2=160

C.U.=60 3=180

20-Q

E

60+Q

E

40+Q

E

120-Q

E

40+Q

E

20-Q

E

1 2 3

80

100

0 60

(37)

H

C

C

Path

H

C

C

H

C

Q - Q

E

Q - Q

E

H + Q

E

C + Q

E

A B

Q - Q

E

(38)

F

1

c

p1

=1,000 4,000 3,000 6,000

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

90

Q = 120 Q = 20-20=0

C = 40+20 Q = 60

Q = 220 Q = 70

H = 70 5

6

7 Q = 50+20

Q = 50+20 Q = 240-20 Q = 240-20

Reduction of the number of heat exchangers

1

2 3

4

(39)

VIOLATION

F

1

c

p1

=1,000 4,000 3,000 6,000

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

90

Q = 120

C = 40+20 Q = 60

Q = 220 Q = 70

H = 70 5

7 Q = 50+20

Q = 50+20 Q = 240-20 Q = 240-20

• 1 exits from heat exchanger (1) at: 70,000 = 1,000(250 – T

1A out

)  T

1A out

= 180

• 1 exits from heat exchanger (3) at: 60,000 = 1,000(180 – T

1B out

)  T

1B out

= 120

• 3 enters in heat exchanger (3) at: T

3 in

= 130

• Consequently, there is VIOLATION

1

2 3

4

(40)

T min can be restored by moving heat (Q E ) along a path…

F

1

c

p1

=1,000 4,000 3,000 6,000

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

C = 60 + Q

E

90

Q = 220 Q = 10

H = 70+Q

E

Q = 70-Q

E

Q = 220 Q = 220

Q = 120-Q

E

Q = 120-Q

E

Q = 60+Q

E

Q = 60+Q

E

Q = 70-Q

E

• 1 exits at: T

1B out

= 120

• 3 MUST enter in exchanger (3) at: T

3B in

= 110

• Consequently, in exchanger (4) we must have T

3A out

= 110

5

7 Q = 120

Q = 60

End

1

2 3

4

Key point

Start

(41)

It remains to remove only the third loop…

F

1

c

p1

=1,000 4,000 3,000 6,000

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

C = 120 90

Q = 220 Q = 10

H = 130 Q = 10-Q

E

Q = 220+Q

E

Q = 220+Q

E

Q = 60-Q

E

Q = 60-Q

E

Q = 120+Q

E

Q = 120+Q

E

Q = 10-Q

E

• The minimum request for heat to be subtracted is: Q

E

= 10 (let us focus the attention on the loop)

• Let us check that T

min

is not violated. Also in this case we are across the PINCH

• As far as exchanger (3) is concerned, T

1out

= 120 whilst Q

3

= 120 + Q

E

= 120 + 10 = 130

• 130,000 = 3,000(150 – T )  T = 106.666 The T = 120 – 106.666 > 10 THERE IS NOT ANY VIOLATION

5

7 Q = 120

Q = 60

Start

End

1

2 3

4

(42)

ACCEPTABLE

Finally, the minimum number of heat exchangers is…

F

1

c

p1

=1,000 4,000 3,000 6,000

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

C = 120 90

Q = 230

H = 130

• T = 120 – 106.666 > 10 can be further reduced by moving the heat through the path

• Only 5 heat exchangers remain: (2), (3), (4), (5) and (7)

• The heat to be exchanged with hot and cold utilities has increased significantly. At the same time, the overall difference between C and H is still equal to: 120 – 130 = -10

2 3

4

5

7 Q = 130

Q = 50

(43)

Peculiar situations…

F

1

c

p1

=1,000 3,000 5,000

140 130

T>130

• F

H

C

p H

< F

C

C

p C

for every stream but stream (3) is heated at T > 130 (when it interacts with stream (2)).

• The introduction of a heat exchanger between streams (1) and (3) does not satisfy any longer the

T = 10 condition as T

1 out

= 140

1 2 3

F

1

c

p1

=1,000 3,000 3,500

140 130

1 2 3

1,500

4

• We still have F

H

C

p H

< F

C

C

p C

for every stream, but now stream (4) with T

4 in

= 130 satisfies the

T = 10 condition respect to T

1 out

= 140

(44)

Other

counter examples…

F

1

c

p1

=4,000 2,000 3,000

140 130

1 2 3

• The condition F

H

C

p H

< F

C

C

p C

is NOT respected.

F

1

c

p1

=1,500 2,500 2,000

130

1 2 3

3,000

4

• We can split stream (1) into two streams, so condition F

H

C

p H

< F

C

C

p C

is fulfilled.

• We then pair stream (1) with stream (3) and stream (2) with stream (4).

140

(45)

Apparent violation of T min

F

1

c

p1

=2,000 10,000 1,000

140 130

1 3 4

• Condition F

H

C

p H

< F

C

C

p C

is NOT respected between stream (1) and stream (4)

• we can split stream (3)

5,000

2

F

1

c

p1

=2,000 4,000 1,000

140 130

1 3 5

5,000

2

6,000

4

• Now pairings (2) – (4) and (1) – (3)

are consistent with condition: F

H

C

p H

< F

C

C

p C

• On the other hand, the pairing (1) – (5) seems not to meet the condition: F

H

C

p H

< F

C

C

p C .

Conversely, since the exchanger between streams (1) – (3) allowed moving away from the PINCH, there aren’t any more problems raised by the apparent violation produced by:

F C > F C

(46)

Above the PINCH

N H  N C ?

Split a stream (usually a hot stream)

Split a cold stream

Yes

Yes No

No

Go on managing the pinch

Data about the PINCH streams

Did I get F H C pH  F C C pC

for every PINCH situation ?

(47)

Below the PINCH

N H  N C ?

Split a stream

(usually a cold stream) Split a hot stream

Yes

Yes No

No

Go on managing the pinch

Data about the PINCH streams

Did I get F H C pH  F C C pC

for every PINCH situation ?

(48)

Q

in

Pinch

Q

out

Q

in

Q

out

Thermal engine

Q

in

+W

W

Above the PINCH

Q

out

Thermal engine

Below the PINCH

W Q

in

Q

out

+ Q

E

- W

Thermal engine

Across the PINCH

W Q

in

Q

E

Q

E

- W

> 0 Irrelevant

Irrelevant/

Improvement Worsening

Q

out

- W

Thermal engines

(49)

Q

out

Q

in

- W

W

Above the PINCH Below the PINCH Across the PINCH

Heat pump

Q

E

Q

E

+ W

Q

out

+ W Q

in

Heat W

pump

Q

E

Q

E

+ W

Q

out

- Q

E

Heat W

pump

Q

E

Q

E

+ W Irrelevant

Worsening

Improvement Improvement

Q

in

– (Q

E

+ W)

Heat pumps

(50)

Q

out

Q

in

Above and below the PINCH

C olu mn

Q

E

Q

E

C olu mn

Q

E

Q

E

Q

out

+ Q

E

Q

in

+ Q

E

Q

E

Q

E

Acceptable situation

C olu mn

Unacceptable

Across the PINCH

Worsening

Worsening

Distillation columns

(51)

• Rather than approaching the heat exchange problem considering one device at a time, it is useful to consider the ENERGY INTEGRATION of the whole process.

• The goal of this global approach is to calculate the MINIMUM supply of energy (heating or cooling) for the heat exchangers network.

• It will thus be possible to determine the minimum number of heat exchangers needed to meet the design specifications.

• With reference to the HDA process, we have to:

• Heat the inlet streams to the reactor section (fresh toluene and hydrogen, recycles) and the streams in the reboiler

• Quench the output stream from the reactor, cool the products (down to T amb for safe storage) and the streams in the condensers

Heat Exchanger Networks

(52)

First law of Thermodynamics

Given n hot streams and n cold streams, it is possible to evaluate for each stream the heat either released (positive) or absorbed (negative) and algebraically add these values. If the resulting amount is positive then the heat must be removed, otherwise, the streams must be heated.

The problem is that it is NOT sufficient to know how much heat must be exchanged, but also whether or not such exchange complies with the Second Law of Thermodynamics:

it is necessary that the T of the hot stream is higher than the T of the cold stream.

Moreover, the condition T hot > T cold is not sufficient to make heat exchangers that are acceptable in terms of physical dimensions. Indeed, it is also necessary to assign a T min

to have a suitable DRIVING FORCE to design an EFFICIENT heat exchanger.

Heat Exchanger Networks

(53)

Reactor

Furnace

Fuel

Exchanger

Compressor Purge

Quench

Flas h

Cooler

S tabi liz er Pr oduct co lu m n R ecy cle co lum n

Methane

Benzene Toluene

Toluene feed H2 feed Gas recycle

Heat exchange in the HDA process

(54)

The grand composite curve of the HDA process for the liquid separation section has the following qualitative behavior:

Pinch

Condensers

Reboilers T

H

Applied case study

(55)

Conventional operating conditions Operating conditions after introducing pressure-swing

T

Stabil iz er

Benzene Qsep

H T

Toluene

T

Stabil iz er

Benzene Qsep

H T

Toluene

In the HDA process, reboilers and condensers are respectively above and below the pinch.

The situation is undesirable. Therefore, to solve the problem it is possible to modify appropriately the operating pressure of the column(s) (i.e. pressure-swing) to move the column above the pinch.

Applied case study

(56)

T

H

Stabil iz er Toluene

Benzene

A B Qsep C

By implementing the pressure-swing, the benzene column moves under the toluene one, which has been keeping the same energy demand. It is worth underlining that only the temperature at which the enthalpy exchange takes place has changed, as a consequence of the pressure-swing. The enthalpy request of the benzene column can then shift to the left because a portion B of the total heat that is required (B+C) is supplied by the toluene column. Now, the benzene column requires only a reduced quantity C from some utility.

Applied case study

(57)

References

Douglas, J.M., Conceptual Design of Chemical Processes, McGraw-Hill, N.Y., (1988).

• Linnhoff, B., Flower, J.R., “Synthesis of heat exchanger networks - 1. Systematic generation of energy optimal networks”, AIChE Journal, 24, 4, 633-642, (1978).

• Flower, J.R., Linnhoff, B., “Synthesis of heat exchanger networks - 2. Evolutionary generation of networks with various criteria of optimality”, AIChE Journal, 24, 4, 642-654, (1978).

• Linnhoff, B., Hindmarsh, E., “The pinch design method for heat exchanger networks”, Chemical Engineering Science, 38, 5, 745-763, (1983).

• Linnhoff, B., Dunford, H., Smith, R., “Heat integration of distillation columns into overall

processes”, Chemical Engineering Science, 38, 8, 1175-1188, (1983).

Riferimenti

Documenti correlati

For heat exchanger E3, considering the hot stream S2 has a relatively lower heat capacity flowrate than the cold stream, the shifted inlet temperature on the hot stream should

Shifted utility temperature is added for hot streams at utility below pinch temperature with minimum allowable temperature difference between utility and

Given a pair of hot and cold process streams with both of them having positive existing pressure drop (i.e. pressure loss), place the heat exchanger near to

The proposed method presented in this paper entails firstly generating two representative single period networks using the Pinch Technology Stream Temperature versus Enthalpy

The simulation results confirmed that designed robust controllers represent the possibilities for successful control of heat exchangers.. Comparison with classical PID

These tools include Stream Temperature vs Enthalpy Plot (STEP) and HEat Allocation and Targeting (HEAT) for simultaneously targeting and design of a HEN, Energy

Direct heat integration requires heat transfer only once (from hot streams to cold streams) and indirect heat integration requires heat transfer twice (from hot streams to

It should be noted that, for direct heat transfer, it is assumed that the cold process stream is transferred to the other process and, following the heat