• Non ci sono risultati.

Introduction .........................................................................................................1 1. Control laws design techniques ................................................................... 1.1 Classical control............

N/A
N/A
Protected

Academic year: 2021

Condividi "Introduction .........................................................................................................1 1. Control laws design techniques ................................................................... 1.1 Classical control............"

Copied!
5
0
0

Testo completo

(1)

i

Index

Introduction...1

1. Control laws design techniques... 1.1 Classical control...4

1.1.1 Introduction...4

1.1.2 Compensator design...5

(2)

ii

1.3 Modern control theory...7

1.3.1 Introduction...7

1.3.2 Optimal control...8

1.3.3 LQ theory...8

1.3.3.1 Performance index...8

1.3.3.2 Weight selection...11

1.3.3.3 Guaranteed stability margins...12

1.3.3.4 Frequency shaping...13

1.4 Gain scheduling...16

1.4.1 Introduction...16

1.4.2 D-Method...17

2. Stability and Handling Criteria... 2.1 Introduction...19

2.2 Lateral Stability...20

2.2.1 Stability margins...20

2.2.2 Controlled modes...21

2.3 Lateral Handling...22

2.3.1 Long period response...22

2.3.2 Short period response...22

2.3.2.1 Linear roll time response...22

2.3.2.2 Linear pedal time response...24

2.3.2.3 Dihedral effect...25

(3)

iii

3. Control Laws Synthesis...

3.1 Problem Definition...26

3.1.1 Introduction...26

3.1.2 Flight Envelope...27

3.1.3 Mass Properties Variations...28

3.1.4 Aerodynamic Tolerances...29

3.2 Linear Design...30

3.2.1 Lateral-Directional AC model...30

3.2.2 Reduced-Order Design model...32

3.2.3 FCS model...34

3.2.4 Linear quadratic regulator...36

3.2.4.1 Frequency shaping...36

3.2.4.2 Construction of the 'Performance Criteria' systems...37

3.2.4.3 LQR with Output weighting...39

3.2.4.4 Choice of matrix weight...40

3.2.4.5 Results...41

3.2.5 Feed-forward gains...41

3.2.6 Closed loop design model...42

3.2.7 Choice of gains set...43

3.3 Surfaces use strategy...44

3.4 Non-Linear Design...45

3.4.1 Complete Non linear controller...46

3.4.2 Signal preprocessing...47

3.4.3 Command path...47

3.4.3.1 Roll Authority...47

(4)

iv 3.4.3.3 Rate limiter...48 3.4.4 Gain scheduling...50 3.4.4.1 D-method implementation...50 3.4.4.2 Scheduler implementation...51 4. Design Validation ... 4.1 Linear Analysis...54 4.1.1 First iteration...55 4.1.1.1 Introduction...55 4.1.1.2 Stability margins...56

4.1.1.3 Controlled modes and Handling requirements...57

4.1.2 Second iteration...60

4.1.2.1 Introduction...60

4.1.1.1 Stability margins...60

4.1.1.2 Controlled modes and Handling requirements...61

4.1.3 Third iteration... ..64

4.1.2.1 Introduction...64

4.1.1.1 Stability margins...64

4.1.1.2 Controlled modes and Handling requirements...65

4.2 Non linear model validation...68

5. Results... 5.1 Lateral controller evaluation...72

(5)

v

5.1.2 Yaw response...77

5.1.3 Gust response...80

Conclusions...83

Riferimenti

Documenti correlati

This year the 13th WSEAS International Conference on MATHEMATICAL METHODS, COMPUTATIONAL TECHNIQUES AND INTELLIGENT SYSTEMS (MAMECTIS '11), the 10th WSEAS International

4.1 Dynamic Response Performance of PI Controller in Case of Sudden Step Change The dynamic response waveform of the real power flow in line 2 with the UPFC installed in case of a

It follows that the system cannot be stabilized using a static output feedback.. Static

Pure horizontal or vertical GEN can instead indicate lesions in the area of the brainstem involved respectively for horizontal (NPH and VN) or vertical (interstitial

ITAE Weights errors occurring later more heavily..

Design of primary flight control laws for a high-performance aircraft. using multivariable robust

The proposed design has been developed for a limited but significant flight envelope (in term of AoA and speed range): the resulting closed loop system tracks roll rate and angle of

Instead of fixing a control structure and tuning the parameters by some optimization method, a combination of a recursive nonlinear system identification and a nonlinear