• Non ci sono risultati.

A-1 Files Matlab di input

N/A
N/A
Protected

Academic year: 2021

Condividi "A-1 Files Matlab di input"

Copied!
13
0
0

Testo completo

(1)
(2)

A-1.1 RegAC

%=============================================================================% % ABS 2.0 %

% The Aircraft Braking Simulation package % % %

% Software developed at the Dipartimento di Ingegneria Aerospaziale % % of the University of Pisa within the framework of the SAMBA Project % % E. Denti, D. Fanteria and C. A. Pellacani %

% % % %

%=============================================================================% %============================== INPUT DATA FILE ==============================% %=============================================================================% % File:regAC.m %

% the following data concern a regional Transport Aircraft %

%=============================================================================% % %

% VERY INPORTANT: Do not remove the comment line containing the words % % INPUT DATA FILE because a check is performed by %

% the file loader to assess its validity as an input file. %

%=============================================================================% %=============================================================================% % GENERAL DATA % %=============================================================================% global g ro

g = 9.81; % [m/s²] acceleration due to gravity ro = 1.225; % [kg/m³] air density

%==============================================================================% % INPUT DATA OF SYSTEM 1: PILOT %

%==============================================================================% % Pilot Data are assigned in a separate file

% (the name is defined in the MASTER FILE 'ABS_MasterFilec')

%==============================================================================% % INPUT DATA OF SYSTEM 2: AIRCRAFT %

%==============================================================================% % SUBSYSTEM 2.1: AIRCRAFT DYNAMICS

% global M Ix Iy Iz Ixz I Iinv

M = 21227.8; % [lb] aircraft mass Ix = 156438.22; % [Kg*m²] inertia moments Iy = 307879.5*2;

Iz = 740607.6; Ixz = - 27938.9;

% SUBSYSTEM 2.2: AERODYNAMIC ACTIONS % ---%

global b cmean S CLo CLalfa CLq CLde CLf CDo k CDalfa CDq ... Cm Cmo Cmalfa Cmalfap Cmq Cmde Cmf...

CYbeta CYp CYr CYda CYdr Clbeta Clp Clr Clda Cldr ... Cnbeta Cnp Cnr Cnda Cndr

b = 27.05; % [m] wing span

cmean = 2.303; % [m] mean aerodynamic chord S = 61.0; % [m^2] wing reference surface % longitudinal aerodynamic coefficients

CLo = 0.25; % lift coefficient at 0 angle of attack CLalfa = 5.44; % slope of the lift curve of the entire aircraft CLq = 0; % [1/rad] lift coeff. derivative with respect to % the pitch angular velocity

CLde = 0.35001; % [1/rad] lift coeff. derivative with respect to % the elevator angle

CLf = 0; % [1/rad] lift coeff. derivative with respect to % the flap deflection angle

k = 0.04; % coefficient related to the drag due to lift CDo = 0.06; % drag coefficient at zero lift CDalfa = 0; % [1/rad] drag coeff. derivative with respect to % the angle of attack

(3)

CDq = 0; % [1/rad] drag coeff. derivative with respect to % the pitch angular velocity

Cmo = 0.11695; % pitch moment coefficient that is independent % from alfa, beta and q

Cmalfa = -4.1367; % [1/rad] pitch moment coeff. derivative with % respect to the angle of attack

Cmalfap = 0.0; % [1/rad] pitch moment coeff. derivative with % respect to the derivative of the angle of attack Cmq = 0.0; % [1/rad] pitch moment coeff. derivative with % respect to the pitch angular velocity

Cmde = -2.69978; % [1/rad] pitch moment coeff. derivative with % respect to the elevator angle

Cmf = 0.0; % [1/rad] pitch moment coeff. derivative with % respect to the flap deflection angle

% lateral-directional aerodynamic coefficients

CYbeta = 0.0; % [1/rad] lateral force coeff. derivative with % respect to the sideslip angle

CYp = 0.0; % [1/rad] lateral force coeff. derivative with % respect to the roll angular velocity

CYr = 0.0; % [1/rad] lateral force coeff. derivative with % respect to the yaw angular velocity

CYda = 0.0; % [1/rad] lateral force coeff. derivative with % respect to the aileron angle

CYdr = 0.0; % [1/rad] lateral force coeff. derivative with % respect to the rudder angle

Clbeta = 0.0; % [1/rad] roll moment coeff. derivative with % respect to the sideslip angle

Clp = 0.0; % [1/rad] roll moment coeff. derivative with % respect to the roll angular velocity

Clr = 0.0; % [1/rad] roll moment coeff. derivative with % respect to the yaw angular velocity

Clda = 0.0; % [1/rad] roll moment coeff. derivative with % respect to the aileron angle

Cldr = 0.0; % [1/rad] roll moment coeff. derivative with % respect to the rudder angle

Cnbeta = 0.0; % [1/rad] yaw moment coeff. derivative with % respect to the sideslip angle

Cnp = 0.0; % [1/rad] yaw moment coeff. derivative with % respect to the roll angular velocity

Cnr = 0.0; % [1/rad] yaw moment coeff. derivative with % respect to the yaw angular velocity

Cnda = 0.0; % [1/rad] yaw moment coeff. derivative with % respect to the aileron angle

Cndr = 0.0; % [1/rad] yaw moment coeff. derivative with % respect to the rudder angle

% SUBSYSTEM 2.3: ENGINE % ---% global Tmax h_thr

Tmax = 10000; % [N] maximum thrust (directed along the x % axis of the inertial ref. fr.)

h_thr = 0.0; % [m] vertical distance between the propeller % axis and the centre of gravity

%==============================================================================% % INPUT DATA OF SYSTEM 3: WHEEL %

%==============================================================================% % SUBSYSTEM 3.1: ROLLING FRICTION

% ---%

global fo_LR k_rolres_LR fo_N k_rolres_N

fo_LR = 0.015; % zero-velocity coefficient of free rolling % resistance (wheel of the main landing gear) k_rolres_LR = 0.0; % velocity coefficient of free rolling % resistance (wheel of the main landing gear) fo_N = 0.015; % zero-velocity coefficient of free rolling % resistance (wheel of the main landing gear) k_rolres_N = 0.0; % velocity coefficient of free rolling

% resistance (wheel of the main landing gear)

(4)

% SUBSYSTEM 3.2: WHEEL LATERAL MODEL % ---%

global miy_LR alfa_LR miy_N alfa_N

% wheel sideslip angle (alfa) as function of (miy) % (values to be used in look up table blocks) % main landing gear wheel

lutmiy_LR=[ -2.1 -2 -1 0 1 2 2.1];

lutalfa_LR=[ -89.9 -89.9 -89.9 0 89.9 89.9 89.9 ]*pi/180; % nose landing gear wheel

lutmiy_N=lutmiy_LR; lutalfa_N=lutalfa_LR;

% SUBSYSTEM 3.2.1: GROUND LATERAL FORCE AND miy % ---%

global c_w_y_LR k_w_y_LR k_w_y_N c_w_y_N

% main landing gear wheel: stiffness and damping coefficient of the tyre k_w_y_LR = 80000; % [N/m] stiffness coefficient

c_w_y_LR = 0.04; % [N*s/m] damping coefficient

% nose landing gear wheel: stiffness and damping coefficient of the tyre k_w_y_N = k_w_y_LR; % [N/m] stiffness coefficient

c_w_y_N = c_w_y_LR; % [N*s/m] damping coefficient

% SUBSYSTEM 3.3: WHEEL SPIN DYNAMICS % ---%

global I_w_LR I_w_N % main landing gear wheel

I_w_LR = 2*3.265; % [kg*m²] inertia moment of the wheel % nose landing gear wheel

I_w_N = 2*0.222; % [kg*m²] inertia moment of the wheel % SUBSYSTEM 3.4: WHEEL VERTICAL MODEL % ---%

global Ro_LR def_w_z_LR fel_w_z_LR def_w_z_LRmax ... c_w_z_LR c_w_z_N def_w_z_N fel_w_z_N Ro_N % main landing gear wheel

Ro_LR = 0.4246; % [m] radius of the undeformed wheel

% nose landing gear wheel

Ro_N = 0.225; % radius of the undeformed wheel % elastic force in the vertical direction (felw_z) % as function of the wheel deflection (defw_z) % (values to be used in look up table blocks) % main landing gear wheel

def_w_z_LR = [0 0.01 0.02 0.04 0.06 ... 0.14 0.153 0.162 0.164]; % [m] fel_w_z_LR = [0 5320 12500 31410 52130 ... 135640 150000 175000 185000]*2; % [N] c_w_z_LR = 0.0; % [N*s/m] damping constant of the tyre % nose landing gear wheel

def_w_z_N = [0 0.01 0.02 0.025 0.03 0.04 ... 0.075 0.09 0.1 0.105 0.11 0.1115]; % [m] fel_w_z_N = [0 1450 3500 4750 6250 10000 ...

26000 33250 38750 43000 50500 55000]*2; % [N] c_w_z_N = 0.0; % [N*s/m] damping constant of the tyre

% SUBSYSTEM 3.5: CONTACT DYNAMICS % ---%

global Rr_LR Sx_LR mix_LR Rr_N Sx_N mix_N

% braking force coefficient (mix) as function of the slip coefficient (Sx); % main landing gear wheel

Sx_LR = [0 0.0318 0.0577 0.0754 0.097 0.123 0.1515 0.169 ... 0.1824 0.2017 0.2318 0.3498 0.4268 0.5004 0.6 1 1.0005]; mix_LR = [0 0.2775 0.4651 0.5992 0.7024 0.7909 0.8485 0.8740...

(5)

0.8874 0.8887 0.8794 0.8070 0.7681 0.7198 0.6743 0.5 0.5]; Rr_LR = Ro_LR; % [m] rolling radius

% nose landing gear wheel

Sx_N = [0 0.0318 0.0577 0.0754 0.0970 0.123 0.1515 0.169 0.1824 ... 0.2017 0.2318 0.3498 0.4268 0.5004 0.6 1.00 1.0005];

mix_N = [0 0.3052 0.5117 0.6591 0.7727 0.87 0.9334 0.9614 0.9761 ... 0.9776 0.9673 0.8877 0.8449 0.7918 0.7417 0.55 0.55]; Rr_N = Ro_N; % [m] rolling radius

%==============================================================================% % INPUT DATA OF SYSTEM 4: LANDING GEAR %

%==============================================================================% % SUBSYSTEM 4.1: SHOCK ABSORBER MODEL

% ---%

global def_sa_LR fel_sa_LR def_sa_shor_LR cda_sa_shor_LR ... def_sa_stre_LR cda_sa_stre_LR...

def_sa_N fel_sa_N def_sa_shor_N cda_sa_shor_N ... def_sa_stre_N cda_sa_stre_N

% Elastic force of the S.A. (fel_sa) vs. the S.A. stretching stroke (def_sa) %---% Main landing gear shock absorber

def_sa_LR = [0 0.025 0.05 0.075 0.1 0.125 0.139 0.15 0.155];

fel_sa_LR = [50000 61620 77030 100000 144250 238460 350000 515380 650000]; % Nose landing gear shock absorber

def_sa_N = [0 0.08 0.13 0.17 0.2 0.22 0.24 ... 0.26 0.28 0.3 0.32 0.33]; % [m]

fel_sa_N = [4000 6000 7500 10000 12500 15000 18500 ... 23500 32000 45000 66000 81000]; % [N]

% Elastic force of the S.A. (fel_sa) vs. the S.A. shortening stroke (def_sa) %---% Main landing gear shock absorber

def_sa_shor_LR = [0 0.1 0.12 0.3]; % [m]

cda_sa_shor_LR = [300000 300000 600000 600000]; % [N/(m/s)^2] % Nose landing gear shock absorber

def_sa_shor_N = [0 0.006 0.021 0.036 0.086 0.131 ... 0.181 0.226 0.256 0.296 0.3]; % [m] cda_sa_shor_N = [70 2140 8200 3400 4100 4950 ... 6100 7400 11100 19200 27400]; % [N/(m/s)^2]

% Lamin. coeff. of S.A. (cda_sa_stre) vs. S.A. stretching stroke (def_sa_stre) %--- % Main landing gear shock absorber

def_sa_stre_LR = [0 0.1 0.12 0.16]; % [m]

cda_sa_stre_LR = [650000 1200000 2000000 8000000]; % [N/(m/s)^2]

% Nose landing gear shock absorber def_sa_stre_N = [0 0.33]; % [m]

cda_sa_stre_N = [140000 140000]; % [N/(m/s)^2]

% M-function "lgkyn4.m" global Lmax_LR Lmax_N

Lmax_LR = 1.1816; % [m] maximum length of the main landing gear % i.e. distance between the wheel hub and the landing gear %constraint point when the shock absorber is fully extended Lmax_N = 0.9029; % [m] maximum length of the nose landing gear % i.e. distance between the wheel hub and the landing gear %constraint point when the shock absorber is fully extended % S-function "lgdyn4.m"

global freq_lg_x_LR m_lg_x_LR csi_lg_x_LR freq_lg_y_LR m_lg_y_LR ... csi_lg_y_LR m_lg_z_LR freq_lg_x_N m_lg_x_N csi_lg_x_N freq_lg_y_N ... m_lg_y_N csi_lg_y_N m_lg_z_N

(6)

freq_lg_x_LR = 30; % [Hz] frequency of vibration of the landing gear % leg in the longitudinal direction

m_lg_x_LR = 137; % [Kg] equivalent mass of the landing gear to be used in % the dynamic equation in the longitudinal direction csi_lg_x_LR = 0.05; % [%] damping constant of the landing gear

% in the longitudinal direction

freq_lg_y_LR = 30; % [Hz] frequency of vibration of the landing gear % in the lateral direction

m_lg_y_LR = 137; % [Kg] equivalent mass of the landing gear to be used in % the dynamic equation in the lateral direction

csi_lg_y_LR = 0.05; % [%] damping constant of the landing gear % in the lateral direction

m_lg_z_LR = 137; % [Kg] equivalent mass of the landing gear to be used in % the dynamic equation in the vertical direction

% Nose landing gear

freq_lg_x_N = 13; % [Hz] frequency of vibration of the landing gear % leg in the longitudinal direction

m_lg_x_N = 17.54;% [Kg] equivalent mass of the landing gear to be used in % the dynamic equation in the longitudinal direction

csi_lg_x_N = 0.05; % [%] damping constant of the landing gear % in the longitudinal direction

freq_lg_y_N = 13; % [Hz] frequency of vibration of the landing gear % in the lateral direction

m_lg_y_N = 17.54;% [Kg] equivalent mass of the landing gear to be used in % the dynamic equation in the lateral direction

csi_lg_y_N = 0.05; % [%] damping constant of the landing gear % in the lateral direction

m_lg_z_N = 17.54;% [Kg] equivalent mass of the landing gear to be used in % the dynamic equation in the vertical direction

%==============================================================================% % INPUT DATA OF SYSTEM 5: PEDAL TRANSDUCER %

%==============================================================================% global peda_def press_comm

% characteristic curve of the pedal transducer

peda_def = [0 17.9 17.9 59.4 95.7 100]; % [%] pedal displacement press_comm = [7 7 15 60 175 175]; % [bar] pressure command

press_comm = press_comm - press_comm(1); % depuration of return pressure

%==============================================================================% % INPUT DATA OF SYSTEM 6: BRAKING CONTROL %

%==============================================================================% % PRESSURE CONTROL

%

global k_pre_PID i_pre_PID d_pre_PID gain_corr_xp gain_corr_yp global k_pre_SEN p_pre_SEN

% parameters of the pressure sensor

k_pre_SEN = 316; % gain of the pressure sensor p_pre_SEN = 316; % pole of the pressure sensor % parameters of the PID pressure controller

k_pre_PID = 1.0 ; % gain of the PID controller i_pre_PID = 22.2472 ; % integral term of the PID controller d_pre_PID = 0.0 ; % derivative term of the PID controller % static law of the servovalve

gain_corr_xp = [-64.502 0.0 200.0 220.0 ] ; % [bar] pressure gain_corr_yp = [ 0.0 9.382 38.473 38.473] ; % [mA] current % TORQUE CONTROL

%

global k_tor_PID i_tor_PID d_tor_PID gain_corr_xt gain_corr_yt global k_tor_SEN p_tor_SEN

% parameters of the pressure sensor

(7)

p_tor_SEN = 316; % pole of the pressure sensor % parameters of the PID pressure controller k_tor_PID = 1.0 ; % gain of the PID controller i_tor_PID = 22.2472 ; % integral term of the PID controller d_tor_PID = 0.0 ; % derivative term of the PID controller % static law of the servovalve

gain_corr_xt = [-64.502 0.0 200.0 220.0 ] ; % [bar] pressure gain_corr_yt = [ 0.0 9.382 38.473 38.473] ; % [mA] current

%==============================================================================% % INPUT DATA OF SYSTEM 7: SERVOVALVE %

%==============================================================================% global curr_sv_x press_sv_y sv_low_thr om_sv zi_sv

% Static law of the servovalve

curr_sv = [0 9.382 12 36 38.327 40 ] ; % [mA] servovalve current press_sv = [7 7 25 190 206 206] ; % [bar] actuating pressure press_sv = press_sv - press_sv(1) ; % depuration of return pressure % parameters of the transfer function representing the servovalve dynamics om_sv = 63; % [rad/sec] natural frequency

zi_sv = 0.6; % [ ] damping coefficient

%==============================================================================% % INPUT DATA OF SYSTEM 8: BRAKE %

%==============================================================================% global TG Vh_brake bra_tor_Vh bra_nrg bra_tor_nrg

% the braking torque is the product of three contributions % contribution due to pressure: mean torque gain %TG = 3200; % [m*N/bar]

TG = 320; % [m*N/bar]

% contribution due to wheel hub speed

% look-up table output coeff.(non dimensional) vs. wheel hub velocity Vh_brake = [0 5 10 15 20 25 30 35 60]; % [m/s] velocity bra_tor_Vh = [1.2 1.19 1.18 1.17 1.15 1.1 1.05 1 1]; % [] output % contribution due to the braking energy

% look-up table output coeff.(non dimensional) vs. braking generated energy %bra_nrg = [0 1.1 2.2 4 6 8 10 12 30]*1e6; % [J] energy

% Correction for TG = 320

bra_nrg = [0 1.1 2.2 4 6 8 10 12 30]*1e5; % [J] energy bra_tor_nrg = [1 1.56 1.38 1.23 1.1 1.04 1.02 1 1]; % [] output

% ========================================================= % Comment out the following lines if not necessary

% ========================================================= % scaling for diff. architecture srs -> abs

% from AGSE with teta = 0 e fib = 0

a_b = 0.395055; % Scaling factor ctheta = 1; % Scaling factor def_sa_LR = def_sa_LR/a_b; fel_sa_LR = a_b*fel_sa_LR; def_sa_N = (1/ctheta)*def_sa_N; fel_sa_N = ctheta*fel_sa_N; def_sa_shor_LR = def_sa_shor_LR/a_b; cda_sa_shor_LR = (a_b^3)*cda_sa_shor_LR; def_sa_stre_LR = def_sa_stre_LR/a_b; cda_sa_stre_LR = (a_b^3)* cda_sa_stre_LR; def_sa_shor_N = (1/ctheta)*def_sa_shor_N; cda_sa_shor_N = (1/ctheta)*cda_sa_shor_N; def_sa_stre_N = (1/ctheta)*def_sa_stre_N; cda_sa_stre_N = (1/ctheta)*cda_sa_stre_N; % end % =========================================================

(8)

A-1.2 Control

%=============================================================================% % ABS 2.0 %

% The Aircraft Braking Simulation package % % %

% Software developed at the Dipartimento di Ingegneria Aerospaziale % % of the University of Pisa within the framework of the SAMBA Project % % E. Denti, D. Fanteria and C. A. Pellacani %

% % % %

%=============================================================================% % CONTROL DATA FILE %

%=============================================================================% % Simulation Control Parameters

%

Solver = 'ode5'; % Solver algorithm for integration of ODE system Start_time = 0.0; % Simulation Start Time

Stop_time = 0.6; % Simulation Stop Time

Max_step = 0.0001; % Maximum integration step size (var. step int.) Rel_error = 1e-5; % Relative error of the numerical integration % Switch between different A/C models

% [this option is disabled in the current version]

AC_pitch = 1; % enable (1) [disable (0)] AC pitch d.o.f. AC_roll = 1; % enable (1) [disable (0)] AC roll d.o.f. AC_yaw = 1; % enable (1) [disable (0)] AC yaw d.o.f. AC_forw = 1; % enable (1) [disable (0)] AC forward d.o.f. AC_heave = 1; % enable (1) [disable (0)] AC heave d.o.f. AC_lat = 1; % enable (1) [disable (0)] AC lateral d.o.f. % Switch between different Braking system models

ibrake=1; % Pressure control [1] Torque control [0] % Control parameters for Equilibrium Iteration

% global ac_toll KLR KLR_toll KN KN_toll itest

ac_toll = 1e-10; % A/C acceleration toll. to stop iteration

KLR = 0.8; % coefficient for the estimation of the % main wheel hub position KLR_toll = 1e-6; % KLR tolerance to stop iteration

KN = 0.8; % coefficient for the estimation of the % nose wheel hub position

KN_toll = 1e-6; % KN tolerance to stop iteration

% I/O Control Parameters %

N_max = 10000; % Maximum number of data rows

% The maximum number of rows parameter indicates how many data rows to save. % If the simulation generates more rows than the specified maximum,

% the simulation saves only the most recently generated rows. To capture % all the data, set this value to inf.

N_step = 1; % Decimation of printed data

% The decimation parameter allows you to write data at every nth sample, % where n is the decimation factor. The default decimation, 1, writes data % at every time step.

t_sam = 0; % Sampling time of data for var. step sim.

% The sample time parameter allows you to specify a sampling interval at % which to collect points. This parameter is useful when using a % variable-step solver where the interval between time steps may not be % the same. The default value of -1 causes the block to inherit the sample

% time from the driving block when determining which points to write.

(9)

A-1.3 Pilot

%=============================================================================% % ABS 2.0 %

% The Aircraft Braking Simulation package % % %

% Software developed at the Dipartimento di Ingegneria Aerospaziale % % of the University of Pisa within the framework of the SAMBA Project % % E. Denti, D. Fanteria and C. A. Pellacani %

% %

%=============================================================================% % PILOT FILE %

%=============================================================================% % %

% ' * ' stands for: F (Flaps), A (Ailerons), R (Rudder), E (Elevator), % % T (Throttle), RB (Right Brake), LB (Left Brake), % % steer (Steering) %

%

% *_switch Can assume values 1 2 3 4 5 6 % % 1 : Constant Input % % 2 : Step Input % % 3 : Finite Step Input % % 4 : Sine Delayed % % 5 : Look Up Table % % 6 : External Data File % % Default Value is : 1 % % %

% *_start If Switch=1,5,6 has no influence % % If Switch=2,3,4 it is the delay the input is applied at % % %

% *_period If Switch=1,2,5,6 has no influence % % If Switch=3,4 it is the time duration of one wave %

% %

% *_c If Switch=1 represents Constant amplitude value % % If Switch=4 represents mean sine value % % If Switch=2,3,5,6 has no influence % % %

% *_ampl If Switch=1,5,6 has no influence % % If Switch=2,3,4 it is the maximum amplitude of the input % % %

% *_lutt If Switch=1,2,3,4,6 has no influence % % If Switch=5 represents the Look-Up table Time vector % % %

% *_lutv If Switch=1,2,3,4,6 has no influence % % If Switch=5 represents the Look-Up table Data vector % % %

% *_fname If Switch=1,2,3,4,5 has no influence % % If Switch=6 represents the Input File name %

%=============================================================================% % ============================= % Flaps % ============================= F_switch = 1; % F_start = 0.0 ; F_period = 1.0 ; F_c = 0.0 ; F_ampl = 0.0 ; F_lutt = [0.0 1.0]; F_lutv = [0.0 0.0]; F_fname = ''; % ============================= % Ailerons % ============================= A_switch = 1; % A_start = 0.0 ; A_period = 1.0 ; A_c = 0.0 ; A_ampl = 0.0 ; A_lutt = [0.0 1.0]; A_lutv = [0.0 0.0]; A_fname = '';

(10)

% ============================= % Rudder % ============================= R_switch = 1; % R_start = 0.0 ; R_period = 1.0 ; R_c = 0.0 ; R_ampl = 0.0 ; R_lutt = [0.0 1.0]; R_lutv = [0.0 0.0]; R_fname = ''; % ============================= % Elevator % ============================= E_switch = 1; % E_start = 0.0 ; E_period = 1.0 ; E_c = 0.0 ; E_ampl = 0.0 ; E_lutt = [0.0 1.0]; E_lutv = [0.0 0.0]; E_fname = ''; % ============================= % Throttle % ============================= T_switch = 1; % T_start = 0.0 ; T_period = 1.0 ; T_c = 0.0 ; T_ampl = 0.0 ; T_lutt = [0.0 1.0]; T_lutv = [0.0 0.0]; T_fname = ''; % ============================= % Left Brake % ============================= LB_switch = 3; % LB_start = 0.1 ; LB_period = 0.3 ; LB_c = 0.0 ; LB_ampl = 75.0 ; LB_lutt = [0.0 1.0]; LB_lutv = [0.0 0.0]; LB_fname = ''; % ============================= % Right Brake % ============================= RB_switch = 3; % --- RB_start = 0.1 ; RB_period = 0.3 ; RB_c = 0.0 ; RB_ampl = 75.0 ; RB_lutt = [0.0 1.0]; RB_lutv = [0.0 0.0]; RB_fname = ''; %============================= % Steering %============================= S_switch = 1; % --- S_start = 0.0 ; S_period = 0.1 ; S_c = 0.0 ; S_ampl = 0.0 ; S_lutt = [0.0 1.0]; S_lutv = [0.0 0.0]; S_fname = '';

(11)

A-1.4 Initcond

%=============================================================================% % ABS 2.0 %

% The Aircraft Braking Simulation package % % %

% Software developed at the Dipartimento di Ingegneria Aerospaziale % % of the University of Pisa within the framework of the SAMBA Project % % E. Denti, D. Fanteria and C. A. Pellacani %

% % % %

%=============================================================================% % SIMINITCOND FILE %

% =========================================================================== %

% STATIC REFERENCE CONDITION (referred to the inertial ref. fr.) %

global d_con_o hcg_o dcg_con_o de_o Vcg_o phi_o theta_o psi_o dt_o track_o

d_con_o = 10.668083; % [m] longitudinal distance between the % contact points of the nose and of the main % landing gear

hcg_o = 2.287097; % [m] height of the gravity centre (GC) above % the ground

dcg_con_o = 0.5359030; % [m] longitudinal distance between the % projection on the ground of GC and the % contact point of the main landing gear track_o = 4.1; % [m] Lateral distance between the contact % points of the two main landing gear

Vcg_o = 20; % [m/s] long. velocity of the aircraft (a/c)

phi_o = 0; % [rad] a/c roll angle theta_o = 0.9144690E-06; % [rad] a/c pitch angle psi_o = 0; % [rad] a/c yaw angle

de_o = 0; % [rad] elevator angle (for initial equilibrium) da_o = 0; % [rad] aileron angle (for initial equilibrium) dr_o = 0; % [rad] rudder angle (for initial equilibrium) dt_o = 0.4; % throttle position.it may vary in the range % [-1 +1] (e.g. dt_o = -0.1 means a reverse % thrust equal to 10 % of the maximum thrust)

spin_main = 0; % switch between free rolling (spin_main = 0) and % initial angular velocity = 0.0 (spin_main = 1) spin_nose = 0; % switch between free rolling (spin_nose = 0) and % initial angular velocity = 0.0 (spin_nose = 1)

(12)

A-1.5 Curve caratteristiche

Fig. A-1.1

(13)

Riferimenti

Documenti correlati