• Non ci sono risultati.

Measurement of the cross section for hard exclusive π0 muoproduction on the proton

N/A
N/A
Protected

Academic year: 2021

Condividi "Measurement of the cross section for hard exclusive π0 muoproduction on the proton"

Copied!
8
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurement

of

the

cross

section

for

hard

exclusive

π

0

muoproduction

on

the

proton

.

The

COMPASS

Collaboration

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received29March2019

Receivedinrevisedform22April2020 Accepted22April2020

Availableonline5May2020 Editor:M.Doser

Keywords:

Quantumchromodynamics Muoproduction

Hardexclusivemesonproduction GeneralisedPartonDistributions COMPASS

We reportonameasurementofhard exclusive

π

0 muoproduction ontheproton byCOMPASS using

160 GeV/c polarised

μ

+ and

μ

− beamsoftheCERNSPS impingingonaliquidhydrogentarget.From the average of the measured

μ

+ and

μ

− cross sections, the virtual-photon proton cross section is determined as a function of the squared four-momentum transfer between initial and final proton in the range 0.08(GeV/c)2<|t|<0.64(GeV/c)2. The average kinematics of the measurement are Q2=2.0(GeV/c)2, 

ν

=12.8GeV, x

B j=0.093 and−t=0.256(GeV/c)2. Fitting the azimuthal

dependence reveals a combined contribution by transversely and longitudinally polarised photons of (8.2 ± 0.9stat+11..22sys)nb/(GeV/c)

2, as well as transverse-transverse and longitudinal-transverse

interferencecontributionsof(−6.1±1.3stat+00..77sys)nb/(GeV/c)

2and(1.5±0.5

stat+00..32sys)nb/(GeV/c) 2,

respectively. Our results provide important input for modelling Generalised Parton Distributions. In the context of the phenomenological Goloskokov-Kroll model, the statistically significant transverse-transverseinterferencecontributionconstitutesclearexperimentalevidenceforthechiral-oddGPDET.

©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Measurements of pseudoscalar mesons produced in hard ex-clusivelepton-nucleonscatteringprovideimportantdata for phe-nomenological parameterisations of Generalised Parton Distribu-tions (GPDs) [1–5]. In the past two decades, GPDs have shown to be a very rich and useful construct for both experiment and theoryastheir determination allowsfora detaileddescriptionof theparton structureof the nucleon.In particular,GPDs correlate transversespatial positionsandlongitudinal momentumfractions of the partons in the nucleon. They embed parton distribution functionsandnucleonformfactors,andtheygiveaccessto energy-momentum-tensorformfactors.Foreachquarkflavour,thereexist fourparton-helicity-conserving(chiral-even)GPDs,denoted H ,H ,

˜

E, and E,

˜

andfourparton-helicity-flip(chiral-odd)GPDs,denoted HT, H

˜

T, ET,and E

˜

T. While hard productionofvector mesons is

sensitiveprimarilytotheGPDs H and E, theproductionof pseu-doscalarmesonsbylongitudinallypolarisedvirtualphotonsis sen-sitiveto H and

˜

E in

˜

theleading-twistdescription.

Contributionsfromtransverselypolarisedvirtualphotonstothe productionofspin-0mesonsareexpectedtobesuppressedinthe productionamplitude by 1

/

Q [6], where Q2 is the virtuality of thephoton

γ

∗ thatisexchangedbetweenmuonandproton. How-ever, experimental data on exclusive

π

+ production from HER-MES [7] and on exclusive

π

0 productionfrom JLab CLAS [811] andHall A [12–14] suggest that such contributions are substan-tial. In the GPD formalism such contributions are possible if a

quark helicity-flip GPD couples to a twist-3 meson wave func-tion [15,16]. Intheframeworkofthe phenomenologicalmodelof Ref. [15],pseudoscalar-mesonproductionisdescribedbytheGPDs

˜

H ,E,

˜

HT andET

=

2H

˜

T

+

ET.DifferentsensitivitiestotheseGPDs

are expectedwhen comparing

π

+ vs.

π

0 production. When tak-ing intoaccount the relative signsandsizes of theseGPDs foru andd quarks,thedifferentquarkflavourcontentsofthesemesons lead to different predictions for the

|

t

|

-dependence of the cross section, especially at smallvalues of

|

t

|

. Here, t is thesquare of thefour-momentumtransferbetweeninitialandfinalnucleon.The productionof

π

+mesonsisdominatedbythecontributionsfrom longitudinally polarised virtual photons, of which a major part originates from pion-pole exchange that is the main contributor to E.

˜

Also the contributions from H and

˜

HT are significant, and

there isastrong cancellationbetweenthecontributions from ET

for u and d quarks. On the contrary, in the caseof

π

0 produc-tionthereisnopion-poleexchange,thecontributionsfromH and

˜

HT aresmallandalargecontributionfromtransverselypolarised

photonsisgeneratedmainlyby ET.

These differences between

π

+ and

π

0 productionare exper-imentally supported. While for

π

+ production a fastdecrease of the cross section with increasing

|

t

|

is predicted by theoretical models and confirmed by the experimental results from HER-MES [7],for

π

0 productionadip isexpectedas

|

t

|

0 [15] and confirmedbyresultsintheJLabkinematicdomain [9,10,13]. Con-straintsformodellingthepoorlyknownGPDET wereobtainedin

alattice-QCDstudy [17] ofitsmoments.TheCOMPASS resultson https://doi.org/10.1016/j.physletb.2020.135454

(2)

Fig. 1. Definition ofφ,theazimuthalanglebetweenthelepton-scatteringandπ0 -productionplanes.

exclusive

π

0 production in muon-proton scatteringpresented in thisLetter provide newinput formodelling thisGPDand chiral-odd(‘transversity’)GPDsingeneral.

2. Formalism

Thereducedcrosssectionforhardexclusivemesonproduction by scattering a polarised lepton beam off an unpolarised proton targetreads: d2

σ

γ∗p dtd

φ

=

1 2

π



d

σ

T dt

+



d

σ

L dt

+



cos

(

2

φ)

d

σ

T T dt (1)

+



2



(

1

+



)

cos

φ

d

σ

LT dt

∓ |

Pl

|



2



(

1



)

sin

φ

d

σ

 LT dt



,

wherethesign

oftheleptonbeampolarisation Pl corresponds

to negative andpositive helicity of the incoming lepton, respec-tively, denoted by



. The conversion from the lepton-nucleon crosssectiontothevirtual-photonnucleoncrosssection,usingthe one-photon-exchange approximation, is explained in Sect.5. The contributiontothecrosssectionfromtransversely(longitudinally) polarisedvirtualphotonsisdenotedby

σ

T (

σ

L).Thesymbols

σ

LT,

σ

LT and

σ

T T denotecontributionsfromthe interferencebetween

longitudinallyandtransversely polarisedvirtual photons, and be-tween transversely polarised virtual photons of opposite helicity. Thefactor



=

1

y

y2γ2 4 1

y

+

y22

+

y24γ2 (2) isthevirtual-photonpolarisationparameterand

φ

istheazimuthal angle between the lepton scattering plane and the hadron pro-ductionplane, see Fig.1.Here, Q2

= −(



)

2 is thephoton virtuality,

ν

= (

k0

μ

k0μ

)

the energyofthe virtual photon inthe target restframe, y

=

ν

/

k0

μ and

γ

2

=

Q2

/

ν

2,where kμ and  denotethefour-momentaoftheincomingandthescatteredmuon inthetargetrestframe,respectively.

Thespin-independentcrosssectioncanbeobtainedby averag-ingthetwospin-dependentcrosssections,

d2

σ

γp dtd

φ

=

1 2



d2

σ

γ←∗p dtd

φ

+

d2

σ

γ→∗p dtd

φ



.

(3)

Whenformingthisaverage,thelastterminEq. (1) cancelsifthe magnitude

|

Pl

|

ofthebeampolarisationisthesamefor

measure-mentswith

μ

+and

μ

− beam,sothat

d2

σ

γp dtd

φ

=

1 2

π



d

σ

T dt

+



d

σ

L dt

+



cos

(

2

φ)

d

σ

T T dt (4)

+



2



(

1

+



)

cos

(φ)

d

σ

LT dt



.

Theindividual contributionsappearinginEq. (4) arerelatedto convolutions of GPDs andmeson wave functions withindividual hardscatteringamplitudes,seeRefs. [10,15]:

d

σ

T dt



(

1

− ξ

2

)

|

HT

|

2

t 8M2

|

ET

|

2



,

(5) d

σ

L dt



(

1

− ξ

2

)

| ˜

H

|

2

2

ξ

2Re



 ˜

H



 ˜

E





t 4M2

ξ

2

| ˜

E

|

2



,

(6) d

σ

T T dt

t 

|

E T

|

2

,

(7) d

σ

LT dt

∝ ξ



1

− ξ

2

tRe





H T



 ˜

E





.

(8)

Here, the aforementioned convolutionsare denoted by triangular brackets,t

=

t

tmin with

|

tmin

|

beingthekinematically smallest

possiblevalue of

|

t

|

,andM isthemassoftheproton.The quan-tity

ξ

isequaltoonehalfofthelongitudinalmomentumfraction transferredbetweentheinitialandfinalprotonandcanbe approx-imatedatCOMPASSkinematicsas

ξ

xBj

2

xBj

,

(9)

wherexBj

=

Q2

/(

2M

ν

)

.

3. Experimentalset-upanddataselection

The main component of the COMPASS set-up is the two-stagemagneticspectrometer.Eachspectrometerstagecomprisesa dipole magnetcomplementedbya varietyoftrackingdetectors,a muon filterformuonidentificationandanelectromagnetic(ECal) aswellasahadroncalorimeter.Adetaileddescriptionofthe set-upcanbefoundinRefs. [18–20].

Thedatausedforthisanalysiswerecollectedusinga160 GeV/c muon beam within four weeksin 2012, during which the COM-PASS spectrometer was complemented by a 2.5 m long liquid-hydrogentarget surroundedby atime-of-flight(TOF) system,and athirdelectromagneticcalorimeterthatwasplaceddirectly down-stream of the target [20,21]. The TOF detector consisted of two cylindersmountedconcentrically aroundthetarget,eachmadeof 24 scintillating-counterslats withread-outatboth endsofevery slat. The read-out scheme allowed to measure the time-of-flight betweentwolayers,determinethehitpositionsofaparticleupon traversalthroughalayerandmeasuretheenergylossineachlayer. Thisallowsustodeterminepolarangleandmomentumofthe par-ticle.

In order to determine the spin-independent cross section through Eq. (3), data with

μ

+ and

μ

− beam were taken sepa-rately.Thenaturalpolarisationofthemuonbeamprovidedbythe CERN SPS originates from the parity-violating decay in flight of theparentmeson,whichimpliesoppositepolarisationfor

μ

+and

μ

−beams.Withinregulartimeintervalsduringthemeasurement, charge andpolarisation ofthemuon beamwere swapped simul-taneously. In order to equalize the spectrometer acceptance for thetwobeamcharges,alsothepolaritiesofthetwospectrometer magnet currentswere changed accordingly.In total, aluminosity of18.9 pb−1 was collected forthe

μ

+ beamwithnegative polar-isationand23.5 pb−1 forthe

μ

beamwithpositivepolarisation.

(3)

embedded in the standard COMPASS data taking based on a ra-dioactivesource[22] andisknownwithanuncertaintyof3%.For bothbeams,theabsolutevalueoftheaveragebeampolarisationis about0.8withanuncertaintyofabout0.04 [18,23].

Forthe analysis, only data taken withstable beamand spec-trometerconditions are used. The selection of

π

0 mesons is ac-complishedusingtheirdominanttwo-photondecay.Thethreshold forthedecayphotonwithlowerenergyis300 MeV,whilethatfor the photon with higher energy is 1 GeV for the most upstream calorimeter and 2 GeV for the calorimeter in the first stage of the spectrometer. The mostdownstream calorimeteris not used inthis analysisasit contributes only very smallstatistics to the

π

0 sample. At least two neutral clusters are required that had to be detected in any of the electromagnetic calorimeters above therespectivethreshold,inconjunctionwithaninteractionvertex reconstructedwithin the target usingthe incomingandoutgoing muon tracks. The outgoing muon is identified by requiring that it hasthe same charge as the beamparticle and traversesmore than 15radiation lengths. As neutralcluster we denotea recon-structed calorimeter cluster that is not associated to a charged track,thereby includinganyclusterincaseofthemostupstream calorimeterthathadnotrackingsysteminfront.

Foreach interaction vertexandeach combinationoftwo neu-tral clusters, the kinematics of the recoil proton are predicted fromthefour-momentumbalanceoftheanalysedprocess,

μ

p

μ

p

π

0,

π

0

γ γ

, by using the reconstructed spectrometer in-formation,i.e.the vertexposition, themomenta of theincoming andoutgoingmuonsaswellastheenergyandpositionofthetwo clusters.Thepredictedpropertiesoftherecoilproton p are com-paredtothepropertiesofeachtrackcandidateasreconstructedby theTOFsystem.Notethatthefour-momentumoftherecoilproton isdeterminedby thetargetTOF systembasedontheassumption thatthereconstructedtrackbelongstoaproton.

Thefollowing exclusivityconstraints are usedto selectevents forthecross-sectiondetermination:

|

ϕ

| <

0

.

4 rad

,

|

pT

| <

0

.

3 GeV

/

c

,

|

z

| <

16 cm

,

|

M2X

| <

0

.

3

(

GeV

/

c2

)

2

.

Here,

ϕ

is the difference between predictedand measured az-imuthalangleoftherecoilprotoncandidate;

pT isthedifference betweenpredictedandmeasuredtransversemomentumofthe re-coilprotoncandidate;

z isthedifferencebetweenpredictedand measured hit position in the inner ring of the TOF system. The quantity pT is defined in the target rest frame. The undetected massisgivenby

M2X

= (

+

pp



pp

1

2

)

2

.

(10)

Here,thefour-momentaaredenotedby pp and pp forthetarget

andrecoil proton, respectively, and by 1 and 2 for the two

producedphotons. Inaddition aconstrainton theinvariant mass Mγ γ isused:

0

.

1092

<

Mγ γ

/(

GeV

/

c2

) <

0

.

1576

.

Inthecasethatmorethanonecombinationofvertex,clusterpair andrecoil-trackcandidateexistthatsatisfytheaforementioned se-lectioncriteriafora givenevent, thiseventisexcluded fromthe analysis.

Fig. 2 shows an example for the result of a comparison be-tweenpredictedandmeasured kinematicsoftherecoilcandidate, andFigs. 3 and 4 show correspondingly the distributions of un-detected mass and two-photon mass. In these figures, the four

Fig. 2. Measured andsimulateddistributionof pT ofthe recoilproton forthe kinematicregiondescribedinthetext.Theverticallinesindicatetheconstraints appliedfortheselectionofevents.Errorbarsdenotestatisticaluncertainties.

Fig. 3. Distribution of the undetected mass M2

X. Otherwise as in Fig.2.

Fig. 4. Distribution oftheinvariantmassMγ γ ofthetwo-photonsystem.Otherwise

asinFig.2.

exclusivityconstraintsaswell asthe

|

Mγ γ

|

constraintandsingle vertex/recoil-proton-candidate selection are applied. Additionally applied are constraintson thepull distributions of incomingand outgoing muon,the positionof ECALclustersandthe

φ

-value of hits in the recoil-proton detector, as determined using the kine-matic fit described below. Here, a pull is defined asratio of the difference betweenthe measured andthe fittedvalue of a given quantity,andthestandarddeviationofthisdifference.

Notethat the quantity presentedina givenfigure isnot con-strainedandthat everyfigure displays numericvaluesbeforethe kinematicfit.

(4)

theresulting simulateddataare treatedinthesame wayasitis doneforrealdata.

Inordertoenhancethepurityoftheselecteddataandto im-prove the precision of the particle kinematics at the interaction vertex, akinematicfitforthe exclusivereaction

μ

p

μ

p

π

0 is performed,whichrequiresasingle

π

0 todecayintothetwo pho-tonsselectedasdescribedabove.

Togetherwiththeselectionproceduregivenabove,the require-ments

0

.

08

(

GeV

/

c

)

2

<

|

t

| <

0

.

64

(

GeV

/

c

)

2

,

1

(

GeV

/

c

)

2

<

Q2

<

5

(

GeV

/

c

)

2

,

8

.

5 GeV

<

ν

<

28 GeV

areusedtoobtaintheeventsforthedeterminationoftheexclusive

π

0 cross section asdescribed in Sect.5. The resultingminimum valueofW isabout3

.

5GeV

/

c2.

4. Estimationofthebackgroundcontribution

In orderto obtain a larger event sample for the study of the background,tworeferencesamplesareselectedinthewider kine-matic range

|

t

|

>

0

.

08

(

GeV

/

c

)

2, Q2

>

1

(

GeV

/

c

)

2 and y

>

0

.

05. Thesetwosamples aredenotedassignal andbackgroundsample in thissection. In contrastto the signal sample, the background sample contains only eventswithmore thanone combinationof vertex,clusterpairandrecoil-trackcandidate.Apartfromthesmall peakatzero(seeFig.5bottom), itcontainsnon-exclusive events. Thepurposeofthereferencesamplesisexplainedinthefollowing section.

The main background to exclusive

π

0 muoproduction origi-nates from non-exclusive deep-inelastic scattering processes. In such processes, low-energy hadrons are produced in addition to the

π

0,whichremainundetectedintheapparatus.Inorderto es-timate the background contribution,two Monte Carlogenerators areemployed.

First,theLEPTO6.5.1 generatorwiththe COMPASStuning [25] isusedtodescribe thenon-exclusivefractionofevents.Secondly, the HEPGEN++

π

0 generator, which is denoted HEPGEN in this paper,is usedto modelthe kinematicsof single

π

0 muoproduc-tion [26,27]. Note that events withthe topology of exclusive

π

0 productionwereremovedfromtheLEPTOsample.

Asthere existsessentially noinformationonthe crosssection ofexclusive

π

0 productioninthe kinematicdomain ofCOMPASS, thetworeferencesamplesdescribedabove areusedtonormalise theHEPGENandLEPTOMonteCarloyields.Usingseveralvariables, thekinematicinformationfrombeamandspectrometer measure-mentsaswellasthatoftherecoil-protoncandidatesarecompared between experimental data and the two simulations in order to determine thebest normalisationof each simulateddata set rel-ative to that of the experimental data. This comparison is done withoutapplyingthekinematicfit.Asanexampleofsucha com-parison,theundetectedmassisshowninFig.5.Inadditiontothe measureddatapoints,theHEPGENsimulationandthesumofthe HEPGEN and LEPTO simulations are shown. In order to estimate the amount ofnon-exclusive background, the simulateddata are scaled such that they describe the data for both reference sam-ples.Thescaling factorfortheLEPTOMonteCarloyield, whichis denotedby f± forthetwo beamcharges,willbe usedinSect.5

to normalise this simulation when correcting the data for back-ground.

Usingthescalingfactors f±,thefractionofnon-exclusive back-groundinthedata isestimatedtobe

(

29+26



sys

)

%. Here, the un-certainty is estimatedby comparing the scaling factors extracted forvarious variablesandby using severalextractionmethods for

Fig. 5. Data usedforthedeterminationofthebackgroundcontribution: Distribu-tionsofthe undetectedmass M2X for the signal(top)and background(bottom)

referencesamples,whichareselectedintheextendedkinematicrange.Simulated dataarealsoshown(seetext).Errorbarsdenotestatisticaluncertainties.

the scalingfactors.Detailsare giveninRef. [28].Contributionsof other backgroundsourcesarefoundtobenegligible.Forexample, theproductionofsingle

ω

mesons,wherethe

ω

decaysintoa

π

0 andaphotonthat remainsundetected,wasfound inMonteCarlo studiestocontributeatthelevelof1% [28].

5. Determinationofthecrosssection

The virtual-photon proton cross section is obtained from the measuredmuon-protoncrosssectionusing

d2

σ

d

|

t

|

d

φ

=

1

(

Q2

,

ν

,

E μ

)

d

σ

μp dQ2d

ν

d

φ

d

|

t

|

,

(11)

wherethetransversevirtual-photonfluxisgivenby

(

Q2

,

ν

,

)

=

α

em

(

1

xBj

)

2

π

Q2y E μ

y2

1

2m 2 μ Q2

+

2 1

+

Q2

/

ν

2

1

y

Q 2 4E2 μ

.

(12)

Here,

α

em denotestheelectromagneticfinestructureconstantand

=

k0μ.

For thecross section determination,the HEPGEN MonteCarlo simulationdescribed inSect.4isused.Theacceptancea

( 

klmn

)

is calculated ina four-dimensionalgrid as thenumber of recon-structed eventsdivided bythe numberofgeneratedeventsusing 8 bins in

φ

, 5 in

|

t

|

, 4 in Q2 and 4 in

ν

, including bin-to-bin event migration. The phase-space element is given by



klmn

=

φ

k

|

t

|

l

Qm2

ν

n.ThespacingofthegridisgiveninTable1.

(5)

Table 1

Four-dimensionalgridusedforthecalculationoftheacceptance.The fullwidthoftherespectivedimensionisgiveninthebottomrowof thetable.

φ/rad |t|/(GeV/c)2 Q2/(GeV/c)2 ν/GeVπ–−43π 0.08 – 0.15 1 – 1.5 8.5 – 11.45 −3π 4 –−π2 0.15 – 0.22 1.5 – 2.24 11.45 – 15.43 . 0.22 – 0.36 2.24 – 3.34 15.43 – 20.78 . 0.36 – 0.5 3.34 – 5 20.78 – 28 . 0.5 – 0.64 3π 4 – π φ/rad |t|/(GeV/c)2 Q2/ (GeV/c)2 ν/GeV 2π 0.56 4 19.5

Y

klmn±

=

N±, klmn data

i=1 1

(

Qi2

,

ν

i

,

Eμ,i

)

f± N±, klmn L

i=1 1

(

Qi2

,

ν

i

,

Eμ,i

)

.

(13) Here, N±, klmn

data is thenumberofmeasuredeventsandN

±, klmn

L the number of LEPTO events within the phase-space element



klmn.ThesecondsumrepresentstheLEPTOsimulationsthatare

appropriatelynormalisedby thefactor f±,whichwas introduced in Sect. 4. Each event is weighted with the transverse virtual-photon flux

(

Qi2

,

ν

i

,

Eμ,i

)

in order to obtain the virtual-photon

yieldfromthemeasuredyields formuon-protoninteractions, and withthe

π

0

γ γ

branchingratio.Radiative correctionsare not appliedbuttakenintoaccountassystematicuncertainty.

Thespin-dependent virtual-photonprotoncrosssections mea-suredwithpositivelyornegativelychargedmuonsaredetermined ineachofthe(

φ

k,

|

t

|

l)binsasluminosity-normalisedexperimental

yield averaged over the measured ranges

Q2

=

4

(

GeV

/

c

)

2 and

ν

=

19

.

5GeV as



d2

σ

d

|

t

|

d

φ



± kl

=

1

L

±



kl

mn

Y

klmn± a

( 

klmn

)

.

(14)

Here,



kl

= φ

k

|

t

|

l

Q2

ν

,

L

± denotes the luminosity and

a

( 

klmn

)

theacceptanceinthephase-spaceelement



klmn.

The spin-independent virtual-photon proton cross section is obtained according to Eq. (3) as the average of the two spin-dependentcrosssectionsgiveninEq. (14):



d2

σ

d

|

t

|

d

φ



kl

=

1 2



d2

σ

d

|

t

|

d

φ



+ kl

+



d2

σ

d

|

t

|

d

φ



kl



.

(15)

Thecrosssectionintegratedoverthefull2

π

-rangein

φ

isobtained as



d

σ

d

|

t

|



l

=

k

φ

k



d2

σ

d

|

t

|

d

φ



kl

,

(16)

with



l

= |

t

|

l

Q2

ν

.Similarly, the

|

t

|

-averagedcrosssection

inthemeasuredrangeisgivenby



d2

σ

d

|

t

|

d

φ



k

=

1

|

t

|

l

|

t

|

l



d2

σ

d

|

t

|

d

φ



kl

,

(17) with



k

= φ

k

|

t

|

Q2

ν

.

The systematic uncertainties on the extracted values of the crosssection are shownin Table 2,arranged infour groups. The first group contains the systematicuncertainties fromthe deter-minationofthe integratedbeamflux.The second group contains

Table 2

Summary ofthe estimatedrelative systematic uncertainties for the |t| and φ -dependentcrosssectionsandtheintegratedcrosssection.Thevaluesaregivenin percent.Notethattheuni-directionaluncertaintyσ↑isapositivenumber,andσ↓ isanegativenumber. Source σt ↑ −σt σφσφ σ↑ −σμ+flux 2 2 2 2 2 2 μ−flux 2 2 2 2 2 2 ECAL threshold 5 5 5 5 5 5 acceptance 4 7 4 7 4 7 kinem. fit 0 7 0 7 0 7 ωbackground 0 1 0 1 0 1 rad. corr. 2 5 2 5 2 5 Leptonorm. 5–28 3–11 5–51 3–21 8 3 yield mismatch 4–13 3–7 0–12 3–12 9 5  12–29 13–18 12–53 13–25 14 14

possiblesystematiceffectsstudiedbytheMonteCarlosimulation, which are related to the uncertainty on the energy thresholds forthe detection ofthe low-energetic photon inthe electromag-netic calorimeters, and the uncertainty on the determination of the acceptance. The third group contains the systematic uncer-tainties relatedto a variationof the energyandmomentum bal-ance ofthekinematicfit,the influenceofbackgroundoriginating fromtheproductionof

ω

mesonsandthe estimatedinfluence of radiative correctionsincluding thepossible impact ofa

φ

modu-lation [28,29]. The largestsystematiceffects appearinthe fourth group,whichcontainstwoelements:(i)theuncertaintyrelatedto theestimationofnon-exclusivebackgroundasdescribedinSect.4; (ii) the uncertainty due to an observed mismatch between the measured single-photonyield inthe2012COMPASS dataandthe correspondingMonteCarlosimulationoftheBethe-Heitlerprocess. It appears in akinematic region wheresingle-photon production is dominatedby theBethe-Heitler cross section, anditis related to different intensities of positive and negative muon beams for the data analysed in this paper. The mismatch is discussed in Refs. [21,30]. The total systematic uncertainty



is obtained by quadraticsummationofitscomponentsforeachbinseparately.

6. Results

For the background corrected final data sample the average kinematicsare



Q2



=

2

.

0

(

GeV

/

c

)

2,



ν



=

12

.

8GeV,



x

B j



=

0

.

093

and

−

t



=

0

.

256

(

GeV

/

c

)

2. The dependences of the measured cross section on

|

t

|

and

φ

are shownin Fig.6, withthe numer-ical values given in Table 3. The cross section in bins of

|

t

|

is showninthetoppanelofFig.6.Itappearstobe consistentwith anexponential decreasewithincreasing

|

t

|

forvaluesof

|

t

|

larger than about 0.25 (GeV/c)2, while at smaller

|

t

|

the t-dependence becomesweaker.Ourresultiscomparedtothepredictionsoftwo versionsoftheGoloskokov-Kroll(GK)model [15,31].Theresultsof theGKmodelshowninthisletterareobtainedbyintegratingover theanalysisrangeinthesamewayasitisdone forthedata.The dashed-dotted curverepresentsthe crosssection fromtheearlier version [15] asafunctionof

|

t

|

,whiletheupwardspointing trian-glescorrespond tothecross sectionaveraged over

|

t

|

bins ofthe data.Themeancrosssectionsforthefullt-rangearecomparedin therightmostpartofthispanel.Analogously,thedottedcurveand the downward pointingtriangles correspond to the later version ofthemodel [31],whichwasinspiredby theresultspresentedin this Letter. We observe that forthe earlier version of the model themagnitudeofthepredictedcrosssectionovershootsour mea-surementbyapproximatelyafactoroftwo.

(6)

Fig. 6. Average valueofthedifferentialvirtual-photonprotoncrosssection dσ

d|t| asa functionof|t|(top)and dd|t2|σdφas afunctionofφ (bottom). Forthe top

panelthedatawasintegratedoverφ,whileforthebottompanelitwasaveraged overtherange0.08(GeV/c)2<|t|<0.64(GeV/c)2.Theresultofanintegrationover φ and|t|isshowninthe right-mostpartofthetoppanel.Inner errorbars in-dicatethestatisticaluncertainty,outererrorbarsthequadraticsumofstatistical andsystematicuncertainties.ThedataiscomparedwithtwopredictionsoftheGK model [15,31].Radiativecorrectionsarenotappliedbutanestimateisincludedin thesystematicuncertainties.

Table 3

NumericalvaluesoftheaveragecrosssectionsshowninFig.6.Fordetailssee cap-tionofFig.6. Lowerφ binlimit d2σ d|t|dφ  /(GeVnb/c)2 Lower|t| binlimit d σ d|t|  /(GeVnb/c)2 −π 0.4+00..43stat +0.1 −0.1sys 0.08 16.4 +3.6 −3.1stat +2.0 −2.3sys −3π 4 2.1+ 0.7 −0.6stat+ 0.3 −0.3sys 0.15 16.4+ 3.8 −3.2stat+ 2.1 −2.1sys −π 2 2.1+ 0.5 −0.4stat +0.3 −0.3sys 0.22 11.6 +2.6 −2.2stat +1.5 −1.5sys −π 4 1.1+ 0.4 −0.3stat+ 0.2 −0.1sys 0.36 3.4+ 1.4 −1.2stat+ 0.8 −0.5sys 0 1.2+0.5 −0.4stat+ 0.2 −0.2sys 0.5 1.5+ 1.0 −0.8stat+ 0.4 −0.3sys π 4 1.9+ 0.5 −0.4stat +0.3 −0.2sys π 2 1.6+ 0.5 −0.4stat+ 0.2 −0.2sys 3π 4 0.2 +0.2 −0.1stat +0.1 −0.0sys

binsofequalwidth.Thefulldotsshowthemeasuredcrosssection foreachbinandthesolidcurverepresentsthefitdescribedbelow. In order to extract the different contributions to the spin-independentcrosssection,abinnedmaximum-likelihoodfitis ap-plied to the data according to Eq. (4). In the fit, the measured averagevalueofthevirtual-photonpolarisationparameterisused,



=

0

.

996.The

φ

-integratedcrosssectiondeterminedby thefitis obtainedas



d

σ

T d

|

t

|

+



d

σ

L d

|

t

|



= (

8

.

2

±

0

.

9stat+11..22



sys

)

nb

(

GeV

/

c

)

2

.

(18) TheT T andLT interferencetermsareobtainedas



d

σ

T T d

|

t

|



= (−

6

.

1

±

1

.

3stat+00..77



sys

)

nb

(

GeV

/

c

)

2 (19) and



d

σ

LT d

|

t

|



= (

1

.

5

±

0

.

5stat+00..32



sys

)

nb

(

GeV

/

c

)

2

.

(20) We observe a large negative contribution by

σ

T T and a smaller

positive one by

σ

LT, which indicates a significant role of

trans-verselypolarisedphotonsinexclusive

π

0production.

The

φ

-dependenceofthemeasured cross sectionis compared tothecalculationsoftheGKmodelinthebottompanel ofFig.6. Apart from the discrepancy in the magnitude of cross sections mentioned before,here we observe also different shapesfor the measurementandthemodelpredictions,whichindicates thatthe relative contributions ofthe interference terms

σ

T T and

σ

LT are

differentwhencomparingmeasurementandmodel.

According to Eqs. (5) to (8), the different terms contributing to thecrosssection forexclusivepseudoscalarmesonproduction, which appear in Eq. (4), depend on GPDs H ,

˜

E,

˜

HT and ET

=

2H

˜

T

+

ET.For

π

0productionalargecontributionfromtransversely

polarised virtual photonsis expected, which is mainly generated by the chiral-oddGPD ET. It manifestsitself ina large

contribu-tionfrom

σ

T T andadipinthedifferentialcrosssection d

σ

/

dt as

|

t

|

decreasesto zero. Thesefeatures are in qualitative agreement with ourresults andalso withearlier measurements atdifferent kinematics [9,10,13]. The COMPASS results on exclusive

π

0 pro-ductionprovidesignificantconstraintsonmodellingthechiral-odd GPDs,inparticularGPD ET.

7. Summaryandconclusion

Using exclusive

π

0 muoproduction we have measured the t-dependence of the virtual-photon proton cross section for hard exclusive

π

0 production at



Q2



=

2

.

0

(

GeV

/

c

)

2,



ν



=

12

.

8GeV,



xB j



=

0

.

093 and

−

t



=

0

.

256

(

GeV

/

c

)

2. Fitting the azimuthal

dependence reveals a large negative contribution by

σ

T T and a

smaller positive one by

σ

LT, whichindicates a significant role of

transversely polarised photons inexclusive

π

0 production.These results provide importantinput formodelling Generalised Parton Distributions. In the context ofthe phenomenological GK model, thestatisticallysignificantT T contributionconstitutesclear exper-imentalevidencefortheexistenceofthechiral-oddGPDET.

Declarationofcompetinginterest

Theauthorsdeclarethattheyhavenoknowncompeting finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

Acknowledgements

WethankSergeyGoloskokovandPeter Krollfortheir continu-ous support withmodelpredictions,Pierre Guichonforthe eval-uation of the Bethe-Heitler contribution taking into account the muonmassandAndrei Afanasevforthediscussionontheradiative corrections. We gratefully acknowledge the support ofthe CERN managementandstaffandtheskillandeffortofthetechniciansof ourcollaboratinginstitutes.

References

[1]D.Müller, D.Robaschik, B.Geyer, F.-M.Dittes, J.Hoˇrejši,Fortschr.Phys. 42 (1994)101.

[2]X.-D.Ji,Phys.Rev.Lett.78(1997)610. [3]X.-D.Ji,Phys.Rev.D55(1997)7114. [4]A.V.Radyushkin,Phys.Lett.B380(1996)417. [5]A.V.Radyushkin,Phys.Rev.D56(1997)5524.

(7)

[11]A.Kim,etal.,CLASCollaboration,Phys.Lett.B768(2017)168. [12]E.Fuchey,etal.,HallACollaboration,Phys.Rev.C83(2011)025201. [13]M.Defurne,etal.,HallACollaboration,Phys.Rev.Lett.117(2016)262001. [14]M.Mazouz,etal.,HallACollaboration,Phys.Rev.Lett.118(2017)222002. [15]S.V.Goloskokov,P.Kroll,Eur.Phys.J.A47(2011)112.

[16]S.Ahmad,G.R.Goldstein,S.Liuti,Phys.Rev.D79(2009)054014. [17]M.Göckeler,etal.,Phys.Rev.Lett.98(2007)222001.

[18]P.Abbon,etal.,COMPASSCollaboration,Nucl.Instrum.MethodsA577(2007) 455.

[19]P.Abbon,etal.,COMPASSCollaboration,Nucl.Instrum.MethodsA779(2015) 69.

[20] F. Gautheron,etal.,COMPASSCollaboration,SPSC-P-340,CERN-SPSC-2010-014. [21] P.Jörg, DeeplyVirtual Compton Scattering at CERN - Whatis the Size of theProton?,PhDthesis,UniversityofFreiburg,2018,https://doi.org/10.6094/ UNIFR/12397;

P.Jörg, Exploring the Sizeofthe Proton, Springer International Publishing, 2018,https://doi.org/10.1007/978-3-319-90290-6.

[22]R.Mount,Nucl.Instrum.Methods187(1981)401.

[23]B.Adeva,etal.,SMCCollaboration,Nucl.Instrum.MethodsA343(1994)363. [24] T.Szameitat,NewGeant4-basedMonteCarloSoftwarefortheCOMPASS-II

Ex-perimentatCERN,PhDthesis,UniversityofFreiburg,2017,https://doi.org/10. 6094/UNIFR/11686.

[25]C.Adolph,etal.,COMPASSCollaboration,Phys.Lett.B718(2013)922. [26]A.Sandacz,P.Sznajder,HEPGEN–generatorforhardexclusiveleptoproduction,

arXiv:1207.0333,2012.

[27] C. Regali, Exclusive Event Generation for the COMPASS-II Experiment at CERNandImprovementsfortheMonte-CarloChain,PhDthesis,Universityof Freiburg,2016,https://doi.org/10.6094/UNIFR/11449.

[28] M.Gorzellik,Cross-sectionMeasurementofExclusiveπ0 Muoproductionand FirmwareDesignforanFPGA-basedDetectorReadout,PhDthesis,University ofFreiburg,2018,https://doi.org/10.6094/UNIFR/15945.

[29]A.Afanasev,I.Akushevich,V.Burkert,K.Joo,Phys.Rev.D66(2002)074004. [30]R.Akhunzyanov,etal.,COMPASSCollaboration,Phys.Lett.B793(2019)188. [31] S.V.Goloskokov,P.Kroll,privatecommunications,2016.

TheCOMPASSCollaboration

M.G. Alexeev

y

,

G.D. Alexeev

g

,

A. Amoroso

y,z

,

V. Andrieux

i,ab

,

N.V. Anfimov

g

,

V. Anosov

g

,

A. Antoshkin

g

,

K. Augsten

g,r

,

W. Augustyniak

ac

,

C.D.R. Azevedo

a

,

B. Badełek

ad

,

F. Balestra

y,z

,

M. Ball

c

,

J. Barth

c

,

R. Beck

c

,

Y. Bedfer

t

,

J. Bernhard

l,i

,

M. Bodlak

q

,

P. Bordalo

k,1

,

F. Bradamante

w,x

,

A. Bressan

w,x

,

M. Büchele

h

,

V.E. Burtsev

aa

,

W.-C. Chang

u

,

C. Chatterjee

f

,

M. Chiosso

y,z

,

A.G. Chumakov

aa

,

S.-U. Chung

o,2,3

,

A. Cicuttin

x,4

,

M.L. Crespo

x,4

,

S. Dalla Torre

x

,

S.S. Dasgupta

f

,

S. Dasgupta

w,x

,

O.Yu. Denisov

z,

,

L. Dhara

f

,

S.V. Donskov

s

,

N. Doshita

af

,

Ch. Dreisbach

o

,

W. Dünnweber

5

,

R.R. Dusaev

aa

,

A. Efremov

g

,

P.D. Eversheim

c

,

M. Faessler

5

,

A. Ferrero

t

,

M. Finger

q

,

M. Finger Jr.

q

,

H. Fischer

h

,

C. Franco

k

,

N. du Fresne von Hohenesche

l,i

,

J.M. Friedrich

o,

,

V. Frolov

g,i

,

E. Fuchey

t

,

F. Gautheron

b,ab

,

O.P. Gavrichtchouk

g

,

S. Gerassimov

n,o

,

J. Giarra

l

,

I. Gnesi

y,z

,

M. Gorzellik

h,6

,

A. Grasso

y,z

,

A. Gridin

g

,

M. Grosse Perdekamp

ab

,

B. Grube

o

,

A. Guskov

g

,

D. Hahne

d

,

G. Hamar

x

,

D. von Harrach

l

,

R. Heitz

ab

,

F. Herrmann

h

,

N. Horikawa

p,7

,

N. d’Hose

t

,

C.-Y. Hsieh

u,8

,

S. Huber

o

,

S. Ishimoto

af,9

,

A. Ivanov

y,z

,

T. Iwata

af

,

M. Jandek

r

,

V. Jary

r

,

R. Joosten

c

,

P. Jörg

h,10

,

K. Juraskova

r

,

E. Kabuß

l

,

F. Kaspar

o

,

A. Kerbizi

w,x

,

B. Ketzer

c

,

G.V. Khaustov

s

,

Yu.A. Khokhlov

s,11

,

Yu. Kisselev

g

,

F. Klein

d

,

J.H. Koivuniemi

b,ab

,

V.N. Kolosov

s

,

K. Kondo Horikawa

af

,

I. Konorov

n,o

,

V.F. Konstantinov

s

,

A.M. Kotzinian

z,12

,

O.M. Kouznetsov

g

,

Z. Kral

q

,

M. Krämer

o

,

F. Krinner

o

,

Z.V. Kroumchtein

g,30

,

Y. Kulinich

ab

,

F. Kunne

t

,

K. Kurek

ac

,

R.P. Kurjata

ae

,

A. Kveton

r

,

S. Levorato

x

,

Y.-S. Lian

u,13

,

J. Lichtenstadt

v

,

P.-J. Lin

t,14

,

R. Longo

ab

,

V.E. Lyubovitskij

aa,15

,

A. Maggiora

z

,

A. Magnon

ab,29

,

N. Makins

ab

,

N. Makke

x,4

,

G.K. Mallot

i

,

S.A. Mamon

aa

,

B. Marianski

ac

,

A. Martin

w,x

,

J. Marzec

ae

,

J. Matoušek

w,x,q

,

T. Matsuda

m

,

G.V. Meshcheryakov

g

,

M. Meyer

ab,t

,

W. Meyer

b

,

Yu.V. Mikhailov

s

,

M. Mikhasenko

c

,

E. Mitrofanov

g

,

N. Mitrofanov

g

,

Y. Miyachi

af

,

A. Moretti

w,x

,

C. Naim

t

,

A. Nagaytsev

g

,

D. Neyret

t

,

J. Nový

r,i

,

W.-D. Nowak

l

,

G. Nukazuka

af

,

A.S. Nunes

k

,

A.G. Olshevsky

g

,

M. Ostrick

l

,

D. Panzieri

z,16

,

B. Parsamyan

y,z

,

S. Paul

o

,

J.-C. Peng

ab

,

F. Pereira

a

,

M. Pešek

q

,

D.V. Peshekhonov

g

,

M. Pešková

q

,

N. Pierre

l,t

,

S. Platchkov

t

,

J. Pochodzalla

l

,

V.A. Polyakov

s

,

J. Pretz

d,17

,

M. Quaresma

u

,

C. Quintans

k

,

S. Ramos

k,1

,

C. Regali

h

,

G. Reicherz

b

,

C. Riedl

ab

,

D.I. Ryabchikov

s,o

,

A. Rybnikov

g

,

A. Rychter

ae

,

V.D. Samoylenko

s

,

A. Sandacz

ac

,

S. Sarkar

f

,

I.A. Savin

g

,

G. Sbrizzai

w,x

,

H. Schmieden

d

,

A. Selyunin

g

,

L. Silva

k

,

L. Sinha

f

,

M. Slunecka

g

,

J. Smolik

g

,

A. Srnka

e

,

D. Steffen

i,o

,

M. Stolarski

k

,

O. Subrt

i,r

,

M. Sulc

j

,

H. Suzuki

af,7

,

A. Szabelski

w,x,ac

,

T. Szameitat

h,6

,

P. Sznajder

ac

,

S. Tessaro

x

,

F. Tessarotto

x

,

A. Thiel

c

,

J. Tomsa

q

,

F. Tosello

z

,

V. Tskhay

n

,

S. Uhl

o

,

B.I. Vasilishin

aa

,

A. Vauth

d,i

,

B.M. Veit

l,i

,

J. Veloso

a

,

A. Vidon

t

,

M. Virius

r

,

M. Wagner

c

,

S. Wallner

o

,

M. Wilfert

l

,

K. Zaremba

ae

,

P. Zavada

g

,

M. Zavertyaev

n

,

E. Zemlyanichkina

g

,

Y. Zhao

x

,

M. Ziembicki

ae

aUniversityofAveiro,I3N- PhysicsDepartment,3810-193Aveiro,Portugal bUniversitätBochum,InstitutfürExperimentalphysik,44780Bochum,Germany18,19

cUniversitätBonn,Helmholtz-InstitutfürStrahlen- undKernphysik,53115Bonn,Germany18

dUniversitätBonn,PhysikalischesInstitut,53115Bonn,Germany18

eInstituteofScientificInstrumentsoftheCAS,61264Brno,CzechRepublic20

fMatrivaniInstituteofExperimentalResearch&Education,Calcutta-700030,India21

gJointInstituteforNuclearResearch,141980Dubna,Moscowregion,Russia hUniversitätFreiburg,PhysikalischesInstitut,79104Freiburg,Germany18,19

iCERN,1211Geneva23,Switzerland

jTechnicalUniversityinLiberec,46117Liberec,CzechRepublic20

(8)

lUniversitätMainz,InstitutfürKernphysik,55099Mainz,Germany18

m

UniversityofMiyazaki,Miyazaki889-2192,Japan23 nLebedevPhysicalInstitute,119991Moscow,Russia

oTechnischeUniversitätMünchen,PhysikDept.,85748Garching,Germany18,5

pNagoyaUniversity,464Nagoya,Japan23

qCharlesUniversityinPrague,FacultyofMathematicsandPhysics,12116Prague,CzechRepublic20

rCzechTechnicalUniversityinPrague,16636Prague,CzechRepublic20

sStateScientificCenterInstituteforHighEnergyPhysicsofNationalResearchCenter‘KurchatovInstitute’,142281Protvino,Russia tIRFU,CEA,UniversitéParis-Saclay,91191Gif-sur-Yvette,France19

uAcademiaSinica,InstituteofPhysics,Taipei11529,Taiwan24

vTelAvivUniversity,SchoolofPhysicsandAstronomy,69978TelAviv,Israel25

wUniversityofTrieste,Dept.ofPhysics,34127Trieste,Italy xTriesteSectionofINFN,34127Trieste,Italy

yUniversityofTurin,Dept.ofPhysics,10125Turin,Italy zTorinoSectionofINFN,10125Turin,Italy

aaTomskPolytechnicUniversity,634050Tomsk,Russia26

abUniversityofIllinoisatUrbana-Champaign,Dept.ofPhysics,Urbana,IL61801-3080,USA27

acNationalCentreforNuclearResearch,00-681Warsaw,Poland28

adUniversityofWarsaw,FacultyofPhysics,02-093Warsaw,Poland28

aeWarsawUniversityofTechnology,InstituteofRadioelectronics,00-665Warsaw,Poland28

afYamagataUniversity,Yamagata992-8510,Japan23

*

Correspondingauthors.

E-mailaddresses:oleg.denisov@cern.ch(O.Yu. Denisov),jan.friedrich@cern.ch(J.M. Friedrich). 1 AlsoatInstitutoSuperiorTécnico,UniversidadedeLisboa,Lisbon,Portugal.

2 AlsoatDept.ofPhysics,PusanNationalUniversity,Busan609-735,RepublicofKorea. 3 Alsoat PhysicsDept.,BrookhavenNationalLaboratory,Upton,NY11973,USA. 4 AlsoatAbdusSalamICTP,34151Trieste,Italy.

5 SupportedbytheDFGclusterofexcellence‘OriginandStructureoftheUniverse’(www.universe-cluster.de)(Germany). 6 SupportedbytheDFGResearchTrainingGroupProgrammes1102and2044(Germany).

7 AlsoatChubuUniversity,Kasugai,Aichi487-8501,Japan.

8 AlsoatDept.ofPhysics,NationalCentralUniversity,300JhongdaRoad,Jhongli32001,Taiwan. 9 AlsoatKEK,1-1Oho,Tsukuba,Ibaraki305-0801,Japan.

10 Presentaddress:UniversitätBonn,PhysikalischesInstitut,53115Bonn,Germany. 11 AlsoatMoscowInstituteofPhysicsandTechnology,MoscowRegion,141700,Russia. 12 AlsoatYerevanPhysicsInstitute,AlikhanianBr.Street,Yerevan,0036,Armenia.

13 AlsoatDept.ofPhysics,NationalKaohsiungNormalUniversity,KaohsiungCounty824,Taiwan. 14 SupportedbytheP2IOLabExGrantNo.ANR-10-LABX-0038,AgenceNationaledelaRecherche,France. 15 AlsoatInstitutfürTheoretischePhysik,UniversitätTübingen,72076Tübingen,Germany.

16 AlsoatUniversityofEasternPiedmont,15100Alessandria,Italy.

17 Presentaddress:RWTHAachenUniversity,III.PhysikalischesInstitut,52056Aachen,Germany. 18 SupportedbyBMBF- BundesministeriumfürBildungundForschung(Germany).

19 SupportedbyFP7,HadronPhysics3,Grant283286(EuropeanUnion). 20 SupportedbyMEYS,GrantLM20150581(CzechRepublic). 21 SupportedbyB.Senfund(India).

22 SupportedbyFCT,COMPETEandQREN,GrantsCERN/FP116376/2010,123600/2011andCERN/FIS-NUC/0017/2015(Portugal). 23 SupportedbyMEXTandJSPS,Grants18002006,20540299,18540281and26247032,theDaikoandYamadaFoundations(Japan). 24 SupportedbytheMinistryofScienceandTechnology,Taiwan.

25 SupportedbytheIsraelAcademyofSciencesandHumanities(Israel).

26 SupportedbytheRussianFederationprogram“Nauka”(ContractNo.0.1764.GZB.2017)(Russia). 27 SupportedbytheNationalScienceFoundation,Grantno.PHY-1506416(USA).

28 SupportedbyNCN,Grant2017/26/M/ST2/00498(Poland). 29 Retired.

Riferimenti

Documenti correlati

[r]

The enriched GO term belonging to the biological process category found through the customized Singular Enrichment Analysis (SEA) performed with the down-regulated genes

In these case studies, we compare the variation of consumption before and after the earthquake across liquid and illiquid owner-occupiers residing in the region, who were eligible

New findings support early surgery for pain management in chronic pancreatitis patients, since Hindawi Publishing Corporation.. Gastroenterology Research and Practice Volume

MCV: mean cell volume; MCH: mean cell hemoglobin, CHr: reticulocyte hemoglobin content; RBCs: red blood cells; SF: serum ferritin: TST: transferrin saturation; ID: iron deficiency;

• The ANALYSIS panel shows a set of statistical analyses about the input dataset, including space and time distribution statistics and correlation analysis.. • the TREND panel shows

El artículo de Emanuela Pece también interviene sobre el comple- jo mundo de la comunicación, pero desde la perspectiva de la relación entre medios y opinión pública frente al