• Non ci sono risultati.

LOCAL COHOMOLOGY, CONNECTEDNESS AND INITIAL IDEALS

N/A
N/A
Protected

Academic year: 2021

Condividi "LOCAL COHOMOLOGY, CONNECTEDNESS AND INITIAL IDEALS"

Copied!
159
0
0

Testo completo

(1)

LOCAL COHOMOLOGY, CONNECTEDNESS AND INITIAL IDEALS

Matteo Varbaro

Dipartimento di Matematica Universit´ a di Genova

arXiv:0802.1800

(2)

We start with a simple question

Given J = (ua, za, ya, xa, uv , zv , yv , xv , xyu, xyz, xzu, yzu) in S := k[x , y , z, u, v , w , a] is it possible to find:

(a) a term order ≺ on S

(b) I ⊆ S homogeneus such that S/I is Cohen-Macaulay such that:

pLT (I ) = J ?

(3)

We start with a simple question

Given J = (ua, za, ya, xa, uv , zv , yv , xv , xyu, xyz, xzu, yzu) in S := k[x , y , z, u, v , w , a] is it possible to find:

(a) a term order ≺ on S

(b) I ⊆ S homogeneus such that S/I is Cohen-Macaulay such that:

pLT (I ) = J ?

(4)

We start with a simple question

Given J = (ua, za, ya, xa, uv , zv , yv , xv , xyu, xyz, xzu, yzu) in S := k[x , y , z, u, v , w , a] is it possible to find:

(a) a term order ≺ on S

(b) I ⊆ S homogeneus such that S/I is Cohen-Macaulay such that:

pLT (I ) = J ?

(5)

We start with a simple question

Given J = (ua, za, ya, xa, uv , zv , yv , xv , xyu, xyz, xzu, yzu) in S := k[x , y , z, u, v , w , a] is it possible to find:

(a) a term order ≺ on S

(b) I ⊆ S homogeneus such that S/I is Cohen-Macaulay

such that:

pLT (I ) = J ?

(6)

We start with a simple question

Given J = (ua, za, ya, xa, uv , zv , yv , xv , xyu, xyz, xzu, yzu) in S := k[x , y , z, u, v , w , a] is it possible to find:

(a) a term order ≺ on S

(b) I ⊆ S homogeneus such that S/I is Cohen-Macaulay such that:

pLT (I ) = J ?

(7)

We start with a simple question

Given J = (ua, za, ya, xa, uv , zv , yv , xv , xyu, xyz, xzu, yzu) in S := k[x , y , z, u, v , w , a] is it possible to find:

(a) a term order ≺ on S

(b) I ⊆ S homogeneus such that S/I is Cohen-Macaulay such that:

pLT ≺ (I ) = J ?

(8)

MAIN GOAL OF THE TALK

We’ll generalize the following theorem of Kalkbrener and Sturmfels: k = ¯ k , I ⊆ S := k[x 1 , . . . , x n ] and ω ∈ (Z + ) n .

If I is a prime ideal, then S / in ω (I ) is connected in codimension 1. So, in particular, they proved that for every term order ≺ on S

I prime ⇒ S /LT ≺ (I ) connected in codimension 1

(9)

MAIN GOAL OF THE TALK

We’ll generalize the following theorem of Kalkbrener and Sturmfels:

k = ¯ k , I ⊆ S := k[x 1 , . . . , x n ] and ω ∈ (Z + ) n .

If I is a prime ideal, then S / in ω (I ) is connected in codimension 1. So, in particular, they proved that for every term order ≺ on S

I prime ⇒ S /LT ≺ (I ) connected in codimension 1

(10)

MAIN GOAL OF THE TALK

We’ll generalize the following theorem of Kalkbrener and Sturmfels:

k = ¯ k , I ⊆ S := k[x 1 , . . . , x n ] and ω ∈ (Z + ) n .

If I is a prime ideal, then S / in ω (I ) is connected in codimension 1.

So, in particular, they proved that for every term order ≺ on S

I prime ⇒ S /LT ≺ (I ) connected in codimension 1

(11)

MAIN GOAL OF THE TALK

We’ll generalize the following theorem of Kalkbrener and Sturmfels:

k = ¯ k , I ⊆ S := k[x 1 , . . . , x n ] and ω ∈ (Z + ) n .

If I is a prime ideal, then S / in ω (I ) is connected in codimension 1.

So, in particular, they proved that for every term order ≺ on S

I prime ⇒ S /LT ≺ (I ) connected in codimension 1

(12)

MAIN GOAL OF THE TALK

We’ll generalize the following theorem of Kalkbrener and Sturmfels:

k = ¯ k , I ⊆ S := k[x 1 , . . . , x n ] and ω ∈ (Z + ) n .

If I is a prime ideal, then S / in ω (I ) is connected in codimension 1.

So, in particular, they proved that for every term order ≺ on S

I prime ⇒ S /LT ≺ (I ) connected in codimension 1

(13)

Structure of the talk

Two principal chapters:

- Local cohomology and connectedness

- Connectedness of an ideal versus connectedness of its initial ideals

(14)

Structure of the talk

Two principal chapters:

- Local cohomology and connectedness

- Connectedness of an ideal versus connectedness of its initial ideals

(15)

Structure of the talk

Two principal chapters:

- Local cohomology and connectedness

- Connectedness of an ideal versus connectedness of its initial ideals

(16)

Structure of the talk

Two principal chapters:

- Local cohomology and connectedness

- Connectedness of an ideal versus connectedness of its initial ideals

(17)

PART 1

LOCAL COHOMOLOGY AND CONNECTEDNESS

(18)

Notation, definitions and ”basic” results

(19)

Notation, definitions and ”basic” results

- R noetherian ring, commutative with 1, a ⊆ R ideal.

(20)

Notation, definitions and ”basic” results

- R noetherian ring, commutative with 1, a ⊆ R ideal.

- cd(R; a) is the infimum d ∈ N s.t. H a i (M) = 0 for every R-module

M and i ≥ d .

(21)

Notation, definitions and ”basic” results

- R noetherian ring, commutative with 1, a ⊆ R ideal.

- cd(R; a) is the infimum d ∈ N s.t. H a i (R) = 0 for every i ≥ d .

(22)

Notation, definitions and ”basic” results

- R noetherian ring, commutative with 1, a ⊆ R ideal.

- cd(R; a) is the infimum d ∈ N s.t. H a i (R) = 0 for every i ≥ d .

ht(a) ≤ cd(R; a) ≤ dim R.

(23)

Connectivity dimension

Let T be a noetherian topological space.

c(T ) is the infimum of dim Z such that Z ⊆ T is closed and

T \ Z is disconnected, with ∅ disconnected of dimension −1.

(24)

Connectivity dimension

Let T be a noetherian topological space.

c(T ) is the infimum of dim Z such that Z ⊆ T is closed and

T \ Z is disconnected, with ∅ disconnected of dimension −1.

(25)

Connectivity dimension

Let T be a noetherian topological space.

c(T ) is the infimum of dim Z such that Z ⊆ T is closed and

T \ Z is disconnected, with ∅ disconnected of dimension −1.

(26)

Connectivity dimension

Let T be a noetherian topological space.

c(T ) is the infimum of dim Z such that Z ⊆ T is closed and T \ Z is disconnected, with ∅ disconnected of dimension −1.

EXAMPLES

(27)

Connectivity dimension

Let T be a noetherian topological space.

c(T ) is the infimum of dim Z such that Z ⊆ T is closed and T \ Z is disconnected, with ∅ disconnected of dimension −1.

EXAMPLES

T is connected if and only if c(T ) ≥ 0.

(28)

Connectivity dimension

Let T be a noetherian topological space.

c(T ) is the infimum of dim Z such that Z ⊆ T is closed and T \ Z is disconnected, with ∅ disconnected of dimension −1.

EXAMPLES

If T is irreducible, then c(T ) = dim T .

(29)

Connectivity dimension

Let T be a noetherian topological space.

c(T ) is the infimum of dim Z such that Z ⊆ T is closed and T \ Z is disconnected, with ∅ disconnected of dimension −1.

EXAMPLES

a = (xz, xw , yz, yw ) ⊆ C[x, y , z, w ], T = Z(a) ⊆ A 4 . T = Z(x , y ) ∪ Z(z, w ), and Z(x , y ) ∩ Z(z, w ) = {(0, 0, 0, 0)},

so dim T = 2 and c(T ) = 0.

(30)

Connectivity dimension

Let T be a noetherian topological space.

c(T ) is the infimum of dim Z such that Z ⊆ T is closed and T \ Z is disconnected, with ∅ disconnected of dimension −1.

If T = Spec R, then c(R) := c(T ) is the infimum of dim R/a

with a ideal such that Spec R \ V(a) is disconnected.

(31)

A characterization of connectivity dimension

T.F.A.E.: (1) c(R) ≥ d ;

(2) ∀℘ 0 , ℘ 00 ∈ Min R, are d-connected , i.e ∃ ℘ 0 = ℘ 0 , ℘ 1 ,

. . . , ℘ r = ℘ 00 , ℘ i ∈ Min R and dim R/(℘ j + ℘ j −1 ) ≥ d .

We will say that R is connected in codimension dim R − d .

(32)

A characterization of connectivity dimension

T.F.A.E.:

(1) c(R) ≥ d ;

(2) ∀℘ 0 , ℘ 00 ∈ Min R, are d-connected , i.e ∃ ℘ 0 = ℘ 0 , ℘ 1 ,

. . . , ℘ r = ℘ 00 , ℘ i ∈ Min R and dim R/(℘ j + ℘ j −1 ) ≥ d .

We will say that R is connected in codimension dim R − d .

(33)

A characterization of connectivity dimension

T.F.A.E.:

(1) c(R) ≥ d ;

(2) ∀℘ 0 , ℘ 00 ∈ Min R, are d-connected , i.e ∃ ℘ 0 = ℘ 0 , ℘ 1 ,

. . . , ℘ r = ℘ 00 , ℘ i ∈ Min R and dim R/(℘ j + ℘ j −1 ) ≥ d .

We will say that R is connected in codimension dim R − d .

(34)

A characterization of connectivity dimension

T.F.A.E.:

(1) c(R) ≥ d ;

(2) ∀℘ 0 , ℘ 00 ∈ Min R, are d-connected

, i.e ∃ ℘ 0 = ℘ 0 , ℘ 1 ,

. . . , ℘ r = ℘ 00 , ℘ i ∈ Min R and dim R/(℘ j + ℘ j −1 ) ≥ d .

We will say that R is connected in codimension dim R − d .

(35)

A characterization of connectivity dimension

T.F.A.E.:

(1) c(R) ≥ d ;

(2) ∀℘ 0 , ℘ 00 ∈ Min R, are d-connected , i.e ∃ ℘ 0 = ℘ 0 , ℘ 1 , . . . , ℘ r = ℘ 00 , ℘ i ∈ Min R and dim R/(℘ j + ℘ j −1 ) ≥ d .

We will say that R is connected in codimension dim R − d .

(36)

A characterization of connectivity dimension

T.F.A.E.:

(1) c(R) ≥ d ;

(2) ∀℘ 0 , ℘ 00 ∈ Min R, are d-connected , i.e ∃ ℘ 0 = ℘ 0 , ℘ 1 ,

. . . , ℘ r = ℘ 00 , ℘ i ∈ Min R and dim R/(℘ j + ℘ j −1 ) ≥ d .

We will say that R is connected in codimension dim R − d .

(37)

A characterization of connectivity dimension

T.F.A.E.:

(1) c(R) ≥ d ;

(2) ∀℘ 0 , ℘ 00 ∈ Min R, are d-connected , i.e ∃ ℘ 0 = ℘ 0 , ℘ 1 ,

. . . , ℘ r = ℘ 00 , ℘ i ∈ Min R and dim R/(℘ j + ℘ j −1 ) ≥ d .

We will say that R is connected in codimension dim R − d .

EXAMPLES

(38)

A characterization of connectivity dimension

T.F.A.E.:

(1) c(R) ≥ d ;

(2) ∀℘ 0 , ℘ 00 ∈ Min R, are d-connected , i.e ∃ ℘ 0 = ℘ 0 , ℘ 1 , . . . , ℘ r = ℘ 00 , ℘ i ∈ Min R and dim R/(℘ j + ℘ j −1 ) ≥ d . We will say that R is connected in codimension dim R − d . EXAMPLES

S = k[x , y , z, v , w ], a = (xy , xv , xw , yv , yz, vz, wz), R = S /a.

R is connected in codimension 2, but not in codimension 1

(39)

A characterization of connectivity dimension

T.F.A.E.:

(1) c(R) ≥ d ;

(2) ∀℘ 0 , ℘ 00 ∈ Min R, are d-connected , i.e ∃ ℘ 0 = ℘ 0 , ℘ 1 , . . . , ℘ r = ℘ 00 , ℘ i ∈ Min R and dim R/(℘ j + ℘ j −1 ) ≥ d . We will say that R is connected in codimension dim R − d . EXAMPLES

S = k[x , y , z, v , w ], a = (xy , xv , xw , yv , yz, vz, wz), R = S /a.

R is connected in codimension 2, but not in codimension 1, since

a = (x , y , z) ∩ (x , z, v ) ∩ (y , v , w ) = ℘ 1 ∩ ℘ 2 ∩ ℘ 3

(40)

A characterization of connectivity dimension

T.F.A.E.:

(1) c(R) ≥ d ;

(2) ∀℘ 0 , ℘ 00 ∈ Min R, are d-connected , i.e ∃ ℘ 0 = ℘ 0 , ℘ 1 , . . . , ℘ r = ℘ 00 , ℘ i ∈ Min R and dim R/(℘ j + ℘ j −1 ) ≥ d . We will say that R is connected in codimension dim R − d . EXAMPLES

S = k[x , y , z, v , w ], a = (xy , xv , xw , yv , yz, vz, wz), R = S /a.

R is connected in codimension 2, but not in codimension 1, since a = (x , y , z) ∩ (x , z, v ) ∩ (y , v , w ) = ℘ 1 ∩ ℘ 2 ∩ ℘ 3

dim R = 2, dim S /(℘ 1 + ℘ 2 ) = 1,

dim S /(℘ 1 + ℘ 3 ) = 0, dim S /(℘ 2 + ℘ 3 ) = 0.

(41)

A characterization of connectivity dimension

T.F.A.E.:

(1) c(R) ≥ d ;

(2) ∀℘ 0 , ℘ 00 ∈ Min R, are d-connected , i.e ∃ ℘ 0 = ℘ 0 , ℘ 1 , . . . , ℘ r = ℘ 00 , ℘ i ∈ Min R and dim R/(℘ j + ℘ j −1 ) ≥ d . We will say that R is connected in codimension dim R − d . EXAMPLES

S = k[x , y , z, v , w ], a = (zv , yv , xv , yw , yz, xz), R = S /a.

R is connected in codimension 1

(42)

A characterization of connectivity dimension

T.F.A.E.:

(1) c(R) ≥ d ;

(2) ∀℘ 0 , ℘ 00 ∈ Min R, are d-connected , i.e ∃ ℘ 0 = ℘ 0 , ℘ 1 , . . . , ℘ r = ℘ 00 , ℘ i ∈ Min R and dim R/(℘ j + ℘ j −1 ) ≥ d . We will say that R is connected in codimension dim R − d . EXAMPLES

S = k[x , y , z, v , w ], a = (zv , yv , xv , yw , yz, xz), R = S /a.

R is connected in codimension 1, since

a = (x , y , z) ∩ (y , z, v ) ∩ (z, v , w ) ∩ (x , y , v ) = ℘ 1 ∩ ℘ 2 ∩ ℘ 3 ∩ ℘ 4

(43)

A characterization of connectivity dimension

T.F.A.E.:

(1) c(R) ≥ d ;

(2) ∀℘ 0 , ℘ 00 ∈ Min R, are d-connected , i.e ∃ ℘ 0 = ℘ 0 , ℘ 1 , . . . , ℘ r = ℘ 00 , ℘ i ∈ Min R and dim R/(℘ j + ℘ j −1 ) ≥ d . We will say that R is connected in codimension dim R − d . EXAMPLES

S = k[x , y , z, v , w ], a = (zv , yv , xv , yw , yz, xz), R = S /a.

R is connected in codimension 1, since

a = (x , y , z) ∩ (y , z, v ) ∩ (z, v , w ) ∩ (x , y , v ) = ℘ 1 ∩ ℘ 2 ∩ ℘ 3 ∩ ℘ 4 dim R = 2, dim S /(℘ 1 + ℘ 2 ) = 1,

dim S /(℘ 2 + ℘ 3 ) = 1, dim S /(℘ 3 + ℘ 4 ) = 1.

(44)

The complete case

(45)

The complete case

Let (R, m) be local and complete.

(46)

The complete case

Let (R, m) be local and complete. Then

c(R/a) ≥ min{c(R), dim R − 1} − cd(R, a)

(47)

The complete case

Let (R, m) be local and complete. Then

c(R/a) ≥ min{c(R), dim R − 1} − cd(R, a)

Corollary

(48)

The complete case

Let (R, m) be local and complete. Then

c(R/a) ≥ min{c(R), dim R − 1} − cd(R, a)

Corollary (Grothendieck)

(R, m) complete and local. Then

c(R/a) ≥ min{c(R), dim R − 1} − ara(a).

(49)

The complete case

Let (R, m) be local and complete. Then

c(R/a) ≥ min{c(R), dim R − 1} − cd(R, a)

Corollary (Grothendieck)

(R, m) complete and local. Then

c(R/a) ≥ min{c(R), dim R − 1} − ara(a).

Proof of Corollary

(50)

The complete case

Let (R, m) be local and complete. Then

c(R/a) ≥ min{c(R), dim R − 1} − cd(R, a)

Corollary (Grothendieck)

(R, m) complete and local. Then

c(R/a) ≥ min{c(R), dim R − 1} − ara(a).

Proof of Corollary

ara(a) ≥ cd(R, a).

(51)

The complete case

Let (R, m) be local and complete. Then

c(R/a) ≥ min{c(R), dim R − 1} − cd(R, a)

Corollary (Hochster and Huneke)

(R, m) complete, loc., equidimensional, H m dim R (R) indecomposable.

If cd(R, a) ≤ dim R − 2 then Spec R/a \ {m} is connected.

(52)

The complete case

Let (R, m) be local and complete. Then

c(R/a) ≥ min{c(R), dim R − 1} − cd(R, a)

Corollary (Hochster and Huneke)

(R, m) complete, loc., equidimensional, H m dim R (R) indecomposable.

If cd(R, a) ≤ dim R − 2 then Spec R/a \ {m} is connected.

Proof of Corollary

(53)

The complete case

Let (R, m) be local and complete. Then

c(R/a) ≥ min{c(R), dim R − 1} − cd(R, a)

Corollary (Hochster and Huneke)

(R, m) complete, loc., equidimensional, H m dim R (R) indecomposable.

If cd(R, a) ≤ dim R − 2 then Spec R/a \ {m} is connected.

Proof of Corollary

H m dim R (R) indecomposable iff R connected in codimension 1.

(54)

The complete case

Let (R, m) be local and complete. Then

c(R/a) ≥ min{c(R), dim R − 1} − cd(R, a)

Corollary (Hochster and Huneke)

(R, m) complete, loc., equidimensional, H m dim R (R) indecomposable.

If cd(R, a) ≤ dim R − 2 then Spec R/a \ {m} is connected.

Proof of Corollary

H m dim R (R) indecomposable iff R connected in codimension 1.

c(Spec R/a \ m) = c(R/a) − 1.

(55)

The Cohen-Macaulay and graded cases

(R, m) local Cohen-Macaulay ring. Then c(R/a) ≥ dim R − cd(R, a) − 1 . Proof

R Cohen-Macaulay ⇔ b R Cohen-Macaulay Cohen-Macaulay ⇒ connected in codimension 1

c(R/a) ≥ c(b R/ab R) cd(R, a) = cd(b R, ab R)

R k-algebra finitely generated positively graded, a homogeneus.

Then c(R/a) ≥ min{c(R), dim R − 1} − cd(R, a).

(56)

The Cohen-Macaulay and graded cases

(R, m) local Cohen-Macaulay ring.

Then c(R/a) ≥ dim R − cd(R, a) − 1 . Proof

R Cohen-Macaulay ⇔ b R Cohen-Macaulay Cohen-Macaulay ⇒ connected in codimension 1

c(R/a) ≥ c(b R/ab R) cd(R, a) = cd(b R, ab R)

R k-algebra finitely generated positively graded, a homogeneus.

Then c(R/a) ≥ min{c(R), dim R − 1} − cd(R, a).

(57)

The Cohen-Macaulay and graded cases

(R, m) local Cohen-Macaulay ring.

Then c(R/a) ≥ dim R − cd(R, a) − 1 .

Proof

R Cohen-Macaulay ⇔ b R Cohen-Macaulay Cohen-Macaulay ⇒ connected in codimension 1

c(R/a) ≥ c(b R/ab R) cd(R, a) = cd(b R, ab R)

R k-algebra finitely generated positively graded, a homogeneus.

Then c(R/a) ≥ min{c(R), dim R − 1} − cd(R, a).

(58)

The Cohen-Macaulay and graded cases

(R, m) local Cohen-Macaulay ring.

Then c(R/a) ≥ dim R − cd(R, a) − 1 . Proof

R Cohen-Macaulay ⇔ b R Cohen-Macaulay Cohen-Macaulay ⇒ connected in codimension 1

c(R/a) ≥ c(b R/ab R) cd(R, a) = cd(b R, ab R)

R k-algebra finitely generated positively graded, a homogeneus.

Then c(R/a) ≥ min{c(R), dim R − 1} − cd(R, a).

(59)

The Cohen-Macaulay and graded cases

(R, m) local Cohen-Macaulay ring.

Then c(R/a) ≥ dim R − cd(R, a) − 1 . Proof

R Cohen-Macaulay ⇔ b R Cohen-Macaulay

Cohen-Macaulay ⇒ connected in codimension 1 c(R/a) ≥ c(b R/ab R)

cd(R, a) = cd(b R, ab R)

R k-algebra finitely generated positively graded, a homogeneus.

Then c(R/a) ≥ min{c(R), dim R − 1} − cd(R, a).

(60)

The Cohen-Macaulay and graded cases

(R, m) local Cohen-Macaulay ring.

Then c(R/a) ≥ dim R − cd(R, a) − 1 . Proof

R Cohen-Macaulay ⇔ b R Cohen-Macaulay Cohen-Macaulay ⇒ connected in codimension 1

c(R/a) ≥ c(b R/ab R) cd(R, a) = cd(b R, ab R)

R k-algebra finitely generated positively graded, a homogeneus.

Then c(R/a) ≥ min{c(R), dim R − 1} − cd(R, a).

(61)

The Cohen-Macaulay and graded cases

(R, m) local Cohen-Macaulay ring.

Then c(R/a) ≥ dim R − cd(R, a) − 1 . Proof

R Cohen-Macaulay ⇔ b R Cohen-Macaulay Cohen-Macaulay ⇒ connected in codimension 1

c(R/a) ≥ c(b R/ab R)

cd(R, a) = cd(b R, ab R)

R k-algebra finitely generated positively graded, a homogeneus.

Then c(R/a) ≥ min{c(R), dim R − 1} − cd(R, a).

(62)

The Cohen-Macaulay and graded cases

(R, m) local Cohen-Macaulay ring.

Then c(R/a) ≥ dim R − cd(R, a) − 1 . Proof

R Cohen-Macaulay ⇔ b R Cohen-Macaulay Cohen-Macaulay ⇒ connected in codimension 1

c(R/a) ≥ c(b R/ab R) cd(R, a) = cd(b R, ab R)

R k-algebra finitely generated positively graded, a homogeneus.

Then c(R/a) ≥ min{c(R), dim R − 1} − cd(R, a).

(63)

The Cohen-Macaulay and graded cases

(R, m) local Cohen-Macaulay ring.

Then c(R/a) ≥ dim R − cd(R, a) − 1 . Proof

R Cohen-Macaulay ⇔ b R Cohen-Macaulay Cohen-Macaulay ⇒ connected in codimension 1

c(R/a) ≥ c(b R/ab R) cd(R, a) = cd(b R, ab R)

R k-algebra finitely generated positively graded, a homogeneus.

Then c(R/a) ≥ min{c(R), dim R − 1} − cd(R, a).

(64)

The Cohen-Macaulay and graded cases

(R, m) local Cohen-Macaulay ring.

Then c(R/a) ≥ dim R − cd(R, a) − 1 . Proof

R Cohen-Macaulay ⇔ b R Cohen-Macaulay Cohen-Macaulay ⇒ connected in codimension 1

c(R/a) ≥ c(b R/ab R) cd(R, a) = cd(b R, ab R)

R k-algebra finitely generated positively graded, a homogeneus.

Then c(R/a) ≥ min{c(R), dim R − 1} − cd(R, a).

(65)

Vanishing of local cohomology and connectedness

(Hartshorne) (R, m) local ring. If H m i (R) = 0 for every i ≤ k , then c(R) ≥ k.

Equivalently c(R) ≥ depth(R) − 1.

So, if R is a positively graded n-dimensional k-algebra connected in codimension 1 and m = ⊕ d >0 R d ,

H a n−i (R) = 0 ∀i ≤ k ⇒ c(R/a) ≥ k

H m i (R/a) = 0 ∀i ≤ k ⇒ c(R/a) ≥ k

(66)

Vanishing of local cohomology and connectedness

(Hartshorne) (R, m) local ring. If H m i (R) = 0 for every i ≤ k ,

then c(R) ≥ k.

Equivalently c(R) ≥ depth(R) − 1.

So, if R is a positively graded n-dimensional k-algebra connected in codimension 1 and m = ⊕ d >0 R d ,

H a n−i (R) = 0 ∀i ≤ k ⇒ c(R/a) ≥ k

H m i (R/a) = 0 ∀i ≤ k ⇒ c(R/a) ≥ k

(67)

Vanishing of local cohomology and connectedness

(Hartshorne) (R, m) local ring. If H m i (R) = 0 for every i ≤ k , then c(R) ≥ k.

Equivalently c(R) ≥ depth(R) − 1.

So, if R is a positively graded n-dimensional k-algebra connected in codimension 1 and m = ⊕ d >0 R d ,

H a n−i (R) = 0 ∀i ≤ k ⇒ c(R/a) ≥ k

H m i (R/a) = 0 ∀i ≤ k ⇒ c(R/a) ≥ k

(68)

Vanishing of local cohomology and connectedness

(Hartshorne) (R, m) local ring. If H m i (R) = 0 for every i ≤ k , then c(R) ≥ k.

Equivalently c(R) ≥ depth(R) − 1.

So, if R is a positively graded n-dimensional k-algebra connected in codimension 1 and m = ⊕ d >0 R d ,

H a n−i (R) = 0 ∀i ≤ k ⇒ c(R/a) ≥ k

H m i (R/a) = 0 ∀i ≤ k ⇒ c(R/a) ≥ k

(69)

Vanishing of local cohomology and connectedness

(Hartshorne) (R, m) local ring. If H m i (R) = 0 for every i ≤ k , then c(R) ≥ k.

Equivalently c(R) ≥ depth(R) − 1.

So, if R is a positively graded n-dimensional k-algebra connected in codimension 1 and m = ⊕ d >0 R d ,

H a n−i (R) = 0 ∀i ≤ k ⇒ c(R/a) ≥ k

H m i (R/a) = 0 ∀i ≤ k ⇒ c(R/a) ≥ k

(70)

Vanishing of local cohomology and connectedness

(Hartshorne) (R, m) local ring. If H m i (R) = 0 for every i ≤ k , then c(R) ≥ k.

Equivalently c(R) ≥ depth(R) − 1.

So, if R is a positively graded n-dimensional k-algebra connected in codimension 1 and m = ⊕ d >0 R d ,

H a n−i (R) = 0 ∀i ≤ k ⇒ c(R/a) ≥ k

H m i (R/a) = 0 ∀i ≤ k ⇒ c(R/a) ≥ k

(71)

Vanishing of local cohomology and connectedness

(Hartshorne) (R, m) local ring. If H m i (R) = 0 for every i ≤ k , then c(R) ≥ k.

Equivalently c(R) ≥ depth(R) − 1.

So, if R is a positively graded n-dimensional k-algebra connected in codimension 1 and m = ⊕ d >0 R d ,

H a n−i (R) = 0 ∀i ≤ k ⇒ c(R/a) ≥ k

H m i (R/a) = 0 ∀i ≤ k ⇒ c(R/a) ≥ k

(72)

PART 2

APPLICATIONS TO INITIAL IDEALS

(73)

Notation

I S := k[x 1 , . . . , x n ];

I I ⊆ S ideal;

I we will say I Cohen-Macaulay for S /I Cohen-Macaulay;

I ≺ term order on S ;

I LT ≺ (I ) ⊆ S ideal of leading terms of I with respect to ≺;

I ω = (ω 1 , . . . , ω n ) ∈ (Z + ) n weight vector;

(74)

Notation

I S := k[x 1 , . . . , x n ];

I I ⊆ S ideal;

I we will say I Cohen-Macaulay for S /I Cohen-Macaulay;

I ≺ term order on S ;

I LT ≺ (I ) ⊆ S ideal of leading terms of I with respect to ≺;

I ω = (ω 1 , . . . , ω n ) ∈ (Z + ) n weight vector;

(75)

Notation

I S := k[x 1 , . . . , x n ];

I I ⊆ S ideal;

I we will say I Cohen-Macaulay for S /I Cohen-Macaulay;

I ≺ term order on S ;

I LT ≺ (I ) ⊆ S ideal of leading terms of I with respect to ≺;

I ω = (ω 1 , . . . , ω n ) ∈ (Z + ) n weight vector;

(76)

Notation

I S := k[x 1 , . . . , x n ];

I I ⊆ S ideal;

I we will say I Cohen-Macaulay for S /I Cohen-Macaulay;

I ≺ term order on S ;

I LT ≺ (I ) ⊆ S ideal of leading terms of I with respect to ≺;

I ω = (ω 1 , . . . , ω n ) ∈ (Z + ) n weight vector;

(77)

Notation

I S := k[x 1 , . . . , x n ];

I I ⊆ S ideal;

I we will say I Cohen-Macaulay for S /I Cohen-Macaulay;

I ≺ term order on S ;

I LT ≺ (I ) ⊆ S ideal of leading terms of I with respect to ≺;

I ω = (ω 1 , . . . , ω n ) ∈ (Z + ) n weight vector;

(78)

Notation

I S := k[x 1 , . . . , x n ];

I I ⊆ S ideal;

I we will say I Cohen-Macaulay for S /I Cohen-Macaulay;

I ≺ term order on S ;

I LT ≺ (I ) ⊆ S ideal of leading terms of I with respect to ≺;

I ω = (ω 1 , . . . , ω n ) ∈ (Z + ) n weight vector;

(79)

Notation

I S := k[x 1 , . . . , x n ];

I I ⊆ S ideal;

I we will say I Cohen-Macaulay for S /I Cohen-Macaulay;

I ≺ term order on S ;

I LT ≺ (I ) ⊆ S ideal of leading terms of I with respect to ≺;

I ω = (ω 1 , . . . , ω n ) ∈ (Z + ) n weight vector;

(80)

Initial ideals with respect to weight vectors

(81)

Initial ideals with respect to weight vectors

- f ∈ S , in ω (f ) ∈ S is the leading coefficient of

f (x 1 t ω

1

, . . . , x n t ω

n

) ∈ S[t]

(82)

Initial ideals with respect to weight vectors

- f ∈ S , in ω (f ) ∈ S is the leading coefficient of f (x 1 t ω

1

, . . . , x n t ω

n

) ∈ S[t]

E. g., f = 2x 1 x 2 3 + x 1 x 3 3 + 3x 2 4 x 3 ∈ k[x 1 , x 2 , x 3 ] and ω = (3, 2, 1);

(83)

Initial ideals with respect to weight vectors

- f ∈ S , in ω (f ) ∈ S is the leading coefficient of f (x 1 t ω

1

, . . . , x n t ω

n

) ∈ S[t]

E. g., f = 2x 1 x 2 3 + x 1 x 3 3 + 3x 2 4 x 3 ∈ k[x 1 , x 2 , x 3 ] and ω = (3, 2, 1);

then f (x 1 t 3 , x 2 t 2 , x 3 t) = 2x 1 x 2 3 t 9 + x 1 x 3 3 t 6 + 3x 2 4 x 3 t 9

(84)

Initial ideals with respect to weight vectors

- f ∈ S , in ω (f ) ∈ S is the leading coefficient of f (x 1 t ω

1

, . . . , x n t ω

n

) ∈ S[t]

E. g., f = 2x 1 x 2 3 + x 1 x 3 3 + 3x 2 4 x 3 ∈ k[x 1 , x 2 , x 3 ] and ω = (3, 2, 1);

then f (x 1 t 3 , x 2 t 2 , x 3 t) = 2x 1 x 2 3 t 9 + x 1 x 3 3 t 6 + 3x 2 4 x 3 t 9 , so

in ω (f ) = 2x 1 x 2 3 + 3x 2 4 x 3

(85)

Initial ideals with respect to weight vectors

- f ∈ S , in ω (f ) ∈ S is the leading coefficient of f (x 1 t ω

1

, . . . , x n t ω

n

) ∈ S[t]

- in ω (I ):= (in ω (f ) : f ∈ I ) ⊆ S

(86)

Initial ideals with respect to weight vectors

- f ∈ S , in ω (f ) ∈ S is the leading coefficient of f (x 1 t ω

1

, . . . , x n t ω

n

) ∈ S[t]

- in ω (I ):= (in ω (f ) : f ∈ I ) ⊆ S

for every I , ≺ there exists ω such that LT ≺ (I ) = in ω (I )

(87)

Initial ideals with respect to weight vectors

- f ∈ S , in ω (f ) ∈ S is the leading coefficient of f (x 1 t ω

1

, . . . , x n t ω

n

) ∈ S[t]

- in ω (I ):= (in ω (f ) : f ∈ I ) ⊆ S

for every I , ≺ there exists ω such that LT ≺ (I ) = in ω (I )

- ω f (x 1 , . . . , x n , t) := f ( x 1

t ω

1

, . . . , x n

t ω

n

)t deg

ω

f ∈ S[t]

(88)

Initial ideals with respect to weight vectors

- f ∈ S , in ω (f ) ∈ S is the leading coefficient of f (x 1 t ω

1

, . . . , x n t ω

n

) ∈ S[t]

- in ω (I ):= (in ω (f ) : f ∈ I ) ⊆ S

for every I , ≺ there exists ω such that LT ≺ (I ) = in ω (I )

- deg ω f := max{ P n

i =1 ω i a i : x 1 a

1

· · · x n a

n

term of f } - ω f (x 1 , . . . , x n , t) := f ( x 1

t ω

1

, . . . , x n

t ω

n

)t deg

ω

f ∈ S[t]

(89)

Initial ideals with respect to weight vectors

- f ∈ S , in ω (f ) ∈ S is the leading coefficient of f (x 1 t ω

1

, . . . , x n t ω

n

) ∈ S[t]

- in ω (I ):= (in ω (f ) : f ∈ I ) ⊆ S

for every I , ≺ there exists ω such that LT ≺ (I ) = in ω (I )

- deg ω f := max{ P n

i =1 ω i a i : x 1 a

1

· · · x n a

n

term of f } - ω f (x 1 , . . . , x n , t) := f ( x 1

t ω

1

, . . . , x n

t ω

n

)t deg

ω

f ∈ S[t]

- ω I := ( ω f : f ∈ I ) ⊆ S [t]

(90)

The main result

For every I and ω

c(S/ in ω (I )) ≥ min{c(S /I ), dim S /I − 1}

(91)

The main result

For every I and ω

c(S/ in ω (I )) ≥ min{c(S /I ), dim S /I − 1}

(92)

The main result

For every I and ω

c(S/ in ω (I )) ≥ min{c(S /I ), dim S /I − 1}

(93)

The main result

For every I and ω

c(S/ in ω (I )) ≥ min{c(S /I ), dim S /I − 1}

Corollary

(94)

The main result

For every I and ω

c(S/ in ω (I )) ≥ min{c(S /I ), dim S /I − 1}

Corollary (Kalkbrener and Sturmfels).

For every ω and I , if I is prime, then

S / in ω (I ) is connected in codimension 1.

(95)

The main result

For every I and ω

c(S/ in ω (I )) ≥ min{c(S /I ), dim S /I − 1}

Corollary (Kalkbrener and Sturmfels).

For every ω and I , if I is prime, then

S / in ω (I ) is connected in codimension 1.

Proof of Corollary

(96)

The main result

For every I and ω

c(S/ in ω (I )) ≥ min{c(S /I ), dim S /I − 1}

Corollary (Kalkbrener and Sturmfels).

For every ω and I , if I is prime, then

S / in ω (I ) is connected in codimension 1.

Proof of Corollary

I prime ⇒ c(S /I ) = dim S /I .

(97)

The main result

For every I and ω

c(S/ in ω (I )) ≥ min{c(S /I ), dim S /I − 1}

Corollary For every ≺ and I , then

c(S/LT ≺ (I )) ≥ min{c(S /I ), dim S /I − 1}.

(98)

The main result

For every I and ω

c(S/ in ω (I )) ≥ min{c(S /I ), dim S /I − 1}

Corollary For every ≺ and I , then

c(S/LT ≺ (I )) ≥ min{c(S /I ), dim S /I − 1}.

Proof of Corollary

(99)

The main result

For every I and ω

c(S/ in ω (I )) ≥ min{c(S /I ), dim S /I − 1}

Corollary For every ≺ and I , then

c(S/LT ≺ (I )) ≥ min{c(S /I ), dim S /I − 1}.

Proof of Corollary

Choose ω such that in ω (I ) = LT ≺ (I ).

(100)

The main result

For every I and ω

c(S/ in ω (I )) ≥ min{c(S /I ), dim S /I − 1}

Corollary For every ω and graded I , the following holds:

c(S/ in ω (I )) ≥ depth(S /I ) − 1.

(101)

The main result

For every I and ω

c(S/ in ω (I )) ≥ min{c(S /I ), dim S /I − 1}

Corollary For every ω and graded I , the following holds:

c(S/ in ω (I )) ≥ depth(S /I ) − 1.

So, I Cohen-Macaulay ⇒ S / in ω (I ) connected in codimension 1.

(102)

The main result

For every I and ω

c(S/ in ω (I )) ≥ min{c(S /I ), dim S /I − 1}

Corollary For every ω and graded I , the following holds:

c(S/ in ω (I )) ≥ depth(S /I ) − 1.

So, I Cohen-Macaulay ⇒ S / in ω (I ) connected in codimension 1.

Proof of Corollary

(103)

The main result

For every I and ω

c(S/ in ω (I )) ≥ min{c(S /I ), dim S /I − 1}

Corollary For every ω and graded I , the following holds:

c(S/ in ω (I )) ≥ depth(S /I ) − 1.

So, I Cohen-Macaulay ⇒ S / in ω (I ) connected in codimension 1.

Proof of Corollary

Follows from the fact that c(S /I ) ≥ depth(S /I ) − 1.

(104)

The main result

For every I and ω

c(S/ in ω (I )) ≥ min{c(S /I ), dim S /I − 1}

Corollary For every ≺ and graded I , the following holds:

depth(S /I ) ≥ 2 ⇒ depth(S /pLT ≺ (I )) ≥ 2.

(105)

The main result

For every I and ω

c(S/ in ω (I )) ≥ min{c(S /I ), dim S /I − 1}

Corollary For every ≺ and graded I , the following holds:

depth(S /I ) ≥ 2 ⇒ depth(S /pLT ≺ (I )) ≥ 2.

Proof of Corollary

(106)

The main result

For every I and ω

c(S/ in ω (I )) ≥ min{c(S /I ), dim S /I − 1}

Corollary For every ≺ and graded I , the following holds:

depth(S /I ) ≥ 2 ⇒ depth(S /pLT ≺ (I )) ≥ 2.

Proof of Corollary

depth(S /I ) ≥ 2 ⇒ c(S /I ) ≥ 1 ⇒ c(S /LT ≺ (I )) ≥ 1

(107)

The main result

For every I and ω

c(S/ in ω (I )) ≥ min{c(S /I ), dim S /I − 1}

Corollary For every ≺ and graded I , the following holds:

depth(S /I ) ≥ 2 ⇒ depth(S /pLT ≺ (I )) ≥ 2.

Proof of Corollary

depth(S /I ) ≥ 2 ⇒ c(S /I ) ≥ 1 ⇒ c(S /LT ≺ (I )) ≥ 1

⇒ depth(S/pLT ≺ (I )) ≥ 2.

(108)

Idea of the proof

Let be R := S [t]/ ω I and a := ( ω I + t)/ ω I ⊆ R.

S / in ω (I ) ∼ = R/a

Give a positive graduation to R s.t. a is homogeneus as follows: deg ¯ x i = ω i , deg ¯ t = 1

Graded version of the main result of the first part let us conclude!

(109)

Idea of the proof

Let be R := S [t]/ ω I and a := ( ω I + t)/ ω I ⊆ R.

S / in ω (I ) ∼ = R/a

Give a positive graduation to R s.t. a is homogeneus as follows: deg ¯ x i = ω i , deg ¯ t = 1

Graded version of the main result of the first part let us conclude!

(110)

Idea of the proof

Let be R := S [t]/ ω I and a := ( ω I + t)/ ω I ⊆ R.

S / in ω (I ) ∼ = R/a

Give a positive graduation to R s.t. a is homogeneus as follows: deg ¯ x i = ω i , deg ¯ t = 1

Graded version of the main result of the first part let us conclude!

(111)

Idea of the proof

Let be R := S [t]/ ω I and a := ( ω I + t)/ ω I ⊆ R.

S / in ω (I ) ∼ = R/a

Give a positive graduation to R s.t. a is homogeneus as follows:

deg ¯ x i = ω i , deg ¯ t = 1

Graded version of the main result of the first part let us conclude!

(112)

Idea of the proof

Let be R := S [t]/ ω I and a := ( ω I + t)/ ω I ⊆ R.

S / in ω (I ) ∼ = R/a

Give a positive graduation to R s.t. a is homogeneus as follows:

deg ¯ x i = ω i , deg ¯ t = 1

Graded version of the main result of the first part let us conclude!

(113)

Idea of the proof

Let be R := S [t]/ ω I and a := ( ω I + t)/ ω I ⊆ R.

S / in ω (I ) ∼ = R/a

Give a positive graduation to R s.t. a is homogeneus as follows:

deg ¯ x i = ω i , deg ¯ t = 1

Graded version of the main result of the first part let us conclude!

(114)

The answer to the initial question

J = (ua, za, ya, xa, uv , zv , yv , xv , xyu, xyz, xzu, yzu)

The minimal primes of J ⊆ S := k[x , y , z, u, v , w , a] are:

1 = (x , y , z, u) , ℘ 2 = (x , y , v , a), ℘ 3 = (x , z, v , a),

℘ 4 = (x , u, v , a), ℘ 5 = (y , z, v , a),

℘ 6 = (y , u, v , a), ℘ 7 = (z, u, v , a).

Note that dim S /(℘ 1 + ℘ i ) = 1 whereas dim S /J = 3.

So S /J is not connected in codimension 1, therefore

cannot exist I ⊆ S Cohen-Macaulay and ≺ s. t. pLT ≺ (I ) = J!

(115)

The answer to the initial question

J = (ua, za, ya, xa, uv , zv , yv , xv , xyu, xyz, xzu, yzu)

The minimal primes of J ⊆ S := k[x , y , z, u, v , w , a] are:

1 = (x , y , z, u) , ℘ 2 = (x , y , v , a), ℘ 3 = (x , z, v , a),

℘ 4 = (x , u, v , a), ℘ 5 = (y , z, v , a),

℘ 6 = (y , u, v , a), ℘ 7 = (z, u, v , a).

Note that dim S /(℘ 1 + ℘ i ) = 1 whereas dim S /J = 3.

So S /J is not connected in codimension 1, therefore

cannot exist I ⊆ S Cohen-Macaulay and ≺ s. t. pLT ≺ (I ) = J!

(116)

The answer to the initial question

J = (ua, za, ya, xa, uv , zv , yv , xv , xyu, xyz, xzu, yzu)

The minimal primes of J ⊆ S := k[x , y , z, u, v , w , a] are:

1 = (x , y , z, u) , ℘ 2 = (x , y , v , a), ℘ 3 = (x , z, v , a),

4 = (x , u, v , a), ℘ 5 = (y , z, v , a),

℘ 6 = (y , u, v , a), ℘ 7 = (z, u, v , a).

Note that dim S /(℘ 1 + ℘ i ) = 1 whereas dim S /J = 3.

So S /J is not connected in codimension 1, therefore

cannot exist I ⊆ S Cohen-Macaulay and ≺ s. t. pLT ≺ (I ) = J!

(117)

The answer to the initial question

J = (ua, za, ya, xa, uv , zv , yv , xv , xyu, xyz, xzu, yzu)

The minimal primes of J ⊆ S := k[x , y , z, u, v , w , a] are:

1 = (x , y , z, u) , ℘ 2 = (x , y , v , a), ℘ 3 = (x , z, v , a),

4 = (x , u, v , a), ℘ 5 = (y , z, v , a),

℘ 6 = (y , u, v , a), ℘ 7 = (z, u, v , a).

Note that dim S /(℘ 1 + ℘ i ) = 1

whereas dim S /J = 3.

So S /J is not connected in codimension 1, therefore

cannot exist I ⊆ S Cohen-Macaulay and ≺ s. t. pLT ≺ (I ) = J!

(118)

The answer to the initial question

J = (ua, za, ya, xa, uv , zv , yv , xv , xyu, xyz, xzu, yzu)

The minimal primes of J ⊆ S := k[x , y , z, u, v , w , a] are:

1 = (x , y , z, u) , ℘ 2 = (x , y , v , a), ℘ 3 = (x , z, v , a),

4 = (x , u, v , a), ℘ 5 = (y , z, v , a),

℘ 6 = (y , u, v , a), ℘ 7 = (z, u, v , a).

Note that dim S /(℘ 1 + ℘ i ) = 1 whereas dim S /J = 3.

So S /J is not connected in codimension 1, therefore

cannot exist I ⊆ S Cohen-Macaulay and ≺ s. t. pLT ≺ (I ) = J!

(119)

The answer to the initial question

J = (ua, za, ya, xa, uv , zv , yv , xv , xyu, xyz, xzu, yzu)

The minimal primes of J ⊆ S := k[x , y , z, u, v , w , a] are:

1 = (x , y , z, u) , ℘ 2 = (x , y , v , a), ℘ 3 = (x , z, v , a),

4 = (x , u, v , a), ℘ 5 = (y , z, v , a),

℘ 6 = (y , u, v , a), ℘ 7 = (z, u, v , a).

Note that dim S /(℘ 1 + ℘ i ) = 1 whereas dim S /J = 3.

So S /J is not connected in codimension 1,

therefore

cannot exist I ⊆ S Cohen-Macaulay and ≺ s. t. pLT ≺ (I ) = J!

(120)

The answer to the initial question

J = (ua, za, ya, xa, uv , zv , yv , xv , xyu, xyz, xzu, yzu)

The minimal primes of J ⊆ S := k[x , y , z, u, v , w , a] are:

1 = (x , y , z, u) , ℘ 2 = (x , y , v , a), ℘ 3 = (x , z, v , a),

4 = (x , u, v , a), ℘ 5 = (y , z, v , a),

℘ 6 = (y , u, v , a), ℘ 7 = (z, u, v , a).

Note that dim S /(℘ 1 + ℘ i ) = 1 whereas dim S /J = 3.

So S /J is not connected in codimension 1, therefore

cannot exist I ⊆ S Cohen-Macaulay and ≺ s. t. pLT ≺ (I ) = J!

(121)

Examples

S := C[x 1 , . . . , x 7 ]

X :=

x 1 + x 2 x 5 x 4 x 6 − x 5 x 3 + x 7 x 5

x 4 + x 7 x 1 − x 3 x 5 + x 7

I := I 2 (X ) is a prime ideal of codimension 4, so S /I is a Gorenstein domain of dimension 3.

Moreover Proj(S /I ) is a smooth surface. If ≺ is the lexicographic order, then

LT ≺ (I ) 6= pLT ≺ (I ) = (x 1 , x 3 x 5 , x 2 x 5 , x 3 x 4 , x 4 x 5 , x 2 x 3 x 6 , x 2 x 4 x 7 , x 2 x 6 x 7 )

S /pLT (I ) is not Cohen-Macaulay !

(122)

Examples

S := C[x 1 , . . . , x 7 ]

X :=

x 1 + x 2 x 5 x 4 x 6 − x 5 x 3 + x 7 x 5

x 4 + x 7 x 1 − x 3 x 5 + x 7

I := I 2 (X ) is a prime ideal of codimension 4, so S /I is a Gorenstein domain of dimension 3.

Moreover Proj(S /I ) is a smooth surface. If ≺ is the lexicographic order, then

LT ≺ (I ) 6= pLT ≺ (I ) = (x 1 , x 3 x 5 , x 2 x 5 , x 3 x 4 , x 4 x 5 , x 2 x 3 x 6 , x 2 x 4 x 7 , x 2 x 6 x 7 )

S /pLT (I ) is not Cohen-Macaulay !

(123)

Examples

S := C[x 1 , . . . , x 7 ]

X :=

x 1 + x 2 x 5 x 4 x 6 − x 5 x 3 + x 7 x 5

x 4 + x 7 x 1 − x 3 x 5 + x 7

I := I 2 (X ) is a prime ideal of codimension 4, so S /I is a Gorenstein domain of dimension 3.

Moreover Proj(S /I ) is a smooth surface. If ≺ is the lexicographic order, then

LT ≺ (I ) 6= pLT ≺ (I ) = (x 1 , x 3 x 5 , x 2 x 5 , x 3 x 4 , x 4 x 5 , x 2 x 3 x 6 , x 2 x 4 x 7 , x 2 x 6 x 7 )

S /pLT (I ) is not Cohen-Macaulay !

(124)

Examples

S := C[x 1 , . . . , x 7 ]

X :=

x 1 + x 2 x 5 x 4 x 6 − x 5 x 3 + x 7 x 5

x 4 + x 7 x 1 − x 3 x 5 + x 7

I := I 2 (X ) is a prime ideal of codimension 4,

so S /I is a Gorenstein domain of dimension 3. Moreover Proj(S /I ) is a smooth surface. If ≺ is the lexicographic order, then

LT ≺ (I ) 6= pLT ≺ (I ) = (x 1 , x 3 x 5 , x 2 x 5 , x 3 x 4 , x 4 x 5 , x 2 x 3 x 6 , x 2 x 4 x 7 , x 2 x 6 x 7 )

S /pLT (I ) is not Cohen-Macaulay !

(125)

Examples

S := C[x 1 , . . . , x 7 ]

X :=

x 1 + x 2 x 5 x 4 x 6 − x 5 x 3 + x 7 x 5

x 4 + x 7 x 1 − x 3 x 5 + x 7

I := I 2 (X ) is a prime ideal of codimension 4, so S /I is a Gorenstein domain of dimension 3.

Moreover Proj(S /I ) is a smooth surface. If ≺ is the lexicographic order, then

LT ≺ (I ) 6= pLT ≺ (I ) = (x 1 , x 3 x 5 , x 2 x 5 , x 3 x 4 , x 4 x 5 , x 2 x 3 x 6 , x 2 x 4 x 7 , x 2 x 6 x 7 )

S /pLT (I ) is not Cohen-Macaulay !

(126)

Examples

S := C[x 1 , . . . , x 7 ]

X :=

x 1 + x 2 x 5 x 4 x 6 − x 5 x 3 + x 7 x 5

x 4 + x 7 x 1 − x 3 x 5 + x 7

I := I 2 (X ) is a prime ideal of codimension 4, so S /I is a Gorenstein domain of dimension 3.

Moreover Proj(S /I ) is a smooth surface.

If ≺ is the lexicographic order, then

LT ≺ (I ) 6= pLT ≺ (I ) = (x 1 , x 3 x 5 , x 2 x 5 , x 3 x 4 , x 4 x 5 , x 2 x 3 x 6 , x 2 x 4 x 7 , x 2 x 6 x 7 )

S /pLT (I ) is not Cohen-Macaulay !

(127)

Examples

S := C[x 1 , . . . , x 7 ]

X :=

x 1 + x 2 x 5 x 4 x 6 − x 5 x 3 + x 7 x 5

x 4 + x 7 x 1 − x 3 x 5 + x 7

I := I 2 (X ) is a prime ideal of codimension 4, so S /I is a Gorenstein domain of dimension 3.

Moreover Proj(S /I ) is a smooth surface.

If ≺ is the lexicographic order, then

LT ≺ (I ) 6= pLT ≺ (I ) = (x 1 , x 3 x 5 , x 2 x 5 , x 3 x 4 , x 4 x 5 , x 2 x 3 x 6 , x 2 x 4 x 7 , x 2 x 6 x 7 )

S /pLT (I ) is not Cohen-Macaulay !

(128)

Examples

S := C[x 1 , . . . , x 7 ]

X :=

x 1 + x 2 x 5 x 4 x 6 − x 5 x 3 + x 7 x 5

x 4 + x 7 x 1 − x 3 x 5 + x 7

I := I 2 (X ) is a prime ideal of codimension 4, so S /I is a Gorenstein domain of dimension 3.

Moreover Proj(S /I ) is a smooth surface.

If ≺ is the lexicographic order, then

LT ≺ (I ) 6= pLT ≺ (I ) = (x 1 , x 3 x 5 , x 2 x 5 , x 3 x 4 , x 4 x 5 , x 2 x 3 x 6 , x 2 x 4 x 7 , x 2 x 6 x 7 )

S /pLT (I ) is not Cohen-Macaulay !

(129)

Examples

S := C[x 1 , . . . , x 6 ]

I := (x 1 x 5 + x 2 x 6 + x 4 2 , x 1 x 4 + x 3 2 − x 4 x 5 , x 1 2 + x 1 x 2 + x 2 x 5 ) I is a prime complete intersection of codimension 3, Proj(S /I ) is a normal surface with 3 singular points.

If ≺ is the lexicographic order, then

LT ≺ (I ) 6= pLT ≺ (I ) = (x 1 , x 3 x 5 , x 2 x 3 x 4 , x 2 x 4 x 6 , x 2 x 5 x 6 ) S /pLT (I ) is not Cohen-Macaulay !

In this case we have also that cd(S , I ) < cd(S , LT ≺ (I ))!

(130)

Examples

S := C[x 1 , . . . , x 6 ]

I := (x 1 x 5 + x 2 x 6 + x 4 2 , x 1 x 4 + x 3 2 − x 4 x 5 , x 1 2 + x 1 x 2 + x 2 x 5 ) I is a prime complete intersection of codimension 3, Proj(S /I ) is a normal surface with 3 singular points.

If ≺ is the lexicographic order, then

LT ≺ (I ) 6= pLT ≺ (I ) = (x 1 , x 3 x 5 , x 2 x 3 x 4 , x 2 x 4 x 6 , x 2 x 5 x 6 ) S /pLT (I ) is not Cohen-Macaulay !

In this case we have also that cd(S , I ) < cd(S , LT ≺ (I ))!

(131)

Examples

S := C[x 1 , . . . , x 6 ]

I := (x 1 x 5 + x 2 x 6 + x 4 2 , x 1 x 4 + x 3 2 − x 4 x 5 , x 1 2 + x 1 x 2 + x 2 x 5 )

I is a prime complete intersection of codimension 3, Proj(S /I ) is a normal surface with 3 singular points.

If ≺ is the lexicographic order, then

LT ≺ (I ) 6= pLT ≺ (I ) = (x 1 , x 3 x 5 , x 2 x 3 x 4 , x 2 x 4 x 6 , x 2 x 5 x 6 ) S /pLT (I ) is not Cohen-Macaulay !

In this case we have also that cd(S , I ) < cd(S , LT ≺ (I ))!

(132)

Examples

S := C[x 1 , . . . , x 6 ]

I := (x 1 x 5 + x 2 x 6 + x 4 2 , x 1 x 4 + x 3 2 − x 4 x 5 , x 1 2 + x 1 x 2 + x 2 x 5 ) I is a prime complete intersection of codimension 3,

Proj(S /I ) is a normal surface with 3 singular points.

If ≺ is the lexicographic order, then

LT ≺ (I ) 6= pLT ≺ (I ) = (x 1 , x 3 x 5 , x 2 x 3 x 4 , x 2 x 4 x 6 , x 2 x 5 x 6 ) S /pLT (I ) is not Cohen-Macaulay !

In this case we have also that cd(S , I ) < cd(S , LT ≺ (I ))!

(133)

Examples

S := C[x 1 , . . . , x 6 ]

I := (x 1 x 5 + x 2 x 6 + x 4 2 , x 1 x 4 + x 3 2 − x 4 x 5 , x 1 2 + x 1 x 2 + x 2 x 5 ) I is a prime complete intersection of codimension 3, Proj(S /I ) is a normal surface with 3 singular points.

If ≺ is the lexicographic order, then

LT ≺ (I ) 6= pLT ≺ (I ) = (x 1 , x 3 x 5 , x 2 x 3 x 4 , x 2 x 4 x 6 , x 2 x 5 x 6 )

S /pLT (I ) is not Cohen-Macaulay !

In this case we have also that cd(S , I ) < cd(S , LT ≺ (I ))!

(134)

Examples

S := C[x 1 , . . . , x 6 ]

I := (x 1 x 5 + x 2 x 6 + x 4 2 , x 1 x 4 + x 3 2 − x 4 x 5 , x 1 2 + x 1 x 2 + x 2 x 5 ) I is a prime complete intersection of codimension 3, Proj(S /I ) is a normal surface with 3 singular points.

If ≺ is the lexicographic order, then

LT ≺ (I ) 6= pLT ≺ (I ) = (x 1 , x 3 x 5 , x 2 x 3 x 4 , x 2 x 4 x 6 , x 2 x 5 x 6 ) S /pLT (I ) is not Cohen-Macaulay !

In this case we have also that cd(S , I ) < cd(S , LT ≺ (I ))!

(135)

Examples

S := C[x 1 , . . . , x 6 ]

I := (x 1 x 5 + x 2 x 6 + x 4 2 , x 1 x 4 + x 3 2 − x 4 x 5 , x 1 2 + x 1 x 2 + x 2 x 5 ) I is a prime complete intersection of codimension 3, Proj(S /I ) is a normal surface with 3 singular points.

If ≺ is the lexicographic order, then

LT ≺ (I ) 6= pLT ≺ (I ) = (x 1 , x 3 x 5 , x 2 x 3 x 4 , x 2 x 4 x 6 , x 2 x 5 x 6 ) S /pLT (I ) is not Cohen-Macaulay !

In this case we have also that cd(S , I ) < cd(S , LT ≺ (I ))!

Riferimenti

Documenti correlati

La virtù non è una emozione o una capacità, ma una abituale disposizione ad agire bene; essa prende forma sotto la guida continua e critica della ragione (Mortari, 2014, pp.

It was expected a deterioration of all-out performances due to fatigue (14), but an improvement of metabolically less challenging, coordinatively more complex

The aim of this paper is to study two con- crete balleans defined by the ideals in the Boolean algebra of all subsets of X and their hyperballeans, with particular emphasis on

For the pancreatitis pathway, we measured specific clinical variables for our first 9 patients and compared these with 7 patients with pancreatitis admitted to other floors of

31 Se la veduta eterna gli dislego, Se la vendetta eterna gli dislego, Al Purgatorio bene non si addice come all'Inferno la vendetta eterna; e perciò abbiamo col Lombardi

70-104; Sani, Roberto, Scuole e istruzione elementare in Italia dall'Unità al primo dopoguerra: itinerari storiografici e di ricerca, in Sani, Roberto, Tedde, Angelino, Maestri

28 mag 2011. Sapendo che in Italia è vietato il campeggio libero,ma volendo pernottare fuori zona Campo Imperatore e facendo un solo bivacco notturno montando la tenda la sera

cohomological dimension of an ideal in a local complete ring with connectedness properties of the spectrum of the quotient ring.. Translate this result from complete to