• Non ci sono risultati.

Animal Models of Bone Defect Repair

N/A
N/A
Protected

Academic year: 2021

Condividi "Animal Models of Bone Defect Repair"

Copied!
15
0
0

Testo completo

(1)

70

BIBLIOGRAFIA

Abdel-Aal AM. Ilizarov bone transport for massive tibial bone defects. Orthopedics 2006; 29: 70-74.

Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL. Silk-based biomaterials. Biomaterials 2003; 24: 401-416.

An YH, Friedman RJ. Animal Models of Bone Defect Repair. In: An YH, Friedman RJ.

Animal models in Orthopaedic research. CRC Press 1999b; 13: 241-260.

Anitua E, Andia I, Sanchez M, Autologous preparations rich in growth factors promote proliferation and induce VEGF and HGF production by human tendon cells in culture Journal of Orthopeadics Research, 2005; 23, 281-286.

Argintar E, Edwards S, Delahay J. Bone morphogenetic proteins in orthopaedic trauma surgery. Injury 2011; 42: 730-734.

Aronson J. Limb-lengthening, skeletal reconstruction, and bone transport with the Ilizarov method. J Bone Joint Surg Am 1997; 79: 1243 1258.

Bae S, Shoda M. Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol Prog 2004; 20: 1366-1371.

Balakrishnan S, Krishnan M, Dubois P, Narayan R. Kinetic and thermodynamic considerations in the synthesis of a new three-arm poly (ε-caprolactone). Polymer Eng Sci 2004; 44: 1491-1497.

Balakrishnan S, Krishnan M, Narayan R, Dubois P. Three-arm poly (ε-caprolactone) by extrusion polymerization. Polymer Eng Sci 2006; 46: 235-240.

Banks WJ, Apparato locomotore. In: Banks WJ, Istologia e anatomia microscopica veterinaria. Piccin Editore, I ed. It., 1986; 16:263-288.

(2)

71 Barbarossa V, Matkovic BR, Vucic N, Bielen M, Gluhinic M. Treatment of Osteomyelitis and Infected Non-union of the Femur by a Modified Ilizarov Technique:

Follow-up Study. CMJ 2001; 42:634‐641.

Barbosa MA, Granja PL, Barrias CC, Amaral IF. Polysaccharides as scaffolds for bone regeneration. ITBM-RBM 2005; 26: 212-217.

Bates P, Ramachandran M. Bone injury, healing and grafting. In: Basic Orthopaedic Sciences. The Stanmore Guide. Ramachandran M. (Ed) London: Hodder Arnold 2007;

123-134.

Bauer TW, Muschler GF. Bone graft materials. An overview of the basic science. Clin Orthop Related Res 2000; 371: 10-27.

Benoit MA, Baras B, Gillard J. Preparation and characterization of protein-loaded poly([var epsilon]- caprolactone) microparticles for oral vaccine delivery. Int J Pharm 1999; 184: 73–84.

Bodde EWH, Spauwen PHM, Mikos AG, Jansen JA. Closing capacity of segmental radius defects in rabbits. J Biomed Mater Res A 2008; 85: 206-217.

Boyan BD, Hummert TW, Dean DD, Schwartz Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 1996; 17: 137-146.

Calvert JW, Weiss LE, Sundine MJ. New frontiers in bone tissue engineering. Clin Plast Surg 2003; 30: 641-648.

Cammisa FP Jr, Lowery G, Garfin SR, Geisler FH, Klara PM, McGuire RA, Sassard WR, Stubbs H, Block JE. Two-year fusion rate equivalency between Grafton DBM gel and autograft in posterolateral spine fusion: a prospective controlled trial employing side-by- side comparison in the same patient. Spine 2004; 29: 660-666.

Carmona JU, Arguelles D, Climent F, Prades M. Autologous platelet rich plasma injected intra-articularly diminished synovial effusion and degree of lameness in horses affected with severe joint disease VCOT, 2006.

(3)

72 Carson JS, Bostrom MPG: Synthetic bone scaffolds and fracture repair Injury. Int. J.

Care Injured, 2007; 38S1, S33-S37.

Carter G. Harvesting and implanting allograft bone. AORN J 1999; 70: 660-670.

Castañeda S, Largo R, Calvo E, Rodríguez-Salvanés F, Marcos ME, Díaz-Curiel M, Herrero-Beaumont G. Bone mineral measurements of subchondral and trabecular bone in healthy and osteoporotic rabbits. Skeletal Radiol 2006; 35: 34-41.

Chaer RA, Graham JA, Mureebe L. Platelet function and pharmacologic inhibition Vasculary and Endovasculary Surgery, 2006; 40, 261-267.

Chapman MW, Bucholz R, Cornell C. Treatment of acute fractures with a collagen- calcium phosphate graft material: a randomized clinical trial. J Bone Joint Surg Am 1997; 79: 495-502.

Chen GQ, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 2005; 26: 6565-6578.

Chen RR, Mooney DJ. Polymeric growth factor delivery strategies for tissue engineering.

Pharm Res 2003; 20: 1103-1112.

Chew SY, Dzenis Y, Leong KW, Wen Y. The Role of Electrospinning in the Emerging Field of Nanomedicine. Curr Pharm Des 2006; 12: 4751-4770.

Cipitria A., Reichert JC., Epari DR., Saifzadeh S., Berner A., Schel H., Mehta M., Schuetz MA., Duda GN, Hutmaker BW. Polycaprolactone scaffold and reduced rhBMP-7 dose for the regeneration of critical-sized defects in sheep tibiae. Biomatirials 2013; 34:

9960-9968.

Constantino PD, Freidman CD. Synthetic bone graft substitutes. Otolaryngol Clin North Am 1994; 27: 1037-1073.

Coombes AGA, Rizzi SC, Williamson M, Barralet JE, Downes S, Wallace WA.

Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery. Biomaterials 2004; 25: 315-325.

(4)

73 Cypher TJ, Grossman JP. Biological principles of bone graft healing. J Foot Ankle Surg1996; 35: 413- 417.

De Long WG Jr, Einhorn TA, Koval K., McKee M., Smith W., Sanders R., Watson T.

Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J Bone Joint Surg Am 2007; 89: 649-658.

Deng M, Nair LS, Nukavarapu SP, Kumbar SG, Jiang T, Krogman NR, Singh A, Allcock HR, Laurencin CT. Miscibility and in vitro osteocompatibility of biodegradable blends of poly[(ethyl alanato) (p- phenyl phenoxy) phosphazene] and poly(lactic acid- glycolic acid). Biomaterials 2008; 29: 337-349.

Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Medicine 2011, 9: 66-75.

Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury 2005; 36: 1392-1404.

Dini F, Barsotti G, Puppi D, Mota C, Briganti A, Carlucci F, Gabellieri P, Chiellini F.

Supporti tridimensionali in materiale polimerico biodegradabile per la rigenerazione ossea: risultati dallo studio in vivo, Atti LXVI convegno Nazionale SISvet, Roma- Auditorium Ministero della salute 12-14 settembre 2012 pp 325-328.

Dini F, Puppi D, Dinucci D, Bartoli C, Mota C, Migone C, Barsotti G, Chiellini F, Gabellieri P, Carlucci F, Supporti tridimensionali in materiale polimerico biodegradabile per la rigenerazione ossea: risultati in vitro.Atti Società Italiana Scienze Veterinarie SISvet tropea-Drapia (VV) Settembre 2011 – vol. LXV 300-302.

Dini F, Puppi D,. Bartoli C, Migone C, Chiellini F, Barsotti G, Fratini F, Bertelloni F, Cerri D, Carlucci F, Supporti tridimensionali in materiale polimerico biodegradabile per la rigenerazione ossea: risultati preliminari di uno studio, Atti 17° congresso Nazionale sicv 24-26 Giugno 2010 Olbia.

Dini F. Sviluppo di supporti polimerici tridimensionali in policaprolattone per il trattamento di lesioni ossee con perdita di sostanza critica: studio sperimentale,Tesi scuola di dottorato di ricerca in Medicina Veterinaria Università di Pisa, 2012.

Doi Y, Steinbüchel A. Polyesters I. Biological systems and biotechnological production.

Weinheim: Wiley-VCH 2002.

(5)

74 Drosse I, Volkmer E, Capanna R, De Biase P, Mutschler W, Schieker M. Tissue engineering for bone defect healing: An update on a multi-component apporach.

Injury 2008; 39: S9-S20.

Einhorn TA., The cell and molecular biology of fracture healing. Clin Orthop Relat Res 1998; 355: S7-S21.

Fang B, Wan Y-Z, Tang T-T, Gao C, Dai K-R. Proliferation and osteoblastic differentiation ofhumanbone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng A 2009; 15: 1091-1098.

Finkemeier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg 2002;

84:454-464.

Fleming JE Jr, Cornell CN, Muschler GF. Bone cells and matrices in orthopedic tissue engineering. Orthop Clin North Am 2000; 31: 357-374.

Freyman TM, Yannas IV, Gibson LJ. Cellular materials as porous scaffolds for tissue engineering. Prog Mat Sci 2001; 46: 273-282.

Friedlaender GE, Strong DM, Tomford W, Mankin HJ. Longterm follow-up of patients with osteochondral allografts. A correlation between immunologic responses and clinical outcome. Orthop Clin North Am 1999; 30: 583-588.

Gatti AM, Valdre G, Oh A. Analysis of the in vivo reactions of a bioactive glass in soft and hard tissue. Biomaterials 1994; 15: 208–212.

Ghosh K, Ren XD, Shu XZ, Prestwich GD, Clark RAF. Fibronectin functional domains coupled to hyaluronan stimulate adult human dermal fibroblast responses critical for wound healing. Tissue Eng 2006; 12: 601-613.

Giannoudis PV, Dinopoulos H.,Tsiridis E. Bone substitutes: an update. Injury 2005; 36:

s20-s27.

Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury;

38 Suppl 4:S36. 2007.

(6)

75 Giannoudis PV, Einhorn TA. Bone morphogenetic proteins in musculoskeletal medicine.

Injury 2009; 40: S1-S3.

Gomes ME, Godinho JS, Tchalamov D, Cunha AM, Reis RL. Alternative tissue engineering scaffolds based on starch: processing methodologies, morphology, degradation and mechanical properties. Mater Sci Eng C 2002; 20: 19-26.

Gomes ME, Malafaya P, Ribeiro A, Reis RL, Cunha AM. A new approach based on injection moulding to produce starch based biodegradable scaffolds: morphology, mechanical and degradation behaviour. Biomaterials 2000; 22: 883-889.

Gorna K, Gogolewski S. Biodegradable porous polyurethane scaffolds for tissue repair and regeneration. J Biomed Mater Res A 2006; 79: 128-138.

Gosline JM, Demont ME, Denny MW. The structure and properties of spider silk.

Endeavour 1986; 10: 37–43.

Green SA, Jackson JM, Wall DM, Marinow H, Ishkanian J. Management of segmental defects by the Ilizarov intercalary bone transport method. Clin Orthop Related Res 1992; 280: 136-142.

Greish YE, Bender JD, Lakshmi S, Brown PW, Allcock HR, Laurencin CT. Composite formation from hydroxyapatite with sodium and potassium salts of polyphosphazene. J Mater Sci Mater Med 2005; 16: 613-620.

Hedberg EL, Kroese-Deutman HC, Shih CK, Lemoine JJ, Liebschner MAK, Miller MJ, Yasko AW, Crowther RS, Carney DH, Mikos AG, Jansen JA. Methods: A comparative analysis of-radiography, microcomputed tomography, and histology for bone tissue engineering. Tissue Eng 2005b; 11: 1356-1367.

Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B. In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 2006; 76: 431-438.

Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc 1991; 74: 1487–1510.

(7)

76 Henry JA, Burugapalli K, Neuenschwander P, Pandit A. Structural variants of biodegradable polyesterurethane in vivo evoke a cellular and angiogenic response that is dictated by architecture. Acta Biomater 2009; 5: 29-42.

Hernigou P, Poignard A, Beaujean F, Rouard H. Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 2005; 87: 1430-1437.

Hollinger J O, Kleinschmidt J C. The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg. 1990 Jan;1(1):60-8.

Horan RL, Antle K, Collette AL, Wang Y, Huang J, Moreau JE, Volloch V, Kaplan DL, Altman GH. In vitro degradation of silk fibroin. Biomaterials 2005; 26: 3385-3393.

Hu Q, Li B, Wang M, Shen J. Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture. Biomaterials 2004; 25; 779-785.

Huibregtse BA, Johnstone B, Goldberg VM, Caplan AI. Effect of age and sampling site on the chondro-osteogenic potential of rabbit marrowderived mesenchymal progenitor cells. J Orthop Res 2000; 18: 18-24.

Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues state of the art and future perspectives, J Biomater Sci Polymer Ed 2001; 12: 107-124.

Hutmacher DW. Scaffold in tissue engineering bone and cartilage. Biomaterials 2000;

21: 2529-2543.

Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Related Res.

1989; 238: 249-281.

Jäger M, Herten M, Fochtmann U, Fischer J, Hernigou P, Zilkens C, Hendrich C, Krauspe R. Bridging the gap: bone marrow aspiration concentrate reduces autologous bone grafting in osseous defects. J Orthop Res 2011; 29: 173-180.

Jin H-J, Chen J, Karageorgiou V, Altman GH, Kaplan DL. Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials 2004; 25: 1039–1047.

(8)

77 Johnson AL Principi fondamentali di chirurgia ortopedica e di trattamento delle fratture.

In Fossum TW Chirurgia dei piccolo animali. Elsevier Masson Editore III ed. It., 2008;

31: 962-1014.

Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 2006; 27: 964–973.

Kang SH., Chung YG., Oh IH., Kim YS., Min KO., Chung JY. Bone regeneration potential of allogeneic or autogeneic mesenchymal stem cells loaded onto cancellous bone granules in a rabbit radial defect model. Cell Tissue Res 2014;355: 81-88.

Kasten P, Vogel J, Geiger F, Niemeyer P, Luginbühl R, Szaly K. The effect of platelet- rich plasma on healing in critical-size long-bone defects. Biomaterials 2008; 29: 3983- 3992.

Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT. Tissue Engineering of Bone:

Material and Matrix Consideration. J Bone Joint Surg Am 2008; 90 :36-42 d doi:10.2106/JBJS.G.01260.

Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol 1998; 16: 224-230.

Kleinschmidt K, Ploeger F, Nickel J, Glockenmeier J, Kunz P, Richter W, Enhanced reconstruction of long bone architecture by a growt factor mutant combining positive features of GDF-5 and BMP-2. Biomaterials 2013 pp.5926-5936.

Kohn J, Langer R. Bioresorbable and bioerodible materials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds.) Biomaterials science: an introduction to materials in medicine. New York: Academic Press 1996; 64-72.

Lane JM, Sandhu HS. Current Approaches to Experimental Bone Grafting. Orthop Clin North Am 1987; 18: 213-225.

Lane JM, Tomin E, Bostrom MP. Biosynthetic bone grafting. Clin Orthop Related Res 1999; 367: S107–S117.

(9)

78 Laurencin CT, El-Amin SF, Ibim SE, Willoughby DA, Attawia M, Allcock HR, Ambrosio AA. A highly porous 3-dimensional polyphosphazene polymer matrix for skeletal tissue regeneration. J Biomed Mater Res 1996; 30: 133-138.

Leathers TD. Dextran. In: Steinbüchel A, (ed.) Biopolymers, vol. 5. Weinheim: Wiley- VCH 2002; 300– 321.

Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm 2001;

221:1-22.

LeGeros RZ, LeGeros JP. Calcium phosphate biomaterials: preparation, properties, and biodegradation. In: Wise DL, Trantolo DJ, Altobelli DE, Yaszemski MJ, Gresser JD, Schwartz ER, (eds.) Encyclopedia handbook of biomaterials and bioengineering part A:

materials, vol. 2. New York: Marcel Dekker 1995; 1429-1463.

Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of threedimensional scaffolds for engineering replacement tissues and organs. Biomaterials 2003; 24: 2363-2378.

Lévesque SG, Lim RM, Shoichet MS. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Biomaterials 2005; 26: 7436-7446.

Li C, Vepari C, Jina H-J, Kim HJ, Kaplan DL. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 2006; 27: 3115-3124.

Littlewood R. The Benefits and Risks Of The Ilizarov Technique For Limb Reconstruction.2011Online

http://www.noc.nhs.uk/limbreconstruction/documents/articlewrittenbyrebeccalittlewoodwo rkexp.pdf (accessed April 19/2012).

Liu Y, Lu Y, Tian X, Cui G, Zhao Y, Yang Q, Yu S, Xing G, Zhang B. Segmental bone regeneration using an rhBMP-2-loaded gelatin/nonhydroxyapatite/fibrin scaffold in a rabbit model. Biomaterials 2009; 30: 6276-6285.

Maia L, de Souza MV, Ribeiro JI, de Oliveira AC, Silveira Alves GE, Benjamin L, Silva YFR, Zandim BM, Moreira J. Platelet-rich plasma in the treatment of induced tendinopathy in horses: histologic evaluation. Journal of Equine Veterinary Science, 2009;29(8), 618-626.

(10)

79 Marler JJ, Upton J, Langer R, Vacanti JP. Transplantation of cells in matrices for tissue regeneration. Adv Drug Del Rev 1998; 33: 165-182.

Martin C, Winet H, Bao JY. Acidity near eroding polylactidepolyglycolide in vitro and in vivo in rabbit tibial bone chambers. Biomaterials 1996; 17: 2373-2380.

Marx RE. Platelet-rich plasma: evidence to support its use J Oral Maxillofacial Surgery, 2004. 62, 489-496.

McGonagle D, English A, Jones EA. The relevance of mesenchymal stem cells in vivo for future orthopaedic strategies aimed at fracture repair. Curr Orthop 2007; 21: 262-267.

Meyer U, Buchter A, Wiesmann HP, Joos U, Jones DB. Basic reactions of osteoblasts on structured material surfaces. Eur Cell Mat 2005; 9: 39-49.

Muzzarelli RA, Mattioli-Belmonte M, Tietz C, Biagini R, Ferioli G, Brunelli MA, Fini M, Giardino R, Ilari P, Biagini G. Stimulatory effect on bone formation exerted by a modified chitosan. Biomaterials 1994; 15: 1075-1081.

Nauth A, Giannoudis PV, Einhorn TA, Hankenson KD, Friedlaender GE, Li R, Schemitsch EH. Growth factors: beyond bone morphogenetic proteins. J Orthop Trauma 2010; 24: 543-546.

Newman-Gage H. Banca d’osso per gli innesti allogenici: aggiornamenti su teorie e impieghi.In :Bojrab MJ, Ellison GW, Slocum B (eds). Tecnica chirurgica 2- chirurgia ortopedico- traumatologica: rachide e scheletro appendicolare. UTET Torino 2001; 858- 861.

Niemeyer P, Szalay K, Luginbühl R, Südkamp NP, Kasten P. Transplantation of human mesenchymal stem cells in a non-autogenous setting for bone regeneration in a rabbit critical-size defect model. Acta Biomateralia 2010; 6: 900-908.

Nixon AJ. Terapie iniettabili per la tenite: fattori di crescita, aspirato midollare, plasma arricchito o cellule staminali: cosa scegliere? Atti del XIV Congresso SIVE-FEEVA, Venice (Italy), 2008; 332-339.

(11)

80 Peter SJ, Lu L, Kim DJ, Stamatas GN, Miller MJ, Yaszemski MJ, Mikos AG. Effects of transforming growth factor beta1 released from biodegradable polymer microparticles on marrow stromal osteoblasts cultured on poly(propylene fumarate) substrates. J Biomed Mater Res 2000; 50: 452-462.

Peter SJ, Nolley JA, Widmer MS, Merwin JE, Yaszemski MJ, Yasko AW, Engel PS, Mikos AG. In vitro degradation of a poly(propylene fumarate)/btricalcium phosphate composite orthopaedic scaffold. Tissue Eng 1997; 3: 207-215.

Pitt CG. Poly (ε-caprolactone) and its copolymers. In: Chassin M, Langer R (eds.) Biodegradable polymers as drug delivery systems. New York: Dekker 1990; 71-119.

Place ES, George JH, Williams CK, Stevens MM. Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev 2009; 38: 1139-1151.

Puppi D, Chiellini F, Piras AM, Chiellini E. Polymeric Materials for Bone and Cartilage Repair. Progr Polymer Scie 2010a; 35: 403-440.

Puppi D, Detta N, Piras AM, Chiellini F, Clarke DA, Reilly GC, Chiellini E. Development of electrospun three-arm star poly(ε-caprolactone) meshes for tissue engineering applications. Macromol Biosci 2010b; 10: 887-897.

Puppi D, Dinucci D, Bartoli C, Mota C, Migone C, Dini F, Barsotti G, Carlucci F, Chiellini F, Development of 3D Wet-spun Polymeric Scaffolds Loaded with Antimicrobial Agents for Bone Engineering Conferenze materiali Polimerici per dispositivi medici impiantabili, Politecnico di Torino sede di Alessandria 3 Marzo 2011c.

Puppi D, Dinucci D, Bartoli C, Mota C, Migone C, Dini F, Barsotti G, Carlucci F, Chiellini F. Development of 3D wet-spun polymeric scaffolds loaded with antimicrobial agents for bone engineering. J of Bioactive Compatible Polymers. 2011b; 26 (5): 478-492.

Puppi D, Mota C, Gazzarri M, Dinucci D, Gloria A, Myrzabekova M, Ambrosio L, Chiellini F. Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering Biomed Microdevices. 2012 Dec;14(6):1115-27. doi: 10.1007/s10544-012- 9677-0.

(12)

81 Puppi D, Piras AM, Chiellini F, Chiellini E, Martins A, Leonor IB, Neves N, Reis R.

Optimized electro and wet-spinning techniques for the production of polymeric fibrous scaffolds loaded with bisphosphonate and hydroxyapatite. J Tissue Eng Regn Med 2011a; 5: 253-263.

Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006;

27:3413-3431.

Ròdenas–Rochina J , Gòmez Ribelles JL, Lebourg M., Comparative study of PCL–Hap and PCL-bioglass composite scaffolds for bone tissue engineering. J Mater Sci Mater Med 2013; 24: 1293-1308.

Roether JA, Gough JE, Boccaccini AR, Hench LL, Maquet V, Jerome R. Novel bioresorbable and bioactive composites based on bioactive glass and polylactide foams for bone tissue engineering. J Mater Sci Mater Med 2002; 13: 1207-1214.

Rout PGJ, Tarrant SF, Frame JW, Davies JE. Interaction between primary bone cell cultures and biomaterials. Part 3: a comparison of dense and macroporous hydroxyapatite. In: Pizzoferratto ARP, Lee AJC (eds.) Bioceramics and clinical applications. Amsterdam: Elsevier 1988; 591-596.

Sagar N, Pandey AK, Gurbani D, Khan K, Singh D, Chaudhari BP, Soni VP, Chattopadhyay N, Dhawan A, Bellare JR In-Vivo Efficacy of Compliant 3D Nano- Composite in Critical-Size Bone Defect Repair: a Six Month Preclinical Study in Rabbit ,PLoS One. 2013 Oct 18;8(10):e77578. doi: 10.1371/journal.pone.0077578.

Salgado AJ, Coutinho OP, Reis RL, Davies JE. In vivo response to starch-based scaffolds designed for bone tissue engineering applications. J Biomed Mater Res A 2007;80: 983-989.

Sandhu HS, Grewal HS, Parvataneni H. Bone grafting for spinal fusion. Orthop Clin North Am 1999; 30: 685-698.

Sassard WR, Eidman DK, Gray PM, Block JE, Russo R, Russell JL, Taboada EM.

Augmenting local bone with Grafton demineralised bone matrix for posterolateral lumbar spine fusion: avoiding second site autologous bone harvest. Orthopedics 2000; 23: 1059- 1065.

(13)

82 Savarino L, Baldini N, Greco M, Capitani O, Pinna S, Valentini S, Lombardo B, Esposito MT, Pastore L, Ambrosio L, Battista S, Causa F, Zeppetelli S, Guarino V, Netti PA. The performance of poly- e-caprolactone scaffolds in a rabbit femur model with and without autologous stromal cells and BMP4. Biomaterials 2007; 28: 3101-3109.

Schellauf F, Grillo Fernandes E, Braunegg G, Chiellini E. Properties of PHAs and their correlation to fermentation conditions in biorelated polymers. In: Chiellini E, Gil H, Braunegg G, Buchert J, Gatenholm P, van der Zee M (eds.) Sustainable polymer science and technology. New York: Kluwer Academic/Plenum Publishers 2001; 115-124.

Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res 1986; 205: 299–308.

Shen H, Hu X, Yang F, Bei J, Wang S. The bioactivity of rhBMP- 2 immobilized poly(lactide-co- glycolide) scaffolds. Biomaterials 2009; 30: 3150-3157.

Sinibaldi KR. Principi di innesto osseo. In: Bojrab MJ, Ellison GW, Slocum B (eds.) Tecnica Chirurgica 2 - Chirurgia ortopedico-traumatologica: rachide, scheletro appendicolare. UTET Torino 2001; 49: 849-853.

Song HR, Cho SH, Koo KH, Jeong ST, Park YJ, Ko JH. Tibial bone defects treated by internal bone transport using the Ilizarov method. Int Orthop (SICOT) 1998; 22: 293–297.

Soucacos PN, Johnson EO, Babis G. An update on recent advances in bone regeneration.

Injury 2008; 39: S1-S4.

Stevenson S. Bone Grafting. In Textbook of Small Animal Surgery. Slatter D.H., Philadelphia ed.: Saunders, 1993; 2:2035-48.

Sutter WW, Kaneps AJ, Bertone AL. Comparison of hematologic values and transforming growth factor-β and insulin-like growth factor concentrations in platelet concentrates obtained by use of buffy coat and apheresis methods from equine blood, AVJR 2004; 65(7), 924-930.

Taddei P, Tinti A, Reggiani M, Fagnano C. In vitro mineralization of bioresorbable poly([epsilon]- caprolactone)/apatite composites for bone tissue engineering: a vibrational and thermal investigation. J Mol Struct 2005; 744–747: 135-143.

(14)

83 Tessmar JK, Göpferich AM. Matrices and scaffolds for protein delivery in tissue engineering. Adv Drug Deliver Rev 2007; 59: 274-291.

Wang G, Yang H, Li M, Lu S, Chen X, Cai X. The use of silk fibroin/hydroxyapatite composite co- cultured with rabbit bone-marrow stromal cells in the healing of a segmental bone defect. J Bone Joint Surg Br 2010; 92: 320-325.

Wang X, Mabrey JD, Agrawal CM. An interspecies comparison of bone fracture properties. Biomed Mater Eng 1998; 8: 1-9.

We T, Ramakrishna S. A review on electrospinning design and nano fibre assemblies Nanotechnology 2006; 17: 89-106.

Weigel JP. Innesti Ossei. In Bojrab M J. Le basi patogenetiche delle malattie chirurgiche nei piccoli animali. Giraldi Editore I ed. it. Vol. II, 2001; 97: 901-909.

Westerhuis RJ, Van Bezooijen RL, Kloen P. Use of bone morphogenetic proteins in traumatology. Injury; 2005 36 (12): 1405-12.

Wiedel JD. Salvage of infected total knee fusion: the last option. Clin Orthop 2002;

404:139-142.

Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun 2000; 276: 461-465.

Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak M. Gene expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J Biomed Mater Res 2001; 55: 151-157.

Yannas IV. Natural materials. In: Ratner BD, HoffmanAS, Schoen FJ, Lemons JE (eds).

Biomaterials Science. An introduction to materials in medicine. California, USA:

Academic Press 1996; 84- 94.

(15)

84 Zerwekh JE, Kourosh S, Scheinberg R, Kitano T, Edwards ML, Shin D, Selby DK.

Fibrillar collagenbiphasic calcium phosphate composite as a bone graft substitute for spinal fusion. J Orthop Res 1992; 10: 562-572 .

Riferimenti

Documenti correlati

(associated with Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia) 65 Yandex School of Data Analysis, Moscow, Russia. (associated with Institute of

programmazione della shell e/o la gestione degli thread (o comunque un’attività inerente al corso da concordare). • Gli studenti fuori corso sono pregati di contattare

• La prova consiste in uno scritto a domande aperte – Il punteggio ottenuto potrà eventualmente essere..

Indeed, the blocked expression

The high momentum side of the spectrum is filled by two-body de- cays of the kind B → K J/ψ, where the c¯c pair is produced directly in color singlet configuration and thus

Figure 6: While standard test set validation usually favours over-fitted nonlinear PCA models, model validation based on the correctness of missing data estimation provides a

Measurements of boundary layer heat and moisture fluxes, carbon fluxes, high resolution (in a spectral, spatial, and temporal sense) thermal radiation and other

The aim of this study was to evaluate (1) retinal and choriocapillaris vessel density in the macular region using optical coherence tomography angiography (OCTA) and (2) central