• Non ci sono risultati.

Effectiveness and applicability of flood barriers for risk mitigation in flash-flood prone Mediterranean area

N/A
N/A
Protected

Academic year: 2021

Condividi "Effectiveness and applicability of flood barriers for risk mitigation in flash-flood prone Mediterranean area"

Copied!
6
0
0

Testo completo

(1)E3S Web of Conferences 7, 12010 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0712010. Effectiveness and applicability of flood barriers for risk mitigation in flashflood prone Mediterranean area Dario Rappazzo 1. 1,a. and Giuseppe Tito Aronica. 1. Dipartimento di Ingegneria, Università di Messina. Contrada di Dio, Villaggio S. Agata,98166, Messina, Italy. Abstract. The new policy of flood risk management is to give more attention to non-structural measures, allowing     

(2)   

(3)  

(4)   

(5)           

(6)           strategies: dry proofing and wet proofing. One measure of dry proofing is the shielding, consisting in the use of flood barriers, which can be installed at the entrance of the buildings or at a certain distance from them (including the placing along the banks or crossing a street). These flood protection structures are easier and faster to install rather than sandbags. This paper shows the results applied to a case study in the city of Barcellona, Sicily, Italy that is crossed by a river and suffered a severe inundation in November 2011. To study the effectiveness of using these flood barriers, a 2D hydrodynamic model has been used: the barriers has been placed along a road to inhibit the flow from flooding the protected area. While in North Europe these types of barriers are commonly used, because those areas are typically interested in clear water floods, in Italy flash floods and mud-debris-flows are more frequent and limit their use. The purpose of this work is to verify if these types of barriers are effective when placed along Mediterranean river courses and, especially, to be sure about their stability while subjected to the hydrodynamic effects of these kind of events. To gain this aim, the computed stresses from the modelling have been compared with the stability valu   

(7)       

(8)                 sliding. Simulations show how the flood barriers can mitigate the hydraulic risk, being able to withstand the hydrodynamic pressures and managing to divert the flow of water, thus avoiding that the flood water hits very exposed areas.. 1 Introduction      

(9)   

(10)    

(11)

(12)     

(13)  

(14)             

(15)    

(16)     

(17)  

(18)     

(19)  

(20)    

(21)       

(22)                  

(23)   

(24)  

(25)  

(26)  

(27)   

(28)

(29)     

(30)         

(31)    

(32)         

(33)   

(34)      

(35)

(36)  

(37)       

(38)   

(39)    

(40)  

(41)

(42)  

(43)                           

(44) 

(45)          

(46)     

(47)  

(48)  

(49)          

(50)    

(51)  

(52)     

(53)           

(54) !         

(55) 

(56) "      

(57)    # 

(58)

(59) .    

(60)

(61)  $  

(62)

(63)      .   

(64)  

(65)

(66)  

(67)       

(68)           

(69)    

(70) 

(71)                 

(72)

(73)       

(74)   

(75)

(76)  

(77)  

(78)     % & ' (  

(79)    

(80)

(81)      

(82)      

(83)  a. 

(84)

(85)               

(86)     

(87)        

(88)      

(89)   

(90)  

(91)     

(92)

(93) 

(94) 

(95)          

(96)             

(97)  

(98)   

(99)

(100)    

(101)  

(102)            

(103)               

(104)       

(105)     

(106)   

(107)                    

(108) 

(109)             "    

(110)     

(111)

(112)   ) $"      

(113) 

(114)          

(115)   

(116)       *

(117)  + 

(118)          

(119)

(120)  . 

(121)        

(122)    

(123)   ,  -       #    

(124)        -            

(125)   . 

(126)  

(127) 

(128)  

(129)   

(130)    

(131)        

(132) 

(133)               

(134)       

(135)

(136)     ! !

(137)   . 

(138)  

(139)   

(140)  

(141)

(142)    . 

(143)   

(144) -  

(145)  . Corresponding author: drappazzo@unime.it. © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/)..

(146) E3S Web of Conferences 7, 12010 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0712010. 2 Case Study /

(147)  

(148)    *

(149) ! 0 .   

(150)      

(151)  1 

(152)   2

(153) ..

(154)   3

(155) 

(156)  

(157) 

(158) 4  

(159)   

(160)  

(161)  

(162)      0    

(163)  1 

(164)   2

(165) ..

(166)   3

(167) 

(168)    

(169) 

(170)  -   

(171)   .  

(172)  

(173)  )5' %      

(174)   

(175) 

(176) . 

(177) '%666   . Figure 2. Critical points    =  &  =  '  

(178)       

(179) ;  

(180) 1 

(181)

(182)  . Figure 3. Critical point A Figure 1. Geographical location.        

(183)  &67 %    ,%      

(184) 

(185)  689   

(186)  1 

(187)  2

(188) ..

(189) 3

(190) 

(191)  

(192)  

(193)   .  

(194)    -  .   

(195) 

(196) - 

(197) 0     

(198)  :(

(199)  

(200)  ;<   .         

(201)    

(202)        2 

(203)   

(204)  

(205)    

(206) 

(207)     

(208)    

(209)   *

(210) !$           

(211) 56'    8&9  

(212)   79     

(213)         

(214)

(215)            .           

(216)     

(217)     

(218)   

(219)

(220) (%%*

(221) %6       

(222)      :

(223)   

(224)       %'6 

(225)  < 

(226)

(227) 

(228) 

(229) ) 

(230)    

(231)    

(232)     

(233)  

(234)    

(235)   :     

(236)     <  

(237)    

(238)  

(239) 

(240)  

(241)    = %  . Figure 4. Critical point B.  

(242)

(243) 

(244)    /

(245)  

(246) 

(247)  %% *

(248)  %6   "    

(249)      

(250)    

(251) 1 

(252)  2

(253) ..

(254) 3

(255) 

(256) = )        

(257)   

(258) 

(259)

(260)    . 2. .

(261) E3S Web of Conferences 7, 12010 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0712010. Figure 6. Flood Panel. . 3.1.2 Geodesign Barriers. Figure 5. A street after the flood of November 22, 2011.    

(262)   

(263)  

(264)    

(265)       .     

(266)     

(267)     := 7<           

(268)            

(269)          

(270)   :#@@

(271)    

(272) @<    

(273) 

(274) 

(275)    

(276)  

(277)   

(278)    

(279)  

(280)  

(281)           

(282)  

(283)  

(284)      

(285)        

(286)      

(287)  

(288)     "     3

(289)   1                

(290)   $ 

(291)    

(292)      

(293)       

(294)     

(295)        

(296)  

(297)  

(298)       

(299)   

(300)       

(301)  

(302) 6,)

(303) %)    

(304)  

(305)    !% @  

(306)   =

(307)   

(308)       , @      

(309)       

(310)        

(311)      

(312)       

(313)  

(314)  

(315)       ;  

(316)    

(317) 

(318) 

(319)       

(320)   

(321)  

(322)      

(323)   . 3 Materials: flood barriers 0

(324)  

(325)    

(326)   

(327)

(328)     

(329)  . 

(330)   

(331)   

(332)       

(333) 

(334)   

(335)  

(336) 

(337)     

(338)   

(339)  

(340)    7  

(341)    

(342)   # =

(343)

(344)  2  3

(345)   1  =

(346)

(347) 1  >  

(348)    

(349) 

(350)

(351)  

(352)    

(353) 

(354)         

(355)       

(356)       

(357)   

(358)      

(359)   

(360)   

(361)  

(362)       

(363)      

(364)        

(365)   

(366)   

(367)    =

(368)     

(369)  

(370)               

(371)  3.1 Features of flood barriers 3.1.1 Flood Panel  

(372)   

(373)   =

(374)

(375)  2  :?0; =

(376)  <      

(377)   

(378) 

(379) 

(380)   .        

(381)    

(382)    

(383)    

(384)  

(385)  

(386) 

(387)   

(388)    : #@@

(389)

(390)  

(391) @<           

(392)  

(393)  

(394)      

(395)   A4BC  C 

(396) C

(397)  C.  

(398) 

(399)                

(400)  65 

(401)  )  =

(402)

(403)       

(404)       

(405)      

(406)     

(407)   :)!%'&@ < 

(408)     

(409)     

(410)     

(411)  

(412)

(413)     

(414)  

(415)  

(416)                 

(417)             

(418)   

(419)

(420)    := ,< . Figure 7. Geodesign Barriers . 3.1.3 FloodBreak =

(421)

(422) 1   ?0

(423)    

(424) 

(425)  

(426)

(427)  

(428) 

(429)

(430) :#@@

(431)

(432)  

(433) @<  

(434)  

(435)         

(436)

(437)   

(438)            

(439) 

(440)  

(441)    

(442)     

(443)  >  

(444)  

(445)  

(446) ! 

(447)

(448)   

(449)   

(450) 

(451)     

(452)      

(453)  

(454)      

(455)   

(456)

(457)       

(458)     

(459)  

(460)   

(461)    . 3.

(462) E3S Web of Conferences 7, 12010 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management.       !     $        

(463)

(464)            56D  =

(465)

(466) 1  

(467)

(468)         

(469)    

(470)   

(471)  

(472) 

(473)     " 

(474)    " 

(475)      

(476)        

(477)  

(478) "

(479)  

(480)    

(481)  

(482)        

(483)   

(484)       .   

(485)   

(486)   ;  

(487)  

(488)  =

(489)

(490) 1       

(491)    

(492)  

(493)  

(494)   @ . DOI: 10.1051/ e3sconf/2016 0712010. 4 Methodology   

(495)  *

(496)  %6       

(497) 

(498)            

(499)  

(500) 

(501)        

(502)        

(503)     

(504)

(505)       "

(506) 

(507)      8

(508)  

(509)  

(510)

(511)         

(512)     

(513)

(514)              -/=2!%> :-  / =

(515)

(516)  2

(517)   

(518) <  

(519)    

(520)  5     

(521)      

(522)     

(523)   

(524)

(525)     have been included in the model representation of the study area 

(526) "

(527) 

(528)   

(529) 

(530) 

(531)  

(532)    

(533)       

(534)                   

(535) -/=2!%>

(536)     

(537)     

(538) 

(539)    

(540)   

(541)  

(542)      

(543)    

(544)

(545)       . 

(546)     "

(547)   =  6  

(548) 

(549) 

(550)    . Figure 8. Flood Break. 3.1.4 Dutchdam      

(551) 

(552)            %'66E%)6  :#@@  

(553) @<     

(554)  

(555)  

(556)   

(557)      >+/;F+0 

(558)      

(559)  

(560) 

(561)  

(562)    '66 *

(563)    

(564) 

(565)  %  

(566)       .   

(567)  

(568)   

(569) G

(570) ,66    

(571)  %@    

(572)  

(573)      

(574)  

(575)   >      "           . 

(576) 

(577)  

(578)      

(579) . Figure 10. Placement of flood barriers.   

(580)              

(581) 

(582) 

(583)  &8' 

(584)    )&68    - H C 

(585)  C 

(586)   

(587)      

(588)     

(589) 

(590)  6          

(591)  6688  66, !@&@   "  

(592)    

(593) %%&@  0  

(594)       

(595)   

(596)

(597)    

(598)     

(599)   

(600)    

(601)  

(602) 

(603)   

(604)  

(605)     

(606)    

(607)

(608)    = 

(609)   

(610)  

(611)            

(612)       

(613)   

(614)   

(615)     

(616)    

(617) 

(618)      . 

(619)    # 

(620)  

(621)  . =

(622)

(623) 2  3

(624)  1   =

(625)

(626) 1  >  . :<.  0    

(627)   

(628)      

(629)   

(630) 1 

(631)    " 

(632)  

(633)

(634)   

(635)         

(636) .

(637)   

(638) 

(639) 

(640) 

(641)    

(642)    .  

(643) 

(644)      U      

(645)   

(646)      

(647) #. Figure 9. Dutchdam. 

(648) . .

(649)

(650)    . &'85 6'77 &)85 %6666. . :%<.  

(651) 

(652)  

(653) ƌ    

(654) 

(655)  U       

(656)       =    

(657)   

(658) 

(659)  

(660)  . Table 1. Resistance force of flood barriers. 4.

(661) E3S Web of Conferences 7, 12010 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management.        

(662)      

(663)     

(664)   . DOI: 10.1051/ e3sconf/2016 0712010. 0.65 without flood barriers with flood barriers. 0.6. 5 Results and discussions. 0.55. height of water(m).  ;   

(665)     

(666)  -/=2!%>    

(667)  

(668)   

(669)   

(670)

(671)       

(672) 

(673) 

(674)

(675) 

(676)  

(677)    

(678)        

(679)  

(680)

(681)    

(682)    =    

(683)   

(684)   

(685)    

(686)   

(687)         

(688) .       

(689) 

(690)   

(691)

(692)        % & '  

(693)      

(694)        

(695)  

(696) ;!;1!14!4. 0.5 0.45 0.4 0.35 0.3 0.25 0.2. 0. 2. 4. 6. 8 distance(m). 10. 12. 14. 16. Figure 13. Water depths in section B-B 0.5 without flood barriers with flood barriers. height of water(m). 0.45. 0.4. 0.35. 0.3. 0.25. 0.2. without flood barriers with flood barriers. height of water(m). 0.5. 0.4. 0.3. 0.2. 0.1. 0. 2. 4. 6. 8 distance(m). 10. 12. 14. 4. 6. 8 distance(m). 10. 12. 14. 16.   

(697)     

(698)

(699)     

(700)  

(701)    

(702) ;! ;     %&  ' 

(703)     

(704)   

(705)

(706)     

(707)        

(708)  I  F

(709)   

(710) 

(711) 

(712) 

(713)  

(714)   

(715)  

(716)          

(717) &6  =  )  ,  

(718)   

(719)   

(720)     

(721)   

(722)  .

(723) . 

(724)     

(725) 

(726) 

(727)   

(728)   

(729)      =

(730)      

(731) 

(732) 

(733)      

(734) 

(735)   

(736)

(737)     

(738)   

(739)      

(740) . 

(741)   

(742)   

(743) 

(744)   

(745)   

(746)  

(747)   

(748)     )      

(749) 

(750)   

(751)

(752)         

(753)    

(754)   

(755)     

(756)    

(757)    

(758)   

(759)  

(760)  

(761) 

(762)  #. 0.7. 0. 2. Figure 14. Water depths in section C-C. Figure 11. Analysed sections along a street. 0.6. 0. 16. Figure 12. Water depths in section A-A. 

(763) :&<      

(764)  

(765)   

(766)

(767)    

(768)         

(769)  7)87 *  

(770)       

(771)  

(772)  

(773)        

(774)  

(775)       

(776)

(777)           

(778)    

(779)       

(780)  

(781)   

(782)

(783)   :

(784)

(785)  <          

(786) 

(787)   

(788)        

(789)      

(790)  

(791)   . 5.

(792) E3S Web of Conferences 7, 12010 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. '. - 

(793) G

(794)  *  2  + :%667< =

(795) 

(796) !   ;

(797)   

(798)

(799)  

(800)  

(801)

(802)   

(803)     

(804)  "     1 "! " $- " , ) " !)!"+%&)5!&8% ) 0   M (%667<;

(805) 

(806) 

(807)

(808) 

(809) 

(810)    1 "!"$- ",) " !)!"+%')&! ')5 , 1  - :%667< /

(811)   

(812)

(813)      + 

(814)  1 "!"$- ",) " !)!"+&%! &&8 7 / 

(815)  M >

(816)   - F

(817)  4  2

(818)   > :%665< (

(819)      

(820)     

(821)    

(822)

(823)  

(824) 

(825)  ! ;

(826) 

(827)          2  ) * +   , !!"+ $- " 3"")!"+ 2  # ?  

(828)

(829)    

(830)  

(831) 

(832)  4%% 8 ;   F 1    M 4   M  J

(833)  M :%667< 

(834)      

(835)   

(836)    

(837)

(838)          ;   F 3  0 2  + I 

(839) 

(840) 

(841)  ;  J 4 :+ < 1 "! " $- " , ) " !)!"+ /

(842) 

(843) # 

(844) N=   5 ;

(845)  3* 

(846) 4   :558<; %>- -

(847) 

(848) =

(849)

(850) 2

(851)   

(852) =

(853)

(854)  ;; 143#$" ,5 +!2!$! 6 """  "7 " !)!"+' 6 3   ;

(855)   0   *

(856)  ;  4  :%6%<( 

(857) 

(858)  

(859) !    

(860)           

(861)

(862)  

(863)   

(864)  

(865)   8"!+ "+ )!"  "  $59 *  M   1G 

(866)   (  3 /

(867)  :%667< ; 

(868)   !  

(869)

(870)  

(871) 

(872)    ! ;  

(873)        

(874)  

(875) 

(876)         1 "! " $- ",) " !)!"+',!'7%   .  

(877) 

(878)  

(879)

(880)  

(881) 

(882)     

(883)  

(884)           

(885)  =      

(886)  

(887)      

(888)      !    

(889)

(890)     

(891)

(892) . Figure 15. Velocity vectors without flood barriers.  . Figure 16. Velocity vectors with flood barriers. 6 References  %. &. DOI: 10.1051/ e3sconf/2016 0712010. J$K ..    K:555< =

(893)

(894)  

(895) 

(896)     # 

(897)    L   !"!#$" %'7!'&% >

(898)   -  / 

(899)  M :%6%< 2

(900)  !/ =

(901)

(902)  2

(903) 

(904)  ! 4    

(905)       & '  ()* + " !*"! , + !-$+!"")!"+%%5!&6& M

(906) 

(907)  - :%6%< 2

(908) 

(909)   

(910)  

(911)  

(912)

(913)     & '  ()* + " !*"!,+ !-$+!"")!"+%

(914) .

(915) /0. 6.

(916)

Riferimenti

Documenti correlati

4 Components of total water levels Depending on the location of the project site, TWLs are a combination of a range of contributors and will vary in both space and time in a

To improve the relevance of the AIGA method, this paper shows the benefits of the combination of hydrological warnings with an exposure index, to be able to assess the risk

1 Introduction The concept of risk implies a transition from the classical approach of defending a territory from flood hazard, through structural measures that modify

This paper shares interdisciplinary research that has developed an innovative co- production process to engage small businesses and the stakeholders that support them in

Centre for Floods, Communities and Resilience, University of the West of England, Bristol,UK Centre for Cultural Policy Studies, University of Warwick, Coventry,UK... Transactions

This paper reports on an updated national screening assessment of the predicted flood risk to Highways England's Strategic Road Network SRN which spans all trunk roads including

The effect of hydrodynamic interdependencies on flood risks in a river system with protection depends on: Ͳ Differences in protection standards/ failure probabilities between

But, the late implementation of the prevention provisions and the lack of the urban planning documents concerning the natural hazards have led to a development of the urbanism in