Standard Model precision measurements Misure di precisione del modello standard
Lesson 4: top mass measurement
Stefano Lacaprara
INFN Padova
Dottorato di ricerca in fisica
Universit` a di Padova, Dipartimento di Fisica e Astronomia
Padova, 15 Marzo 2016
Outline
1 Introduction
2 Z-pole observables
3 Asymmetries
4 W mass and width
5 Top mass
6 Higgs mass and features
7 Global ElectroWeak fit
Outline
1 Introduction
2 Z-pole observables Standard Model Z lineshape
3 Asymmetries
4 W mass and width
5 Top mass
6 Higgs mass and features
7 Global ElectroWeak fit
Outline
1 Introduction
2 Z-pole observables
3 Asymmetries
Forward-Backward Asymmetries Left-Right Asymmetries Tau polarization
4 W mass and width
5 Top mass
6 Higgs mass and features
7 Global ElectroWeak fit
Outline
1 Introduction
2 Z-pole observables
3 Asymmetries
4 W mass and width Motivation At LEP II M W at Tevatron M W at LHC M W at Tevatron
5 Top mass
6 Higgs mass and features
Outline
1 Introduction
2 Z-pole observables
3 Asymmetries
4 W mass and width
5 Top mass Introduction General technique Lepton plus jets Dileptons Full hadronic Single top
Pole mass M top measurements Alternative M top measurements Summary of M top
6 Higgs mass and features
Stefano Lacaprara (INFN Padova) Fit SM Padova 15/03/2016 2/52
Input to global EWK fit
(in parenthesis the order followed in these lessons)
3
− − 2 − 1 0 1 2 3
tot
O) / σ
−
indirect
(O
2
) (M
Zα
s2
) (M
Z (5)α
had∆ m
tb
R
0 cR
0 0,bA
FB0,c
A
FBA
bA
c(Tevt.)
leptΘ
effsin
2)
FB lept(Q Θ
effsin
2(SLD) A
l(LEP) A
l0,l
A
FBlep
R
00
σ
hadΓ
ZM
ZΓ
WM
WM
HGlobal EW fit Indirect determination
Measurement
G fitter
SMMar ’18
Higgs mass (5)
I LHC
W mass and width (3)
I LEP2, Tevatron Z-pole observables (1)
I LEP1, SLD
I M Z , Γ Z
I σ 0 had
I sin 2 Θ lept eff
I Asymmetries
I BR R lep,b,c 0 = Γ had /Γ ``,b ¯ b,c ¯ c top mass (4)
I Tevatron, LHC other:
I α s (M Z 2 ), ∆α had (M Z 2 )
Input to global EWK fit
(in parenthesis the order followed in these lessons)
Higgs mass (5)
I LHC
W mass and width (3)
I LEP2, Tevatron Z-pole observables (1)
I LEP1, SLD
I M Z , Γ Z
I σ 0 had
I sin 2 Θ lept eff
I Asymmetries
I BR R lep,b,c 0 = Γ had /Γ ``,b ¯ b,c ¯ c top mass (4)
I Tevatron, LHC other:
I α s (M Z 2 ), ∆α had (M Z 2 )
Toq Quark introduction
Discovered at Tevatron in 1995 (> 20 years ago);
heaviest fundamental particle;
I weight as an atom of 70 Yt, little less than Pl , or Au.
Yukawa coupling G i =
√ 2M top
ν ∼ 1;
it decays before hadronization:
I B(t → bW ) ≈ 100%
F |V tb | ≈ 1
I Γ t ' G F m t 3 8 √
2π |V tb | 2 ∼ 1.5 GeV Λ QCD I τ top ∼ 10 −25 s < τ QCD ∼ 10 −24 s;
I unique chance to study bare quark;
M top enters (quadratically) in basically all radiative corrections
M top and vacuum stability [1]
SM L at tree level, in the Higgs sector, has a potential V (φ) = m 2 |φ| 2 + λ|φ| 4 = 1
2 m 2 H 2 + 1
4 λH 4 + . . ., where hHi = v =
s 1
√ 2G F
= 246.2 GeV and m 2 H = 2λv 2
if energy scale µ v (eg plank scale), use a single running coupling λ(µ):
V (µ v ) ≈ 1 4 λ(µ)H 4
If for some (large) value of H λ(µ) < 0, the potential become instable (or metastable)
Minimum closer to 0 is the EWK one. A second, deeper minimum can be there also.
If P-tunnel low (wrt age of universe):
metastable, otherwise unstable
Correction, and stability depends on M H ,
M top , and α s (M Z )
Vacuum stability vs M top and M H
Apparently we (the universe?) are very close to the metastbility region (yellow area)
Stability for M H [ GeV] > 129.5 + 1.4 M top [ GeV] − 173.1 0.7
− 0.5 α s (M Z ) − 0.1184 0.0007
Absolute stability is excluded at 98%C.L. for M H < 126 GeV [1].
So, it is not just yet-an-other ingredient of the global SM fit.
Improving the precision of M top (and M H ) is crucial to understand the vacuum stability.
Th. computation rely on the assumption that the pole mass is the world average
Experiment vs Theory
What are we talking about when we talk about M top ? [2]
M exp vs M theo
in QFT mass is a bare quantity that need to be renormalized to have physical relevance;
What we measure experimentally, from direct measurement, is the MC mass M MC (eg via template method), namely a mass of a theory prediction
I M MC is related to the pole of the propagator M pole in the L but are not the same thing.
I close, but different:
M pole = M MC + Q 0 [c 1 α S (Q 0 ) + . . .]
F where Q 0 is a scale used in the definition of M MC (∼ 1 GeV in Pythia)
“The uncertainty on the translation from the MC mass definition to a theoretically well defined shortdistance mass definition at a low scale is currently estimated to be of the order of 1 GeV [3].”
on the other hand, theoretically M MC is typically evaluated in a given renormalization schema taking into
account the self-energy radiative contribution and a given cutoff;
Experiment vs Theory (II)
Theory definition of M top depends on renormalization schema several schema are used, each with its own problems
MS : “modified minimal subtraction”, introduces an arbitrary mass scale in the theory, M MS
OS : “on-shell (pole) mass scheme” connection to the top quark’s kinematical properties physically limited for color confinement
RGI . . .
M(MS ) = M pole (1 + 4/3α S /π + . . .) (known up to O(α 4 S ) [4]) Note that M top (MS ) − M top (pole) ∼ 10 GeV
MSR “low-scale short distance masses” schema interpolates smoothly between pole and MS
I M MSR (R) −−−→ M R→0 pole , and M MSR (R = M MS ) = M MS (R is infrared scale)
I with R ∼ 1 GeV, M MSR is as close as possible to pole
M top MC = M top MSR (R = 3 +6 −2 ) GeV which correspond to “. . . order of 1 GeV” [5]
Side remark: σ tt depends on M pole so it can be used for direct M pole measurement
M(pole) vs M( ¯ MS )
top production at Tevatron and LHC
Production mechanism:
q ¯ q → t ¯ t
I Dominant at Tevatron (85%-15%) gg → t ¯ t
I Dominant at LHC (90%-10%)
2 4 6 8 10 12 14
[TeV]
s 10
10 2
10 3
cross section [pb]t Inclusive t
top WG LHC
topWG LHC
ATLAS+CMS Preliminary Sept 2019
* Preliminary
-1) 8.8 fb
≤ Tevatron combined 1.96 TeV (L
-1) CMS dilepton,l+jets 5.02 TeV (L = 27.4 pb
-1) 7 TeV (L = 4.6 fb µ ATLAS e
-1) 7 TeV (L = 5 fb µ CMS e
-1) 8 TeV (L = 20.2 fb µ ATLAS e
-1) 8 TeV (L = 19.7 fb µ CMS e
-1) 8 TeV (L = 5.3-20.3 fb µ LHC combined e
-1)
* 13 TeV (L = 36.1 fb µ ATLAS e
-1) 13 TeV (L = 35.9 fb µ CMS e
-1)
* 13 TeV (L = 35.9 fb µ τ+e/
CMS
-1) ATLAS l+jets* 13 TeV (L = 139 fb
-1) CMS l+jets 13 TeV (L = 2.2 fb
-1) CMS all-jets* 13 TeV (L = 2.53 fb
NNLO+NNLL (pp) ) p NNLO+NNLL (p
Czakon, Fiedler, Mitov, PRL 110 (2013) 252004 0.001
±
) = 0.118 (M
Z αs= 172.5 GeV, NNPDF3.0, m
top13
s[TeV]
700 800 900
(stat)±(syst)±(lumi) σ t ¯ t ( √
s = 1.96 TeV) = 7.16 ± 0.2 pb σ t ¯ t ( √
s = 7 TeV) = 173.0 ± 2 ± 8 ± 6 pb σ t ¯ t ( √
s = 8 TeV) = 241.5 ± 1.4 +6.3 −5.5 ± 6.4 pb σ t ¯ t ( √
s = 13 TeV) = 818 ± 8 ± 27 ± 19 pb (ATLAS eµ) σ t ¯ t ( √
s = 13 TeV) = 815 ± 2 ± 25 ± 20 pb (CMS eµ) NB: σ( √
s) depends on M pole
Single top production also present
s and t-channels seen at TeVatron all channels measured at LHC
10 10 2
Inclusive cross-section [pb]
7 8 13
] V e [T s Preliminary
ATLAS+CMS LHC top WG
Single top-quark production September 2019
t-channel
tW
s-channel
t-channel
ATLAS
PRD90(2014)112006, EPJC77(2017)531, JHEP04(2017)086CMS
JHEP12(2012)035, JHEP06(2014)090, arXiv:1812.10514 ATLAS+CMSJHEP05(2019)088tW
ATLAS
PLB716(2012)142, JHEP01(2016)064, JHEP01(2018)063CMS
PRL110(2013)022003, PRL112(2014)231802, JHEP10(2018)117 ATLAS+CMSJHEP05(2019)088s-channel ATLAS
PLB756(2016)228CMS
JHEP09(2016)027 ATLAS+CMSJHEP05(2019)08858 (2014) PLB 736 NNLO scale uncertainty
091503, (2011) 83 NNLL PRD + NLO
054028 (2010) 81 054018, PRD (2010) 82 PRD
contribution removed t tW: t
uncertainty
αs⊕
⊕
scale
74 (2015) 10, CPC191 (2010) NPPS205 NLO
top
,
F= m
µ R=
µCT10nlo, MSTW2008nlo, NNPDF2.3nlo V e G 65
F=
µand V e G 60
= removal t veto for t
btW: p
Tscale uncertainty
uncertainty
αs⊕
⊕
scale
stat. total
Single top vs anti-top
In general σ t 6= σ t ¯
measured for t−channel at different √ s σ t−channel > σ tW > σ s−channel
7 8 9 10 11 12 13
[TeV]
s 1
1.2 1.4 1.6 1.8 2 2.2 2.4
t t-ch., σ / t-ch.,t σ = t R
PRD 93 (2016) 033006
CT14
JHEP 1504 (2015) 040
NNPDF 3.0
EPJC 75 (2015) 204
MMHT2014
74 (2015) 10, CPC 191 (2010) NPPS 205
NLO QCD
= mtop µF
= µR
= 172.5 GeV, mtop
PRD 90 (2014) 112006 -1 ,
ATLAS, 4.59 fb
EPJC 77 (2017) 531 -1 ,
ATLAS, 20.2 fb
JHEP 06 (2014) 090 -1 ,
CMS(*), 19.7 fb
JHEP 04 (2017) 086 -1 ,
ATLAS, 3.2 fb
arXiv:1812.10514 -1 , CMS, 35.9 fb LHC top WG
ATLAS+CMS Preliminary September 2019
relaxed assumptions on PDF correlations (*) Larger uncertainties are due to
stat.
total
t ¯ t event signatures
General technique
Issues:
I complex final state: jets, b-tagging, leptons, MET;
F combinatorics
I The name of the game is: jet energy scale Techniques:
I kinematical fit to M(jj ) = M W and M t = M t ¯ ;
I kin fit also to reduce combinatorics;
I use unconstrained W → jj decay to simultaneously fit JES ;
I residual JES for b-jets can also be exctacted from a fit from data;
M top extractions:
I Template Method (standard);
I Matrix Element Method;
I Ideogram Method;
I Analytical Matrix Weighting Technique;
I many alternative others . . .
At Tevatron statistics is relevant, not much at LHC.
Lepton+jets channel
Semi-Leptonic decay.
Golden channel
I low background and high BR.
I one top fully reconstructed t → bW → bjj, one with missing nutrino t → bW → b`ν.
A critical element is the knowledge of Jet (and b-jet) Energy Scale use a kinematical likelihood fit for full reconstruction.
fit can be done in three ways:
I 1D fit reconstruct t → bjj: depends strongly on M top , JES, bJES.
I 2D fit reconstruct W → jj: strong dep. on JES, neglibible to M top , jJES
I 3D fit use an other variable strong dep. on bJES and weak on M top and JES
I eg:
R lb = p b T /p W T
R lb 1b = p b t
p t jet W ,1 + p jet t W ,2
/2
R lb 2b = R qb reco = p b t had + p b t lep p jet t W ,1 + p t jet W ,2
3D simultaneous fit to extract M top , JES, bJES
Use Template method
Template method
Extensively used by Tevaton and LHC: similar to that used for M W
build an estimator sensitive to M top
I eg invariant mass of daughters t → bjj, or P t ` or whatever;
build various template distribution for different values of M top ;
I parametrize the estimator vs M top (mean M top in the example below);
Perform a maximum likelihood fit to the data;
extract M top (and uncertainty);
CDF: lepton+jets: Template 2D
Consider separately 0,1,2 b-tags events, 2D fit (M top , JES) template fit on 3 distribution M bjj reco , M bjj reco,2 nd choice (takes into account combinatorics), M jj
M bjj reco M reco,2
nd choice
bjj M jj
ATLAS lepton+jet: Template 3D [6]
ATLAS lepton+jet: results (8 TeV) [6]
M top = 172.08 ± 0.39 ± 0.82 GeV = 172.08 ± 0.91 GeV
main systematics: JES (0.54 GeV), b-tagging (0.38 GeV)
CMS: Ideogram Method [7]
Build a event likelihood based on templates derived from MC (Ideograms)
I build templates for M top , M W , and background for different M top (7), JES(5)
I consider separately templates for correct permutation and wrong permutation, based on MC jet-parton match;
loop over all permutations;
kinematic fit to tt-hypothesis
I use goodness-of-fit to cut and as a weight
Simultaneous fit of M top and JES
Ideogram Method Likelihood
L fit for every event (M top k.fit , M W reco ) to 2D (M top , JES ) templates from simulation.
L(M top , JES |ev ) ∼ L(ev |M top , JES ) = Y
ev
L(M top k.fit , M W reco |M top , JES ) L(M top k.fit , M W reco |M top , JES ) = X
j ∈permutation
f j P j (M top k.fit |M top , JES ) × P j (M W reco |M top , JES )
Complication for correct and wrong permutations, background.
Ideogram Results: semi-leptonic [7]
Type of Fit (Prior on JES) 1D L(sample|M top , JES = 1) 2D L(sample|M top , JES ) JES free
Hybrid L(sample|M top , JES = 1) JES constrained from jet-energy uncertainties
Results:
[GeV]
m
t172 172.2 172.4
JSF
0.994 0.995 0.996 0.997 0.998
log(L) = 1
∆ -2
log(L) = 4
∆ -2
log(L) = 9
∆ -2
(13 TeV) 35.9 fb-1 CMSPreliminary
M top 1D = 171.93 ± 0.07(stat) ± 1.09(syst) GeV M top 2D = 172.40 ± 0.09(stat + JES ) ± 0.68(syst) GeV M top hyb = 172.25 ± 0.08( stat + JES) ± 0.62(syst) GeV syst from ME generator, FSR, color reconnection modelling
M top M W before and after goodness-of-fit cut
[GeV]
reco m W 0 50 100 150 200 250 300
Data/MC 0.5
1 1.5 Permutations / 5 GeV 50 100 150 200 250 300 10
3×
correct t twrong t t
unmatched t t Data
Single t W+jets Z+jets QCD multijet Diboson
(13 TeV) 35.9 fb
-1CMS
Preliminary[GeV]
reco m t
100 200 300 400
Data/MC 0.5
1 1.5 Permutations / 5 GeV 20 40 60 80 100 120 140 10
3×
correct t twrong t t
unmatched t t Data
Single t W+jets Z+jets QCD multijet Diboson
(13 TeV) 35.9 fb
-1CMS
Preliminary[GeV]
m reco 0 50 100 150 200 250 300
Data/MC 0.5
1 1.5 Permutations / 5 GeV 20 40 60 80 100 120 140 160 10
3×
correct t twrong t t
unmatched t t Data
Single t W+jets Z+jets QCD multijet Diboson
(13 TeV) 35.9 fb
-1CMS
Preliminary[GeV]
m fit
100 200 300 400
Data/MC 0.5
1 1.5 Permutations / 5 GeV 10000 20000 30000 40000 50000 60000 70000 80000
tt correctwrong t t
unmatched t t Data
Single t W+jets Z+jets QCD multijet Diboson
(13 TeV) 35.9 fb
-1CMS
PreliminaryM top dependency on kinematic observables
test different modeling of color reconnections and generator (ME)
[GeV]
t,had
p
T0 100 200 300 400
> [GeV]
hyb t<m −
hyb t,calm
1.5
−
− 1 0.5
− 0 0.5 1 1.5
2
Data Powheg v2 P8 M2T4 MG5aMC@NLO [FxFx] P8 M2T4 MG5aMC@NLO [MLM] P8 M1 Powheg v2 H++ EE5C, no ME cor.(13 TeV) 35.9 fb
-1CMS 35.9 fb
-1(13 TeV) CMS
Preliminary[GeV]
t
m
t500 1000 1500
> [GeV]
hybt<m −
hybt,calm
− 4 2
− 0 2 4
Data Powheg v2 P8 M2T4 MG5aMC@NLO [FxFx] P8 M2T4 MG5aMC@NLO [MLM] P8 M1 Powheg v2 H++ EE5C, no ME cor.
(13 TeV) 35.9 fb
-1CMS 35.9 fb
-1(13 TeV) CMS
Preliminary[GeV]
t t
p
T0 50 100 150
> [GeV]
hyb t<m −
hyb t,calm
0 1 2 3 4
Data Powheg v2 P8 M2T4 MG5aMC@NLO [FxFx] P8 M2T4 MG5aMC@NLO [MLM] P8 M1 Powheg v2 H++ EE5C, no ME cor.
(13 TeV) 35.9 fb
-1CMS 35.9 fb
-1(13 TeV) CMS
PreliminaryNumber of jets
4 5 6
> [GeV]
hybt<m −
hybt,calm
2
− 1
− 0 1 2 3 4 5
DataPowheg v2 P8 M2T4 MG5aMC@NLO [FxFx] P8 M2T4 MG5aMC@NLO [MLM] P8 M1 Powheg v2 H++ EE5C, no ME cor.
(13 TeV) 35.9 fb
-1CMS 35.9 fb
-1(13 TeV) CMS
Preliminary[GeV]
b,had
p
T50 100 150 200 250
> [GeV]
hyb t<m −
hyb t,calm
− 2 1
− 0 1 2 3 4 5
Data Powheg v2 P8 M2T4 MG5aMC@NLO [FxFx] P8 M2T4 MG5aMC@NLO [MLM] P8 M1 Powheg v2 H++ EE5C, no ME cor.
(13 TeV) 35.9 fb
-1CMS 35.9 fb
-1(13 TeV) CMS
Preliminaryb,had
|
| η
0 0.5 1 1.5 2
> [GeV]
hybt<m −
hybt,calm
1.5
− 1
− 0.5
− 0 0.5 1 1.5
2
Data Powheg v2 P8 M2T4 MG5aMC@NLO [FxFx] P8 M2T4 MG5aMC@NLO [MLM] P8 M1 Powheg v2 H++ EE5C, no ME cor.(13 TeV) 35.9 fb
-1CMS 35.9 fb
-1(13 TeV) CMS
Preliminaryb
R
b∆
2 4 6
> [GeV]
hyb t<m −
hyb t,calm
0.8
−
− 0.6 0.4
−
− 0.2 0 0.2 0.4 0.6 0.8
1
DataPowheg v2 P8 M2T4 MG5aMC@NLO [FxFx] P8 M2T4 MG5aMC@NLO [MLM] P8 M1 Powheg v2 H++ EE5C, no ME cor.(13 TeV) 35.9 fb
-1CMS 35.9 fb
-1(13 TeV) CMS
Preliminaryq
R
q∆
1 2 3 4
> [GeV]
hyb t<m −
hyb t,calm
− 3 2
− 1
− 0 1 2 3
4
DataPowheg v2 P8 M2T4 MG5aMC@NLO [FxFx] P8 M2T4 MG5aMC@NLO [MLM] P8 M1 Powheg v2 H++ EE5C, no ME cor.(13 TeV) 35.9 fb
-1CMS 35.9 fb
-1(13 TeV)
CMS
PreliminaryMatrix Element Method
Use all information from the event integrating over the least known variables Observables: measured momentum of jets and leptons x.
Question: what is the most probable M top given the set of observables x?
Method: at parton level, we can compute the probability of having a set of pseudo-observables y (partons 4-momenta) given M top (matrix element). But we observe x (jets and leptons), need to relate x to y (partons).
We have signal and background:
P ev (x |M top ) = f top P sgn (x |M top ) + (1 − f top )P bkg (x )
P bkg (x ) depends on decay channel, P sgn (x |M top ) is the key
D0: Matrix Element Method [8]
P sgn (x |M top ) is the probability to have a set of kinematical variable x for a given M top . Can be calculated event by event.
P sgn (x |M top ) = 1 σ(M top )
Z
d n σ(y |M top )dp 1 dp 2 f (p 1 )f (p 2 )W (x , y )
1
σ(M top ) normalization: depends on M top . Z
integrate over all unknown variables of initial state partons p 1 , p 2 and final state partons y . d n σ(y |M top ) contains the LO matrix element of the process at parton-level (q ¯ q → t ¯ t or gg → t ¯ t);
f (p) is PDF (parton density function)
W (x , y ) is probability that parton-level y will be measured as a set of variables x To include also JES: P sgn (x |M top , JES )
I use Bayes’ theorem to get P sgn (M top , JES |x) for each events
I and then sum over all events Π i (P sgn (M top , JES |x i )
ME in action
Transfer functions W (x, y)
Separate for b-jets and b-jets with µ inside
M top = 174.98 ± 0.58( stat + JES) ± 0.49(syst) GeV
= 174.98 ± 0.76 GeV
main systematics:
residual JES (0.21 GeV), hadronization (0.26 GeV)
Dileptons channel [9]
very clean signal, almost no background but not possible full event reconstruction Template method on M `b
correct match (`b from same top) as well as wrong match (25%)
[GeV]
reco mlb
50 100 150
Normalised events / 5 GeV
0.05 0.1
mtop 167.5 GeV 172.5 GeV 177.5 GeV
ATLAS
Simulation
[GeV]
reco
m
lb40 60 80 100 120 140 160
Ratio
0.6 0.81 1.2 1.4
[GeV]
reco
m
lb40 60 80 100 120 140 160
Events / 2 GeV
0 100 200 300 400
500 Data
1% background Best fit Uncertainty
ATLAS
=8 TeV, 20.2 fb
-1s
M top = 172.99 ± 0.41 ± 0.74 GeV = 172.99 ± 0.84 GeV syst uncert from b-JES
Dileptons: neutrinos reconstruction
Analytical Matrix Weighting Technique (CMS) [10] [CDF did something similar]
Assume pure t ¯ t signal;
kin-fit underconstrained
I 2ν × 3 = 6 variables
I p x = 0 = p y , M(`¯ ν) = M(¯ `ν) = M W , M t = M t ¯ : 5 constraints scan over possible M top ;
for each M top we have 0,2, or 4 solutions (intersection of two ellipses), plus permutation (2b, 2`);
for each solution build a weight taking into account the LO matrix element
take M top corresponding to highest X
w : M AMWT
likelihood fit to extract mass;
M top = 172.8 ± 0.2 ± 1.2 GeV (syst dominated by JES)
Full hadronic
Large background;
not trivial to trigger (no lepton, purely jet-like, high threshold);
independent data sample;
no MET, no dependence on MET modelling;
full reconstruction but large combinatorics;
color reconnections;
JES, bJES,. . .
I Ideogram 1D (M top ) and 2D (M top + JSF) or Hybrid (JSF gaussian constraint)
F different weight for correct/uncorrect combinations
I Template fit from R 3/2 = M(bjj )/M(jj )
CMS Ideogram method 2D at 8 TeV
CMS Ideogram method 2D at 13 TeV [11]
trigger:
I HT > 450 GeV (scalar sum of hadronic energy in event)
I N ≥ 6 jets (p T > 40 GeV)
I N ≥ 1 jets b-tagged selection:
I 6 Jets
I 2 b-tagged
I p T (jets) > 40 GeV
I ∆R(b ¯ b) > 2.0
kin-fit: M W + = M W − = M W (PDG ) and M t = M t ¯
large combinatorics! Select best χ 2 of kin-fit
[GeV]
fit
m
t100 200 300 400
Data/MC 0.5 1 1.5
Events / 5 GeV
200 400 600 800 1000 1200 1400 1600 1800
tt correctwrong t t
Multijet Data
(13 TeV) 35.9 fb
-1CMS
[GeV]
reco
m
W70 80 90 100 110 120
Data/MC 0.5 1 1.5
Events / 1 GeV
200 400 600 800 1000
correct t t
wrong t t
Multijet Data
(13 TeV) 35.9 fb
-1CMS
Ideogram fit (1D, 2D, hybrid)
M top = 172.34±0.20(stat +JSF )±0.76(syst) GeV
syst from Color Reconnection, bJet correction
Full hadronic ATLAS: R 3 /2 [12]
All hadronic final states.
Use the R 3/2 distribution as the estimator for M top instead of m jjj
I More protected from JES variation: R 3/2 = m bjj
m jj ∝ JES · bJES JES
Entries / 3 GeV
200 400 600 800 1000 ATLAS
Ldt = 20.2 fb
-1∫
= 8 TeV s Data
MC (Correct) t t
MC (Incorrect) t t
MC (Non-Matched) t t
QCD Multi-jet (Data-Driven) Syst. Uncertainty
⊕ Stat.
[GeV]
140 160 180 200 220 240 260 280 300 m
Data / Prediction
0.5 1 1.5
Entries / 0.04
200 400 600 800 1000
ATLAS Ldt = 20.2 fb
-1∫
= 8 TeV s Data
MC (Correct) t t
MC (Incorrect) t t
MC (Non-Matched) t t
QCD Multi-jet (Data-Driven) Syst. Uncertainty
⊕ Stat.
/m = m 1.6 1.8 2 2.2 2.4 2.6 2.8 3 R 3.2 3.4
Data / Prediction
0.5
1
1.5
M top from single top production
Method:
decay channel: t → bW → µν.
production: mostly t-channel
Requires: 1µ + (σ t > σ t ¯ ), MET, 1 b-jet (plus other forward jet |η j | > 2.5 - associated prod- ).
Template method on M µνb or M `b
(GeV)
genm
t166 168 170 172 174 176 178 180
(GeV) µ
160 162 164 166 168 170 172 174
Simulation (8 TeV)
CMS
Results:
CMS [13]
M top = 172.95 ± 0.77 +0.97 −0.93 GeV = 172.95 ± 1.24 GeV syst: JES (0.68 GeV), bkgn (0.39 GeV), fit (0.39 GeV)
ATLAS [14] M top = 172.2 ± 0.7 ± 2.0 GeV
D0: Pole mass M top measurements
Indirect pole mass measurement can be extracted from a x-section measurement, total or differential.
Compare σ t ¯ t with NNLO+NNLL prediction [15] a function of MC M top .
I in semi-leptonic and di-leptonic channels
the fit to extract the σ is based on a signal which depends on M top MC
I so we measure σ for different M top MC .
Or from differential σ t¯t (p T )
Pole mass M top measurements at LHC
ATLAS [16, 17, 18], CMS [19, 20, 21]
Inclusive σ t ¯ t 7+8+13 TeV σ t ¯ t+jet 7+8 TeV
Differential vs p T ` , p T `` , m eµ , . . . for t ¯ t → eµ + X events 8+13 TeV
155 160 165 170 175 180 185 190
[GeV]
m
topATLAS+CMS Preliminary m
topfrom cross-section measurements top WG
LHC Sep 2019
from top quark decay mtop
ATLAS, 7+8 TeV comb. [11]
CMS, 7+8 TeV comb. [10]
total stat m
top±tot (stat
±syst
±theo)
Ref.) n-differential, NLO t
σ (t
+1j) differential, NLO t
σ (t
) inclusive, NNLO+NNLL t
σ (t
ATLAS, 7+8 TeV
-2.6 [1]172.9
+2.5CMS, 7+8 TeV
-1.8+1.7 [2]173.8
CMS, 13 TeV
-1.5+1.2)
[3]1.5
± (0.1
-2.1169.9
+1.9ATLAS, 13 TeV
-2.1 [4]173.1
+2.0ATLAS, 7 TeV
-0.5+1.0)
[5]1.4
± (1.5
-2.1173.7
+2.3CMS, 8 TeV 169.9
-3.7+4.5(1.1
-3.1+2.5-1.6+3.6
)
[6]ATLAS, 8 TeV
-0.3+0.7)
[7]0.9
± (0.4
-1.0171.1
+1.2ATLAS, n=1, 8 TeV 173.2 ± 1.6 (0.9 ± 0.8 ± 1.2)
[8]CMS, n=3, 13 TeV 170.9 ± 0.8
[9][1] EPJC 74 (2014) 3109 [2] JHEP 08 (2016) 029 [3] EPJC 79 (2019) 368 [4] ATLAS-CONF-2019-041
[5] JHEP 10 (2015) 121 [6] CMS-PAS-TOP-13-006 [7] arXiv:1905.02302 (2019) [8] EPJC 77 (2017) 804
[9] arXiv:1904.05237 (2019) [10] PRD 93 (2016) 072004 [11] EPJC 79 (2019) 290
Summary (march 2018, last meas.
from CMS [21] not included)
150 160 170 180
[GeV]
m t 0
2 4 6 8
-4.70
GeV
+5.20167.50 ), 1.96 TeV
t (t σ D0 PLB 703 (2011) 422 MSTW08 approx. NNLO
-3.40
GeV
+3.30169.50 ), 1.96 TeV
t (t σ D0
D0 Note 6453-CONF (2015) MSTW08 NNLO
-3.20
GeV
+3.40172.80 ), 1.96 TeV
t σ (t D0 PRD 94, 092004 (2016) MSTW08 NNLO
-2.60
GeV
+2.50172.90 ), 7+8 TeV
t σ (t ATLAS EPJC 74 (2014) 3109
-2.11
GeV
+2.28173.70 +j shape, 7 TeV
t ATLAS t JHEP 10 (2015) 121
-1.80
GeV
+1.70173.80 ), 7+8 TeV
t (t σ CMS JHEP 08 (2016) 029 NNPDF3.0
-2.70
GeV
+2.70170.60 ) 13 TeV
t (t σ CMS JHEP 09 (2017) 051 CT14
-3.66
GeV
+4.52169.90 +j shape, 8 TeV
t CMS t TOP-13-006 (2016)
-0.76 GeV +0.76 173.34
World combination
ATLAS, CDF, CMS, D0 arXiv:1403.4427, standard measurements
March 2018 Top-quark pole mass measurements
M top pole = 173.34 ± 0.76 GeV
Alternative methods
Incomplete list of M top measurements technique Extract M top in well defined renormalization schema, eg via template method
Observables/final states sensitive to different systematic uncertainties:
in particular, less sensitive to JES and bJES.
I dilepton channel
F End Point [22];
F M T 2 /MAOS [23];
F M lb [24];
F bJet Energy (E b ) [25];
F dilepton p T [26]
I lepton+jets channel
F boosted top: e/µ+jets [27];
F Bi-Event Subtraction Technique (BEST) [28]
I dilepton and lepton+jets channels
F B-hadron lifetime [29];
F lepton + Secondary Vertex Mass [30];
CMS: kinematic End Point [22]
Using di-lepton decays, usual selections;
possibly sensitive to DM candidates (WIMPS) (not really) basic idea similar to M T = in W → `ν decay:
I M T 2 = m ν 2 + m 2 ` + 2(E T ν E T ` − ~p ν T p ~ ` T )
I where ~ p ` T = ~ p miss T
I M T ≤ M W always. For each event not so important, but for an ensamble of events the endpoint is sensitive to M W
based on M T 2 (p T ` , p T b , p miss T ) using “min-max” strategy for two identical decay chain
I It is always true max(M T a , M T b ) ≤ M top .
I but ~ p ν a,b T cannot be know separately, only the sum ~ p ν a T + ~ p ν b T
I consider all possible partition such that ~ p ν a T + ~ p ν b T = ~ p T miss and take the minimum.
I sensitive to minimum parent mass M consistent with observed event kinematics
M T 2 = min
~
p ν a T + ~ p ν b T =~ p T miss
max {M T a , M T b }
I M T 2 endpoint is related to the unseen parent mass (ν or WIMPS)
Observables and results
Three observables can be used to extract three masses M top , M W , and M ν,WIMP
µ ``
I considering the W ± decays only, and the ν as lost child particles;
I µ max `` ∝ M W
µ bb
I considering the t ¯ t decays only, and considering W ± as lost child particles;
I µ max bb ∝ M top I sensitive to JES M bl
I third variables
I M bl = q
(p b + p ` ) 2
I combinatorial problem: which b goes with wich `?
I M bl max ∼ q
M top 2 − M W 2 ∼ 153 GeV
Results: m 2 ν = −556 ± 473 ± 622 GeV,
M top = 173.9 ± 0.9(stat) +1.7 −2.1 (syst) GeV [22]
MAOS M b`ν b`ν inv mass
the neutrino p T is obtained, event per event, as the results of minimization of M T 2 ``
I M T 2 `` sensitive to M W
I equivalent to assume null neutrino masses
applies M W constraint to get p ν z
8-fold ambiguities
peaked around M top
not very sensitive to JES
(M T 2 `` )
CMS: M lb , M T 2 and MAOS M bl ν observables [23]
M b` , M T 2 bb , and MAOS M b`ν dependence on M top and sensitivity
[GeV]
M
bl40 60 80 100 120 140 160 180
Arbitrary units
0 2 4 6 8 10 12 14 16 18 20 22
−3
×
10
= 166.5 GeV MC Mt
= 172.5 GeV MC Mt
= 178.5 GeV MC Mt Local shape sensitivity
(8 TeV) CMS
Simulation
[GeV]
bb
M
T2120 140 160 180 200
Arbitrary units
0 5 10 15 20 25 30 35
−3
×
10
= 166.5 GeV MC Mt
= 172.5 GeV MC Mt
= 178.5 GeV MC Mt Local shape sensitivity
(8 TeV) CMS
Simulation
[GeV]
ν
M
bl100 150 200 250 300
Arbitrary units
0 2 4 6 8 10 12 14
−3
×
10
= 166.5 GeV MC Mt
= 172.5 GeV MC Mt
= 178.5 GeV MC Mt Local shape sensitivity
(8 TeV) CMS
Simulation
Sensitivity to Jet Scale Factor
[GeV]
M
bl40 60 80 100120 140160 180
Arbitrary units
0 2 4 6 8 10 12 14 16
−3
×10
JSF = 0.97 JSF = 1.00 JSF = 1.03 (8 TeV) CMS
Simulation
[GeV]
bb
M
T2 110 120 130 140 150 160 170 180 190 200Arbitrary units
0 5 10 15 20 25
−3
×10
JSF = 0.97 JSF = 1.00 JSF = 1.03 (8 TeV) CMS
Simulation
fit: 1D (only M top ), 2D (M top and JES) hybrid 1/2D linearly combined
[GeV]
M
t170 170.5 171 171.5 172 172.5 173
JSF
0.99 0.995 1 1.005 1.01 1.015 1.02 1.025 1.03 1.035 1.04
0 20 40 60 80 100 120 140 160 (8 TeV) 19.7 fb
-1CMS Hybrid fit
= -0.40 ρ
[GeV]
M
t160 165 170 175 180 185
1D fit
2D fit
Hybrid fit
MAOS fit
CMS 2012, dilepton PRD 93, 2016, 072004
CMS combination PRD 93, 2016, 072004
GeV 0.95
− 0.91 0.17 +
± 172.39
GeV 1.25
− 1.31 0.46 +
± 171.56
GeV 0.93
− 0.89 0.18 +
± 172.22
GeV 1.02
− 1.27 0.19 +
± 171.54
1.22 GeV
± 0.19
± 172.82
0.47 GeV
± 0.13
± 172.44
syst)
± stat
± (value
(8 TeV) 19.7 fb-1
CMS
M top from B-jet energy spectrum [25]
Di lepton channels: e + µ top produces W on-shell, so m t = E b rest +
q
m 2 W − m 2 b + E b rest 2
measure of b-quark energy in the top rest frame E b rest and get M top
possible if assume top to be unpolarized M top = 172.29 ± 1.17(stat) ± 2.66(syst) GeV
log(E)
3.5 4 4.5 5 5.5 6 6.5 7
/dlog(E)
bjets1/E dN
5 10 15 20 25
Data VV
W+Jets t t V Single top DY
t
t QCD
CMS Preliminary
(8 TeV) 19.7 fb -1
log(E)
3.5 4 4.5 5 5.5 6 6.5 7
MC Data
0.8 1
1.2
M top from leptonic observables [26]
Di lepton channels: e + µ
using only leptonic observables not sensitive to JES/bJES systematics
Using p T (` + ` − ) as observable
compute first and second moment of p T (` + ` − ) distribution O (1,2) , also from shape analysis
O (1,2) sensitive to M top (and production mechanism: t ¯ t, tW )
M top = 171.7 ± 1.1( stat) ± 0.5(exp)
± 3.0( th) +0.8 −0.0 ( p T ( top)) GeV syst dominated by theo uncertainties on modeling
Mass [GeV]
166168170172 174176178
(ll) [GeV]
Tp
1O
62 63 64 65 66 67
68 tt+tW combination
0.008
± 1 slope=0.146
± offset= 39 tt
±0.01 2 slope=0.09
± tW offset= 50 Simulation Preliminary CMS
Mass [GeV]
166168 170172174176 178
]
2(ll) [GeV
Tp
2O
4700 4800 4900 5000 5100 5200
5300 tt+tW combination
±1 slope=21 2)x102
± offset=(13 t t
±1 slope=13 2)x102
± tW offset=(29 Simulation Preliminary CMS
CMS: Boosted top e/µ+jets [27]
Selection is: 1 e/µ, ≥ 2 narrow jets, ≥ 2 fat jets, MET
top boost is such that the W → jj decay is not resolved into two different jet, but in a “fat” one.
Sensitive quantity is the fat jet mass differential σ
[GeV]
Leading-jet m jet
150 200 250 300 350
-1
GeV
jetdm σ d σ 1
0 0.005 0.01 0.015
Data 178.5 GeV
t= m
172.5 GeV
t= m
166.5 GeV
t= m CMS
(8 TeV)
19.7 fb -1 uncertaities
[GeV]
Leading-jet m jet
150 200 250 300 350
Relative uncertainty [%]
0 20 40 60 80 100 120
140 Stat
⊕model
Statistical scales
µF,
µRParton shower
Choice of m
t(8 TeV) 19.7 fb
-1CMS
M top = 170.8 ± 6.0(stat) ± 2.8(syst) ± 4.6(model ) ± 4.0(th) GeV = 170.8 ± 9.0 GeV
Not yet competitive: need more data, better modelling, and higher order calculations
M top Bi-Event Subtraction Technique (BEST) assisted [28]
Measurement is based on semileptonic events, using M jjb and R 3/2 = M jjb /M jj observables
BEST is a data-driven background-estimation technique, originally developed for squark searchs in SUSY
Basic idea is to mix jets from different events to estimate combinatorial background.
Template fit on M jjb and R 3/2 to extract M top
100 200 300 400 500 600
Combinations / 10 GeV
2000 4000 6000
data Signal BEST
(8 TeV) 19.7 fb-1
CMS Preliminary
(GeV) m
jjb100 200 300 400 500 600
data/Fit
0.8 0.9 1 1.1
1.2 mjjb (GeV)
100 120 140 160 180 200 220 240
Combinations / 10 GeV
0 500 1000 1500 2000 2500
data - BEST Signal
(8 TeV) 19.7 fb-1
CMS Preliminary
(GeV) m
jjb100 120 140 160 180 200 220 240
Fitdata - BEST -2 0 2 4
1 1.5 2 2.5 3 3.5 4 4.5
Combinations / 0.1
2000 4000 6000 8000 10000 12000
data Signal BEST
(8 TeV) -1 19.7 fb
CMS Preliminary
/m
jjm
jjb1 1.5 2 2.5 3 3.5 4 4.5
data/Fit
0.8 0.9 1 1.1 1.2
/mjj mjjb
1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
Combinations / 0.1
0 500 1000 1500 2000
data - BEST Signal
(8 TeV) -1 19.7 fb
CMS Preliminary
/m
jjm
jjb1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
Fitdata - BEST -2 0 2 4
M top = 171.61 ± 0.57( stat) ± 0.90(syst) GeV
CMS: b-hadron lifetime [29]
t → Wb: in the top rest frame, the b momentum is linearly dependent on top mass p ≈ 0.4M top the (transverse) decay lenght of the b depends on b boost γ b ∼ 0.4(M top /M b )
L xy = γ b β b cτ b ∼ 0.4M top /M b β b cτ b
given cτ b ∼ 500µm, M top /M b ∼ 34.5:
∆L xy /M top ∼ 50µm/GeV
Template method based on L xy (median)
I Statitstics is high
I no jet-related measurement
I main syst: top p T modelling, b-fragmentation and hadronization still a long way to go. . .
[GeV]
m
top162 164 166 168 170 172 174 176 178 180 182
[cm]xyL0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76
-channel µ e
+jets-channel µ e+jets-channel
=8 TeV s CMS Simulation,
M top = 173.5 ± 1.5(stat) ± 1.3(syst) ± 2.6(top p T ) GeV
CMS: Lepton + secondary vertex [30]
Semi or full-leptonic t → W (→ `ν)b decay;
I different categories SL e + jets, µ + jets and FL ee, eµ, µµ b decay produces a secondary vertex displaced wrt primary and reconstructed;
M top sensitive variable is the invariant mass M sv ` :
I ` from W
I the secondary vertex tracks
it is similar to the ` + J/ψ method (next slide) much larger statistics (inclusive vs esclusive b decay) does not relies on jet reconstruction so no JES scale issue
M top = 173.68 ± 0.20 +1.58 −0.97 GeV syst dominated: b-quark fragmentation, top p T modelling, σ(t ¯ t + HF ), ME, ` energy scale, SV modelling . . .
Combinations / 3.9 GeV
0 2000 4000 6000 8000 10000 12000 14000 16000
18000 Data
= 166.5 GeV m
t= 172.5 GeV m
t= 178.5 GeV m
t(8 TeV) 19.7 fb
-1CMS
[GeV]
m
svl20 40 60 80 100 120 140 160 180 200 0.8
1 1.2
Ratio wrt. 172.5 GeV
Different final states and num tracks categories considered:
170 171 172 173 174 175 176 177 178
3 trk. 4 trk. 5 trk.
(8 TeV) 19.6 fb-1
[GeV]tm
170 171 172 173 174 175 176 177 178
Combination eµ ee µµ e+jets µ+jets
CMS
CMS: Lepton +J/ψ [31]
Decay channel is:
t → W (→ `ν)b → (J/ψ (→ µµ) + X )
I B(W → `ν) ∼ N ` · 10%
I B(B → J/ψX ) ∼ 0.1%
I B(J/ψ → µµ) ∼ 6%
¯ ¯t b W
−j/`
−j/¯ ν
t W
+b
b hadron ν
µ
+(e
+)
J/ψ µ
+µ
−1
double and single top production Limited statistics (666 ev in 19.7 fb −1 ) Template method based on M(J/ψ + `)
I Purely leptonic quantities
I no jet related ones! (JES, bJES, etc)
(GeV) + l ψ m J/
0 50 100 150 200 250
Events / ( 10 GeV )
0 20 40 60 80
100 m
t= (173.5 ± 3.0) GeV
CMS 19.7 fb
-1(8 TeV)
(GeV) m t
170 180
) max log(L/L −
0 1 2 3 4
Data Fit result Statistical uncertainty gamma component Gaussian component 3.0) GeV
± = (173.5 m
tM top = 173.5 ± 3.0 ± 0.9 GeV
Limited statitics, top p T modelling and QCD
scales
CMS: alternative M top measurement summary
Alternative
160 170 180 190
[GeV]
m t 0
5 10
2.91 GeV
± 1.50
± 173.50 b hadron lifetime
CMS-PAS-TOP-12-030 (2013)
-2.10 GeV +1.70 0.90
± 173.90 Kinematic endpoints
EPJC 73 (2013) 2494
2.66 GeV
± 1.17
± 172.29 b-jet energy peak
CMS-PAS-TOP-15-002 (2015)
0.90 GeV
± 3.00
± 173.50 Ψ
Lepton+J/
JHEP 12 (2016) 123
-0.97 GeV +1.58 0.20
± 173.68 Lepton+SecVtx
PRD 93 (2016) 092006
-3.09 GeV +2.68 1.10
± 171.70 Dilepton kinematics
CMS-PAS-TOP-16-002 (2016)
-0.93 GeV +0.97 0.77
± 172.60 Single top enriched
EPJC 77 (2017) 354
-0.93 GeV +0.89 0.18
± 172.22 /MAOS observables
MT2 PRD 96 (2017) 032002
0.90 GeV
± 0.57
± 172.61 BEST backgrounds
CMS-PAS-TOP-14-011 (2015)
-1.29 GeV +1.24 0.32
± 172.30 Dilepton Mlb
CMS-PAS-TOP-14-014 (2014)
0.47 GeV
± 0.13
± 172.44 CMS Run 1 legacy
PRD 93 (2016) 072004 standard measurements
May 2019
syst.)
± stat.
± (value
CMS Preliminary
Standard
5 10
15
175.50 ± 4.60 ± 4.60 GeVDilepton JHEP 07 (2011) 049, 36 pb-1
1.43 GeV
± 0.43
± 172.50 Dilepton
EPJC 72 (2012) 2202, 5.0 fb-1
1.21 GeV
± 0.69
± 173.49 All-jets
EPJC 74 (2014) 2758, 3.5 fb-1
0.98 GeV
± 0.43
± 173.49 Lepton+jets
JHEP 12 (2012) 105, 5.0 fb-1
1.22 GeV
± 0.19
± 172.82 Dilepton
PRD 93 (2016) 072004, 19.7 fb-1
0.59 GeV
± 0.25
± 172.32 All-jets
PRD 93 (2016) 072004, 18.2 fb-1
0.48 GeV
± 0.16
± 172.35 Lepton+jets
PRD 93 (2016) 072004, 19.7 fb-1
0.47 GeV
± 0.13
± 172.44 CMS Run 1 legacy
PRD 93 (2016) 072004
-0.72 GeV +0.66 0.24
± 172.33 Dilepton
EPJC 79 (2019) 368, 35.9 fb-1
0.62 GeV
± 0.08
± 172.25 Lepton+jets
EPJC 78 (2018) 891, 35.9 fb-1
0.70 GeV
± 0.20
± 172.34 All-jets
EPJC 79 (2019) 313, 35.9 fb-1
0.61 GeV
± 0.07
± 172.26 Lepton+jets, all-jets
EPJC 79 (2019) 313, 35.9 fb-1
2.44 GeV
± 0.41
± 172.56 > 400 GeV
Single jet, pT -1 TOP-19-005 (2019), 35.9 fb
0.54 GeV
± 0.35
± 174.30 Tevatron combination
arXiv:1608.01881 (2016)
0.71 GeV
± 0.27
± 173.34 World combination
September 2019
CMS
M pole
160 180
[GeV]
pole m t
02 4
6 tt+j shape, 8 TeV 169.90 +4.52-3.66 GeV TOP-13-006 (2016), 19.7 fb-1
NLO
-1.80 GeV +1.70 173.80 ), 7+8 TeV
t σ(t
JHEP 08 (2016) 029, 5.0 + 19.7 fb-1 NNLO+NNLL, NNPDF3.0
-2.30 GeV +2.10 173.20 ), 13 TeV
t σ(t
EPJC 79 (2019) 368, 35.9 fb-1 NNLO+NNLL, NNPDF3.1
-0.72 GeV +0.72 170.83 ), 13 TeV
t σ(t triple-differential arXiv:1904.05237 (2019), 35.9 fb-1 NLO, HERAPDF2.0
-0.80 GeV +0.80 170.50 ), 13 TeV
t σ(t triple-differential arXiv:1904.05237 (2019), 35.9 fb-1
, PDF) αS pole, NLO, 3D fit (mt
-0.49 GeV +0.49 172.44 CMS Run 1 legacy
PRD 93 (2016) 072004 from standard measurements mt
June 2019
tot.)
± (value
CMS Preliminary
Alternative techniques are competitive with standard ones multi-differntial pole measurement also
Different systematics, important
Summary of M top measurement
Tevatron
174.30 ± 0.35 ± 0.54 GeV
ATLAS Run I+II combination (2018)
[GeV]
m
top165 170 175 180 185
1 19
0.64
± 174.34
(arXiv:1407.2682) Tevatron Comb. Jul. 2014
0.76
± 173.34
(arXiv:1403.4427) World Comb. Mar. 2014
0.48
± 172.69
(arXiv:1810.01772) ATLAS Comb. October 2018
-1 =20.2 fb int L Eur. Phys. J. C 77 (2017) 804 ) dilepton (8 dist.) t σ(t
Differential 173.2 ± 1.6
-1 =4.6 fb int L JHEP 10 (2015) 121 +1-jet) t σ(t
Differential 2.1
± 2.3 173.7
-1 =4.6-20.3 fb int L Eur. Phys. J. C74 (2014) 3109 ) dilepton t
σ(t 2.6
± 2.5 172.9 = 20.2 fb-1
Lint arXiv:1810.01772 l+jets
→ 172.1 ± 0.9 ( 0.4 ± 0.8 )
= 20.2 fb-1 Lint JHEP 09 (2017) 118 all jets
→ 173.7 ± 1.2 ( 0.6 ± 1.0 )
= 20.2 fb-1 Lint Phys. Lett. B761 (2016) 350 dilepton
→ 173.0 ± 0.8 ( 0.4 ± 0.7 )
= 4.7 fb-1 Lint Eur. Phys. J. C75 (2015) 330 dilepton
→ 173.8 ± 1.4 ( 0.5 ± 1.3 )
= 4.7 fb-1 Lint Eur. Phys. J. C75 (2015) 330 l+jets
→ 172.3 ± 1.3 ( 0.2 ± 0.2 ± 0.7 ± 1.0 )
=20.3 fb-1 Lint ATLAS-CONF-2014-055
single top* 172.2 ± 2.1 ( 0.7 ± 2.0 ) = 4.6 fb-1
Lint Eur. Phys. J. C75 (2015) 158 all jets
→ 175.1 ± 1.8 ( 1.4 ± 1.2 )
- 20.3 fb
-1= 4.6 fb
-1summary - November 2018, L
intm
topsyst.)
± bJSF
± JSF
± tot. (stat.
± mtop
σ
± 1 World Comb.
stat. uncertainty bJSF uncertainty
⊕ JSF
⊕ stat.
total uncertainty Input to ATLAS comb.
→ Preliminary,
*
ATLAS Preliminary
172.69 ± 0.48 GeV
CMS
165 170 175 180
[GeV]
m
t 02 4 6 8
0.47 GeV
± 0.13
± 172.44 CMS Run 1 legacy
PRD 93 (2016) 072004
0.70 GeV
± 0.38
± 172.62 2015, muon+jets
TOP-16-022 (2017), 2.2 fb-1
0.62 GeV 0.08 ± 172.25 ± Lepton+jets
EPJC 78 (2018) 891, 35.9 fb-1
GeV -0.72 +0.66 0.24 172.33 ± Dilepton
EPJC 79 (2019) 368, 35.9 fb-1
0.70 GeV
± 0.20
± 172.34 All-jets
EPJC 79 (2019) 313, 35.9 fb-1
0.61 GeV
± 0.07
± 172.26 Lepton+jets, all-jets
EPJC 79 (2019) 313, 35.9 fb-1
2.44 GeV
± 0.41
± 172.56 > 400 GeV
Single jet, pT TOP-19-005 (2019), 35.9 fb-1
0.54 GeV
± 0.35
± 174.30 Tevatron combination
arXiv:1608.01881 (2016)
0.71 GeV
± 0.27
± 173.34 World combination
ATLAS, CDF, CMS, D0 arXiv:1403.4427 (2014)
September 2019
syst.)
± stat.
± (value CMS
Run I combination (2016) 172.44 ± 0.13 ± 0.47 GeV Weighted avg (uncorrelated):
172.38 ± 0.23 GeV
Summary of M top measurement
[GeV]
m top
165 170 175 180 185
1 17
LHC September 2013 173.29 ± 0.95 (0.23 ± 0.26 ± 0.88)
Tevatron March 2013 (Run I+II) 173.20 ± 0.87 (0.51 ± 0.36 ± 0.61)
prob.=93%
χ22 / ndf =4.3/10
World comb. 2014
χ173.34 ± 0.76 (0.27 ± 0.24 ± 0.67)
= 3.5 fb-1 Lint
CMS 2011, all jets 173.49 ± 1.41 (0.69 ± 1.23)
= 4.9 fb-1 Lint
CMS 2011, di-lepton
1.46)
± (0.43 1.52
± 172.50
= 4.9 fb-1 Lint
CMS 2011, l+jets
0.97)
± 0.33
± (0.27 1.06
± 173.49
= 4.7 fb-1 Lint
ATLAS 2011, di-lepton
1.50)
± (0.64 1.63
± 173.09
= 4.7 fb-1 Lint
ATLAS 2011, l+jets 172.31 ± 1.55 (0.23 ± 0.72 ± 1.35)
= 5.3 fb-1 Lint
D0 RunII, di-lepton
1.38)
± 0.55
± (2.36 2.79
± 174.00
= 3.6 fb-1 Lint
D0 RunII, l+jets
1.16)
± 0.47
± (0.83 1.50
± 174.94
= 8.7 fb-1 Lint
+jets
missCDF RunII, E
T0.86)
± 1.05
± (1.26 1.85
± 173.93
= 5.8 fb-1 Lint
CDF RunII, all jets 172.47 ± 2.01 (1.43 ± 0.95 ± 1.04)
= 5.6 fb-1 Lint
CDF RunII, di-lepton
3.13)
± (1.95 3.69
± 170.28
= 8.7 fb-1 Lint
CDF RunII, l+jets
0.86)
± 0.49
± (0.52 1.12
± 172.85
- 8.7 fb
-1= 3.5 fb
-1combination - March 2014, L
intTevatron+LHC m
topATLAS + CDF + CMS + D0 Preliminary
) syst.
iJES stat.
total ( Previous Comb.
World combination (2014): M top = 173.34 ± 0.27 ± 0.71 GeV
Summary of M top measurement
165 170 175 180 185
[GeV]
m top
ATLAS+CMS Preliminary m
topsummary, s = 7-13 TeV top WG
LHC
May 2019
World comb. (Mar 2014) [2]
stat total uncertainty
total stat syst)
± total (stat top±
m s Ref.
topWG
LHC comb. (Sep 2013)
LHC 173.29 ± 0.95 (0.35 ± 0.88) 7 TeV [1]World comb. (Mar 2014)
173.34 ± 0.76 (0.36 ± 0.67) 1.96-7 TeV [2]ATLAS, l+jets
172.33 ± 1.27 (0.75 ± 1.02) 7 TeV [3]ATLAS, dilepton
173.79 ± 1.41 (0.54 ± 1.30) 7 TeV [3]ATLAS, all jets
175.1 ± 1.8 (1.4 ± 1.2) 7 TeV [4]ATLAS, single top
172.2 ± 2.1 (0.7 ± 2.0) 8 TeV [5]ATLAS, dilepton
172.99 ± 0.85 (0.41 ± 0.74) 8 TeV [6]ATLAS, all jets
173.72 ± 1.15 (0.55 ± 1.01) 8 TeV [7]ATLAS, l+jets
172.08 ± 0.91 (0.39 ± 0.82) 8 TeV [8]ATLAS comb. (Oct 2018)
172.69 ± 0.48 (0.25 ± 0.41) 7+8 TeV [8]CMS, l+jets
173.49 ± 1.06 (0.43 ± 0.97) 7 TeV [9]CMS, dilepton
172.50 ± 1.52 (0.43 ± 1.46) 7 TeV [10]CMS, all jets
173.49 ± 1.41 (0.69 ± 1.23) 7 TeV [11]CMS, l+jets
172.35 ± 0.51 (0.16 ± 0.48) 8 TeV [12]CMS, dilepton
172.82 ± 1.23 (0.19 ± 1.22) 8 TeV [12]CMS, all jets
172.32 ± 0.64 (0.25 ± 0.59) 8 TeV [12]CMS, single top
172.95 ± 1.22 (0.77 ± 0.95) 8 TeV [13]CMS comb. (Sep 2015)
172.44 ± 0.48 (0.13 ± 0.47) 7+8 TeV [12]CMS, l+jets
172.25 ± 0.63 (0.08 ± 0.62) 13 TeV [14]CMS, dilepton
172.33 ± 0.70 (0.14 ± 0.69) 13 TeV [15]CMS, all jets
172.34 ± 0.73 (0.20 ± 0.70) 13 TeV [16][1] ATLAS-CONF-2013-102 [2] arXiv:1403.4427 [3] EPJC 75 (2015) 330 [4] EPJC 75 (2015) 158 [5] ATLAS-CONF-2014-055 [6] PLB 761 (2016) 350
[7] JHEP 09 (2017) 118 [8] EPJC 79 (2019) 290 [9] JHEP 12 (2012) 105 [10] EPJC 72 (2012) 2202 [11] EPJC 74 (2014) 2758 [12] PRD 93 (2016) 072004
[13] EPJC 77 (2017) 354 [14] EPJC 78 (2018) 891 [15] EPJC 79 (2019) 368 [16] EPJC 79 (2019) 313