• Non ci sono risultati.

I 10 anni del satellite Swift: il rondone che sonda l’Universo violento

N/A
N/A
Protected

Academic year: 2021

Condividi "I 10 anni del satellite Swift: il rondone che sonda l’Universo violento"

Copied!
54
0
0

Testo completo

(1)

I 10 anni del

satellite Swift: il rondone che

sonda l’Universo violento

Paolo  D’Avanzo  

INAF  /  Osservatorio  Astronomico  di  

Brera  

(2)

2  

(3)

3  

(4)

4  

(5)

I  GRB  sono  tra  le  sorgen=  piu`  distan=  che   conosciamo  

La  loro  energia  e`  quindi  enorme:  10 53  erg:  

 

Come 100 Supernovae

Come il Sole per 3000 miliardi di anni

Come tutta la nostra Galassia per 100 anni

E tutto cio` in pochi secondi….

(6)

short   long  

(7)

7  

Long  GRB  progenitors  

(8)

Short  GRB  progenitors  

(9)

Central engine jets

Shock

acceleration

(10)

Central engine jets

Shock acceleration

10  

(11)

Central engine jets

Shock acceleration

11  

(12)

Telescopio γ

Telescopio ottico

Telescopio X:

Osservatorio di Brera!

Data di lancio:

20 Nov. 2004

(13)

XRT  &  UVOT  installa?  

(14)
(15)

BAT,  XRT  &  UVOT  installa?  

(16)

Mission Milestones

Arrival at KSC

(17)

Hanger AE

(18)

   

(19)

GSFC

(20)

•  Burst Alert Telescope (BAT) –  15-150 keV

–  FOV: 2 steradiants

–  Centroid accuracy: 1’ - 4’

•  X-Ray Telescope (XRT) –  0.2-10.0 keV

–  FOV: 23.6’ x 23.6’

–  Centroid accuracy: 5”

•  UV/Optical Telescope (UVOT) –  30 cm telescope

–  6 filters (170 nm – 600 nm) –  FOV: 17’ x 17’

–  24

th

mag sensitivity (1000 sec) –  Centroid accuracy: 0.5”

BAT

XRT

Spacecraft

UVOT

BAT  

UVOT   XRT  

SpacecraN  

Swift Mission

BAT Burst Image

T<10 s; θ < 4’

BAT Error Circle

XRT Image

T<100 s; θ < 5 ’’

 

T<300 s; θ <

0.5 ’’

 

UVOT Image

(21)

BAT  

Lo Scenario Osservativo

1.  BAT  localizza  il  GRB,  e  calcola  la  posizione  a  meno  di  ~  3  arcmin  

 

BAT  Error              Circle  

XRT   UVOT  

3.  Il  telescopio  X  trova  la  posizione  a  meno  di  ~  5  arcseconds  

 

2.  La  navicella  autonomamente  punta  il  GRB  in  ~70  s  

4.  Il  telescopio  oNco/UV  trasmePe  immagini  a  terra  

(22)
(23)

pre-­‐SwiS  aSerglow  light  curves  

8-­‐10  hrs  

(24)

pre-­‐SwiS  aSerglow  light  curves  

8-­‐10  hrs  

(25)

SwiS  aSerglow  light  curves  

(26)

SwiS  aSerglow  light  curves  

(27)

Lum  

Time   GRB  

Long  GRB  &  Supernovae  

(28)

Lum  

Time   GRB  

SN  

Long  GRB  &  Supernovae  

(29)

Lum  

Time  

Lum  

Time   GRB  

SN  

GRB+SN  

Long  GRB  &  Supernovae  

(30)

Long  GRB  &  Supernovae  

(31)

Short  GRB  aSerglows,  galaxies  and  

redshiS  

(32)

Short  GRB  &    NO  Supernovae  

GRB 060614 GRB 060505

(33)

High-redshift GRBs

GRB z Time (Gyr) 050814 (5.3 ph) 12.6

050904 (6.3) 12.8 060522 (5.1) 12.5 060927 (5.6) 12.6 080913 (6.7) 12.8 090423 (8.2) 13.0

090429B (9.4 ph) 13.1 100905A (7.5) 13.0 120521C (8.2) 12.6

9 events with z > 5  

(34)

GRB  redshiS  and  environment  

Spectroscopic  observa?ons  of  GRB  aSerglows  reveal  a  lot  about  the  composi?on  of  the  circumburst  and   the  host  galaxy  environment  and  of  the  structures  possibly  present  along  the  GRB  line  of  sight.    

 

GRBs  as  probes  

   

Thanks  to  their  brightness,  GRBs  are  detectable  from  the  local  Universe  to  very  high   redshiS.  A  unique  tool  to  study:  

   

•   cosmic  star  forma?on  history  

 

•   metallicity  &  dust  evolu?on  

 

•   the  proper?es  of  faint  galaxies  that  would  be  missed  by   ‘ tradi?onal ’  surveys  

(35)

non-­‐GRB  science  

(36)

Unexpected Transients: Tidal Disruption Events

Burrows+11; Zauderer+11 (Nature); Bloom+11; Levan+11 (Science)

Swift Science

- BAT discovery of bright transient Mar '11 - Located at center of non-AGN galaxy

- Emission due to relativistic jet from star torn apart by ~ 10 6-7 M o black hole

- TDEs long predicted but never seen so clearly. Jet not predicted

(37)

GRB  110328A/SwiS  J1644+57   a  ?dal  disrup?on  event  on  a     distant  galac?c  nucleus  

 

Unexpected Transients: Tidal Disruption Events

(38)

Supernovae

XRT - SN 2008D

Swift Science

- SN shock breakout discovered by Swift/XRT

- Swift is accumulating best UV data set on Type Ia SNe.

- Swift has detected far more SNe in X-rays and UV than any other mission

38  

SN 2011ef (Ia)

UVOT uv

Mazzali+08, Tanaka+09, Campana+06, Mazzali+06, Pian+06, Melandri+12

(39)

Evolving Observing Time: change of strategy for GRBs observations

GRBs

Target of Opportunities (TOOs) Guest Investigator targets / Fill-ins SAA & Calibration

     2008  

27%  

18%  

38%  

17%  

         2005  

46%  

6%  

13%  

35%  

       2011  

17%  

30%  

35%  

18%  

TOOs per Year

Year  

Nu mb er  

39  

(40)

The  Future  

(41)

Oltre  lo  spePro  EM:  le  onde  

gravitazionali  

(42)

Sorgen?  di  onde  gravitazionali  

Supernovae    

   

 

(43)

Rivelatori  di  onde  gravitazionali  

LIGO  

Laser  Interferometer  Gravita?onal-­‐Wave  Observatory      

VIRGO  

     

Ciascun  braccio  dell ’ interferometro  e`  lungo  circa  3-­‐4  km   Distorsione  prevista:  10 -­‐18  m    

 

(44)

Rivelatori  di  onde  gravitazionali   il  futuro  

eLISA/NGO  (202?)  

 

(45)

Auto Sky Tiling

Searching  for  GW  counterparts  

(46)

Survey  del  futuro:  LSST  

-­‐   18000  gradi  quadri  ogni  3-­‐4  noN  (50%  del  cielo)   -­‐   sorgen?  variabili  

-­‐   15  Tbyte  (1000  Gb)  di  da?  ogni  noPe  per  10  anni   -­‐   8.4  metri  di  apertura      

Large  Synop?c  Survey  Telescope  (2020)  

(47)

Legacy  

(48)

I  telescopi  del  futuro:  JWST  

James  Webb  Space  Telescope  (2018)  

(49)

I  telescopi  del  futuro:  E-­‐ELT  

European  Extremely  Large  Telescope  (2020)  

Diametro:  39  m  

(50)

50  

Numbers

•  939 GRB (10% short)

•   711 Active Galactic Nuclei

•   334 Supernovae

•   186 X-ray Binaries

•  42 magnetar outbursts

•  20 Pulsars

•   2 Tidal disruption events

•   Up to 75 target per day

•   > 1800 scientific papers (>28000 citations)

(51)

NASA  2014  senior  review  

(52)

Happy  Birthday,  SwiS!  

(53)

53  

Summary

•  World ’ s premier GRB observatory: outstanding science results on GRBs (X-ray light curve, high-z GRBs, GRB-SN connection, short GRBs)

•  Rate of publications remains high and includes game-changing papers

•  GI program (5 Ms/year) making discoveries on a broad range of topics

•  Unique Time Domain sampling and wavelength coverage

•  Up to 75 target per day; >1000 observing program per year

•  Autonomous response (s to min): GRBs, SGRs, flare stars, X-ray transients

•  ToO response in periods from minutes up to hours and/or days

•  Now: spending most of its observing time on non-GRBs source

•  Swift has improved capabilities and exciting new opportunities:

•  Automated tiling of large error regions to identify high-value events

•  Augmented on-board catalog to find transients in nearby galaxies

•  Improved ground-based instruments to identify high-z GRBs

•  Future collaboration to find & identify gravitational wave event

•  Detected for the first time the onset of an extragalactic jet (+1) result of a TDE by SMBH

(54)

Riferimenti

Documenti correlati

ied by measuring neutrino interactions in near detector complex 280 meters from the beam source and in far detector Super-Kamiokande 295 km away.. We

The latest achievements in precision calculations have brought our understanding of hadronic collisions to a level that, as I will argue in the following, they can presently be used

According to this model, each growth cycle produced a couplet of lamellae, where the inner la- mella composed of lamellar, paralamellar, or albid tissue, and the outer

Sono tutte definizioni parziali, benché spesso accettabili e integrabili, dopo la debita „pulizia‟ e/o chiarificazione terminologica (si pensi ad esempio allo spunto offerto dalla

σ t¯ t has been measured in all decay channels: the most precise measurements are those performed in the single lepton plus jets channel.. Recently, precise measurements from

Even for a scalar field in the flat Minkowski space-time, it can be proved that the existence of quantum states with negative energy density is inevitable [1].. Although all known

– (Colour on-line) Left: westward shift (Δα) of the Moon shadow as a function of strip multiplicity.. Real data (black squares) and Monte Carlo simulation (red circles)

As a matter of fact the ODR angular distribution produced by a beam going through the center of the slit and with a given transverse rms size (σ) is the same as the one produced by