• Non ci sono risultati.

Luciano Fanti and Luca Gori

N/A
N/A
Protected

Academic year: 2022

Condividi "Luciano Fanti and Luca Gori"

Copied!
15
0
0

Testo completo

(1)

Discussion Papers

Collana di

E-papers del Dipartimento di Scienze Economiche – Università di Pisa

Luciano Fanti and Luca Gori

Stability in a Cournot duopoly under asymmetric unionism

Discussion Paper n. 123

2011

(2)

Discussion Paper n. 123: presentato Settembre 2011

Luciano Fanti

Department of Economics, University of Pisa Via Cosimo Ridolfi, 10, I–56124 Pisa (PI), Italy e-mail address: [email protected]

tel.: +39 050 22 16 369 fax: +39 050 22 16 384

Luca Gori

Department of Law and Economics “G.L.M. Casaregi”, University of Genoa Via Balbi, 30/19, I–16126 Genoa (GE), Italy

e-mail address: [email protected]

tel.: +39 010 209 95 03 fax: +39 010 209 55 36

© Luciano Fanti e Luca Gori

La presente pubblicazione ottempera agli obblighi previsti dall’art. 1 del decreto legislativo luogotenenziale 31 agosto 1945, n. 660.

(3)

! " #

$ % &'($()( * + ' , -

. / 0 ' "' #

!

" # $ !

%

" # " $ #

" # $ &$

' ( ( ) ! ( *

+ ( ,- ( ./0( 10

2 1 3[email protected] [email protected]( 3 4 5 6/6 0+ +5( !3 4 5

6/6 0+ 7-

22 1 3[email protected] [email protected]( 3 4 5

606 65 5/ 6 ( !3 4 5 606 65 // +

(4)

-

$

8 $

9

$ ! " ) 0577( ,

0575( ' 055/( 0555( 1: ; 66-( < = 667(

8 * 600# $

) $ !

>

? !

3 "0#

> ! > $ %

2 3 4 2

3 % * ( ? $ !

$ ( " # $

$

$ @

" = #

A % !

$ ?

B B

C D $ ! $

$ " ' 0576#

B B >

$ $ $ !

$ 0 '

" # "

! #

> &$ , ! "057+#

! $ E $ -

$

0? !

"07 7# $ !

? "05+6# $ &$ !

$

-A ! " # $

$ $

3 $ >

$ = "

A ; 9 66 #

(5)

/

$

" '

606#

= !

8 $ % $

!

"

# 3 " #

" $ $

$ #

F " # *

% !

F

?

$ % > $

$ % !

&$ / * $ % !

"

$ # $

!

"

$ % > $ #

&$

"

% > $ #

? =

" &$ # ! =

$ %

= -

!

= /

! "# # # $

$ 3

Q a

p= − "0#

>0

a ! ; p Q

q1 q2 1 2 $

{ }

1,2

=

i $ $ i

" # 3 qi =Li

/? ! $

(6)

+

Li i ? i " #

$ wi≥0 $ wi

? i% 3

( )

i i i i i

i q w L w q

C = = " #

1 qi,t i% t =0,1,2,... ? qi,t+1

(

3 1, 2, 1

)

, 1 1

,

1 argmax ,

,

1 +

+ = q Π t t e t

t q q

q t " 0#

(

e t t

)

t q

t q q

q2, 1 argmax t 2, 1, 1, 2,

,

2 +

+ = Π " #

1 ,t+ ei

q $ " j # " t # !

i " t+1# ! Πi,t

8 " 1G 0555(

, ) 660( A ; 66 ( A ; 9 66 ( H 66I(

? 606# $ "

&$ # !

? 1

1,t# t+1

" ∂Π1,t/∂q1,t# $ $ 8 , ! "057+#

> $ 1

3

t t t t

t q q q

q

, 1

, 1 , 1 , 1 1 ,

1

Π + ∂

+ = α "-#

>0

α > 1%

q $1 t

2 &$ ! q2,t+1=q2,t +

% "# & $ $

8 $

i "

w #i !

" #

A " #

A > $

$ B

< $ "057- 057/# , = "055-#

< J " 666# B !

= E > $ 3

(

w w

)

L

V = − ° θ "/#

+A &$ ? "05+6#

> % ! 3 i !

$ % t+1

t

(7)

I

wi % w° $ $ L

>0

θ A $ θ =1 $ !

" ! #( $ θ " # 1

" # " #

> " * ;; , 0550( 8 E 600# * $

! w°=0

1 i $ $ $ w i

= < i 3

(

i

)

i i = pw q

Π "+#

K 9 "0# p 9 "+# !

q i $ i% 3

( )

2

j i j

i

q w q a

q − −

= "I#

? % $ $

% ' qi =Li

" # i% > $ 9 "/# 3

{ }w Vi

(

wi w

)

qi

i

° θ

=

max "/ 0#

> 9 "I#

" # ? !

9 "/ 0# wi $ i%

i% $ 3

( ) ( )

θ θ

+

° +

= − 1

w q q a

wi j j "7#

9 "7# i

$

9 "7# 9 "I# w i i%

3

( )

=

(

+°θ

)

1 2

j j

i

q w q a

q "5#

' (

!( ( , /5

1 $ w1

"'K# θ >0 &$ 2 $

$ w° " # θ =0 w1>w°

?

'KL 3

=

∂ Π + ∂

=

+ +

t t

t t t t

t

q q

q q q

q

, 2 1 , 2

, 1 , 1 , 1 , 1 1 ,

1 α

"06#

(8)

7

( )

θ θ

+

°

− +

= −

∂ Π

1 1

2 1, 2,

, 1 ,

1 a q q w

q

t t t

t ? 9 "06#

$ 3

( )

[ ]

°

= −

°

− +

+ − +

=

+ +

2

1 1 2

, 1 1

, 2

, 2 , 1 ,

1 ,

1 1 , 1

t t

t t t

t t

q w q a

w q q q a

q

q θ

θ α

"00#

9 q1,t+1 =q1,t =q1 q2,t+1 =q2,t =q2 ?

"00# 3

( )

[ ]

=

− −

°

=

°

− + + −

2 0

0 1

1 2

2 1

2 1 1

q q w a

w q q

q a θ

θ α

"0 #

? $ ! EBU/NC =

(

q*1, q*2

)

"00#

$ 9 "0 # 3

( )

= + °

(

+ +

)(

°

)

= θ

θ

θ 3 4

2 , 1 4 , *2 3

1

* /

w a w

q a q

EBU NC "0 #

1

* 2

* q

q > " # 1

&$ 2

$

"0 # "00# . ! J $

NC

EBU/ 3

( ) ( )

( )( )

− + +

°

− +

°

− +

=

=

2 0 1

4 3 1 4

3 2 4 3

22 21

12 11

/ αθ θ

θ α

θ a w a w

J J

J

JBU NC J "0-#

$ $ 3

( ) ( )

θ α θ

4 3

2 4

: / 11 22 3

+

°

= + +

=

= a w

J J J

Tr

T BU NC "0/#

( ) ( )

(

αθ

)(

θ

)

4 3 1

: / 11 22 12 21 2

+ +

°

= −

=

= a w

J J J J J

Det

D BU NC "0+#

? "0-# 3

( )

T D

G λ =λ2− λ+ "0I#

D T

Q:= 2−4

? EBU/NC $

. % " E 606#3

( )( ) ( )( )

( )( )

( )

( )

( )

(

+

)(

+

)

>

°

− + +

= +

=

+ >

°

= − +

=

+ >

+

°

− +

− +

= + + +

=

4 0 3 1 2

6 14 1 8

: ) (

1 0 1 2

: ) (

4 0 3 1 2

4 5 4

3 1 1 4

: ) (

2

θ θ

α θ

θ

θ α

θ

θ α θ

θ θ

w D a

H iii

w D a

T TC

ii

w D a

T F

i

"07#

(9)

5

, " # M N "07# $

=0

F " TC=0 # M H =0 Tr

( )

J <2 N

! 3 " #

" $ −1#( " #

" $ +1# TC =0( " #

= " ! $

1# "07# " # " #

" # $

" # "07#

; ? Β

( )

θ,α BU /NC $

$ EBU/NC

( )

θ,α BU/NC :=4

(

1

)(

3+4θ

) (

−α 5+4θ

)(

aw°

)

=0 "05#

? 9 "05#

$ ? $ 9 "05# α

( )

, / =0

Βθ α BU NC > 3

( ) ( )( )

(

+

)(

− °

)

+

= +

w

NC a

BU F

θ θ

θ θ

α 5 4

4 3 1 4

/ " 6#

$ α 'KL ? "07# " 6# $

) " # 62 3 15 2 73 - 3 EBU/NC 2 % 1

" # -

( )

BU NC

F

0<α <α θ / ( " #

( )

BU NC F

θ /

α

α = 1 3- * - 3 * ( ".# 62 3 15 2

73 - 3 EBU/NC 3 -

( )

BU NC

F

θ /

α

α > (

) = Β

( )

θ,α BU/NC >0

( )

BU NC

F

0<α <α θ / "0# =

( )

, / =0

Βθ α BU NC

( )

BU NC

F

θ /

α

α = " # = Β

( )

θ,α BU/NC <0

( )

BU NC F

θ /

α

α > " # * +

) ! 8 2 % * 2 3 9 -:

θ 2 - 3 3

( )

BU NC

F

θ /

α 2

- (

) =

( ) ( )

(

516 4

) (

40 23

)

0

4

2 2

/ >

°

− +

+

= +

w a

NC BU F

θ θ θ

θ θ

α < * +

!( ( , /5

1 $

°

w "' # θ =0 &$ 2 w2

" K# θ >0 w2 >w°

(10)

06

O 3 "0# 9 "06# " # ' L K

°

∂ = Π

a q q w

q t t t

t

, 2 , 1 ,

1 ,

1 2 3

( )

(

°+

)

= −

°

− +

=

+ +

θ α 1 2

2

, 1 1

, 2

, 2 , 1 ,

1 , 1 1 , 1

t t

t t t

t t

q w q a

w q q a q q

q

" 0#

$ ! 3

( )

(

+

)

=

°

=

°

− 1 0 2

0 2

2 1

2 1 1

q q w a

w q q a q

θ α

" #

? $ ! EBC/NU =

(

q*1, q*2

)

9 " 0# $ 9 " # 3

( )

=

(

+ +

)(

°

)

+ °

= θ θ θ

4 ,3 4

3 2 , *2 1

1

* /

w a w q a

q

EBC NU " #

2

* 1

* q

q > 1

&$ 2

1 'KL

2 ' L K $ $

? . ! J $ EBC/NU 3

( )( ) ( )( )

(

+

)

− +

+

°

− +

+

°

− +

=

=

1 0 2

1

4 3

2 1 4

3

2 1 2

4 3

22 21

12 11 /

θ

θ θ α

θ

θ α

θ a w a w

J J

J

JBC NU J " -#

$ $ 3

( ) ( )( )

θ

θ α

θ

4 3

2 1 2

4

: / 11 22 3

+

+

°

= + +

=

= a w

J J J

Tr

T BC NU " /#

( ) ( )( )

(

θ

)(

θ

)

θ α

4 3 1 2

2

: / 11 22 12 21 1

+ +

+

°

=−

=

= a w

J J J J J

Det

D BC NU " +#

NU

EBC/ 3

( )( ) ( )( )( )

( )( )

( )( )

( )

( )

[ ] ( )

(

+

)(

+

)

>

°

− + +

°

− +

= +

=

+ >

+

°

= − +

=

+ >

+

°

− +

+

− +

= + + +

=

4 0 3 1 2

6 7

2 1 8

: ) (

1 0 2

2 1 1

: ) (

4 0 3 1 2

4 5 2 1 4

3 1 1 4

: ) (

2

θ

θ θ α

α θ

θ θ α

θ θ

θ θ

α θ θ

w a w

D a H

iii

w D a

T TC

ii

w D a

T F

i

" I#

= 'KL " # " # " I#

" # $

, Β

( )

θ,α BC /NU $ $

NU

EBC/ 3

( )

, / :=4

(

1+

)(

3+4

) (

1+2

)(

5+4

)(

− °

)

=0

Βθ α BC NU θ θ α θ θ a w " 7#

(11)

00

( ) ( )( )

(

θ

)(

θ θ

)(

θ

)

α θ

θ

α 1 2 5 4 1 2

4 3 1

4 /

/ = +

°

− +

+

+

= + FBU NC

NU BC F

w

a " 5#

$ α ' L K " I# " 5# $

) % " # 62 3 15 2 73 - 3 EBC/NU 2 % 1

" # -

( )

BC NU

F

0<α <α θ / ( " #

( )

BC NU F

θ /

α

α = 1 3- * - 3 * ( ".# 62 3 15 2

73 - 3 EBC/NU 3 -

( )

BC NU

F

θ /

α

α > (

) = Β

( )

θ,α BC/NU >0

( )

BC NU

F

0<α <α θ / "0# =

( )

, / =0

Βθ α BC NU

( )

BC NU F

θ /

α

α = " # = Β

( )

θ,α BC/NU <0

( )

BC NU F

θ /

α

α > " # * +

) ' 8 2 % * 2 3 9 -:

θ 3 2 - 3 3

( )

BC NU

F

θ /

α 2 1

- (

) =

( ) ( )

(

1 2

) (

2 45748

) (

2

)

0

/ <

°

− +

+

+

= −

w a

NU BC F

θ θ

θ θ

θ

α < -

* +

8 < -

I

&$ ! ?

$ !

% !

8 'KL ' L K $

"0# ; 2 3 2 3 15 2 73 - 3 3

, /5 4 - - 2 3 , /5 θ >0( " # )

2 - * θ 3 , /5 * 2 1 - * θ

3 , /5 (

) =

( ) ( )

BC NU

F NC BU F

/

/ α 0

α 0 =

( ) ( )

BC NU

F NC BU F

/

/ α θ

θ

α > θ >0

< - < "0# = " #

( )

BU NC

F

θ /

α

I?

' !

" # "

$ #

(12)

0

θ +∞

( )

BU NC =+∞

F

limθ α θ / " #

( )

BC NU

F

θ /

α

θ +∞

( )

= °

w

NU a

BC

F 2

limθ α θ / * +

$ =

( )

α,θ

8 0 θ "

$

( )

BU NC

F

θ /

α

( )

BC NU

F

θ /

α # 'KL

! ' L K

? $

! ! " #

$

B !

B

% > $

"0# 1

!

C D

$ 37

" $ #

" # " #

" # ?

! $

" # $ $

> " t+1#

$

78

&$ ! $ $

" # 3 ) $

" # $

(13)

0

?

! !

" #

&$ !

-3

? $ $

$ $

&$ ?

, &$

,

"0#

! !

" # 8

> $

" #

?

$ 3

B B

% !

"

#

% ! ! " #

"

$ % > $ #

5? > !

$ ! %

; $

%

$

&$

? ! $

$ $

$ 3

5 $ &$

(14)

0-

;

!

>

-

A ; ) 9 A A 66

< A 6 /0 B/ -

A ; ) ) ; A = 9 A A 66 !

; *

= /7 0 B0-+

' E O * =; $ ; 8 606 P

= ' ' 3 = J

' . 055/ K $ 9 1 -I

5/B066

1: ; * Q A 66- ? ' 3

$ 9 9

Q $ -7 +70B+5+

A 07 7 Q < * G ? G

Q < 3 )

, ) . 660 ?

. 9 , /

I 0BI-+

, ! A O 057+ $ 9 Q $

I 06IB0

, = 0575 K 9 . 55 00 B00-

, = = ' . 055- K $ $ 3

F . 1 9 0 0+B --

8 1 E 1 600 A

9 9 . I I6B 76

8 1 * 600 ? '

9 '

0 B --

E E 606 9 , 8 9 ) 3 =

) ) A 0577

9 . 57 -7-B-5I

1G , O 0555

A P Q 75 0+/B0I

* ;; , 9 0550 , ;

. 9 0 I5B066

Q A 0555 K 9

. 065 06 B0 /

< Q = ' 667 K 3

. 9 5/ 0 0B0-I

< $ . ) 057- ?

> $ R . 9 55 0/B 0

(15)

0/

< $ . ) 057/ 3

= $ . 9 7I 05IB

/

< 9 J * 666 9

3 $ F 1 9 I

+0B 70

? Q , 05+6 P

Q $ 9 = I 0 B0 -

? 8 606 )

9 * I /6B /I

H . , R S 66I A

9 * - 0 7B0-7

Riferimenti

Documenti correlati

(10) and (11) it can easily be seen that the standard results of the neoclassical growth theory hold for both cases: (i) an increased population growth will result in

To answer that question, we firstly set up a standard PAYG pension scheme and develop some analytical results as well as, to study more concretely, a numerical example. We find

From now on we assume ( and check) that the latter conditions always hold. Such conditions for the existence of a monetary economy with endogenous population deserve

In a simple OLG small open economy with endogenous fertility, endogenous labour supply and intra-family old-age support, we show, in contrast with the preceding

In contrast with models with exogenous labour supply where aspirations always reduce economic performance, we show that in a model with endogenous labour supply

In the present paper we study, in the basic OLG model (under different contexts such as a small open economy and a closed economy either with a linear

In this paper we show that, instead, models of a standard neoclassical labour market endowed with the simplest Walrasian adjustment rule generate, under conditions of

Stability analysis in a Bertrand duopoly with different product quality and heterogeneous expectations. Discussion