• Non ci sono risultati.

Indicator polynomial

N/A
N/A
Protected

Academic year: 2021

Condividi "Indicator polynomial"

Copied!
17
0
0

Testo completo

(1)

Indicator polynomial

function

for multilevelfacto

rialdesigns

GiovanniPistone

DIMA T –P

olitecnicodi T orino

–giovanni.pistone@polito.it

&

Maria PieraRogantin

DIMA–

Universit`a diGenova

–rogantin@dima.unige.it GROST A TVI

Menton

(2)

The description

of fractional

factorial designs

using the

polynomial

representations of

their indicator

functions has

been introduced

for

binary designsin

Fontana, R.,

Pistone, G.

and Rogantin,

M.

P . (2000).

Classification of tw o-level

factorial fractions,J.

Statist.

Plann.

Inference 87(1), 149–172.

andgeneralized toreplicates

by

Y e, K.Q.

(2003).

Indicator functionand

itsapplication int

wo-level factorial

designs,

TheAnnals ofStatistics

. Inp ress.

Fo ra similar

approach seealso:

T ang, B.and

Deng,L.

Y.(1999).

MinimumG -aberration 2

for nonregular

fractinal

factorial designs,The

Annalsof Statistics

27(6), 1914–1926.

Herew egeneralize

tomultilevel factorial

designs, representing

the

levelsof afacto

asthe r elementsof

themultiplicative groupof

complex

roots ofunit

y,generalizing allthe

prop ertiesalready

known for

binary

designsto thecase

wherethe numbers

oflevels are

prime numbers.

(3)

Complexco dingfo

rfull factorial

designs

Notations:

- number mthe

offacto rs

n - thenumb j

erof levelsof

eachfacto r,j

,. =1 ..

, ,m

n with ap j

rimenumb er.

We code

the levels n

of a factor

with A the

complex solutions

ofthe equationζ

=1: n

k ω

=exp



2π i k n



for 0,. k=

..

−1 ,n

- [k ] theresidue n

ofk mod

expecially n;

,fo rinteger

(ω h, ) k

h [hk

]

n

The mapping

n Z 3

↔ k exp

 i k n



is a group

isomorphism on

the

(4)

The full

factorial design

D, as

a subset

of

m C with

= N

Q m j=1 j n

points, isdefined

by thesystem

ofequations

n ζ

j

−1 j

=0 for

1,. j=

..

,m

Afraction isa

subset F⊆

D;

allthe fractionsa

reobtained by

adding

equations( generatingequations

)to restrictthe

setof solutions.

Example

0 ω

0 ω

0 ω

0 ω

0 ω

1 ω

1 ω

1 ω

0 ω

2 ω

2 ω

2 ω

1 ω

0 ω

1 ω

2 ω

1 ω

1 ω

2 ω

0 ω

1 ω

2 ω

0 ω

1 ω

2 ω

0 ω

2 ω

1 ω

2 ω

1 ω

0 ω

2 ω

2 ω

2 ω

1 ω

0 ω

Theclassical

4−2 3 regular III

fractionis definedb

y

3 j ζ

−1

=0 for

1,. j=

..

,4

togetherwith thegenerating

equations

1 ζ

2 ζ

3 ζ

−1

=0 and

1 ζ

2 2 ζ

4 ζ

−1

=0

Sucha representation

isclassically termed“multi-

plicative”notation.

Inour approach

theequations

are definedon

thecomplex field

. C Thereco

ding

mapsb etw

eenthe residueclass

group

3 Z andthe

field . C

(5)

Responses

Acomplex response

onthe f design

Dis a

-valuedfunction C defined

D. on Itis

arestriction Dof to

acomplex polynomial.

L= -

n

(α α=

,. 1

..

,α ): m

j α ,. =0

..

j ,n

−1

=1 ,j ,.

..

,m

o

X - thei i

-thcomp onentfunction,

mappinga designp

oint(

1 ζ ,.

..

m ,ζ )

intoits component i-th

i ζ . Frequently calledfacto

r.

- Interactionterms

or monomialresp

onses

α X

withα α =(

,. 1

..

m ,α α ),

∈L X :

:=X α

1 α 1

··

α ·X

m m

α X D3 :

1 (ζ ,.

..

,ζ ) m

7→

α ζ

1 1

··

α ·ζ

m m

- Theterm

α X haso

k rder ifin them

-tupleα therea

rek non-null

values:

α X isan interactionof

order k

(inthe binary

casethe order

isequal tothe

degree)

(6)

Responses onthe

design

- Eachresp

onsef isrep

resentedas anunique

linear combinationof

constant,effects, interactions:

f=

P

θ α∈L

X α

, α

θ

α

C

- Meanvalue

f of D, on

D E (f E ):

(f D 1 N )=

P

∈D ζ

f(

ζ)

- Acontrast isa

response suchthat f

D E (f )=

0.

- Two

responses andg f

are orthogonal

Dif on

D E g) (f

=0.

(7)

Theset ofall

responses isa

complexHilb ertspace

withscala rp

roduct

<f ,g

>=

D E g) (f

Basicp roperties

connectingthe algebra

withthe Hilbert

structure:

1.

α X

β X

=X

−β

,where ]

[·]

denotesthe modulo

operation extended

toL

;

2.

D E

0 (X )=

1,and

D E

α (X )=

0fo

6= rα

0;

3.

D E

α (X

β X )=

D E

(X

−β

)= ]

1 ifα

0

6= ifα

β

(8)

Responses onthe

fraction

Algebraic methods

allow to

find bases

of the

vectorial space

of re-

sponses F. on

We denotesuch

basesb yEst (F), τ

whereτ isan

ordering onthe

terms,

andb (F) yC

theset ofall

(complex)functions identifiedon

F:

Est ( τ

F)

=

n β X

∈M :β

o

and (F) C

=

X

∈M β β θ

β X ,

β θ

∈ C

The vector

space (D) C

of the

responses D on

can be decomposed

into tw o orthogonal sub-spaces:

the space

(F) C of

the identifiable

responses F on

andthe spaceof

thenull responses

F, on see

Galetto F.,

Pistone G.

and Rogantin

M.

P . (2003).

Confounding revisited

with

commutativecomputational algebra,

J.Statist.

Plann.

Inference Inp ress.

(9)

Indicator function

Theindicato rfunction

of F F isa particula

rresp onsesuch

that

F(

= ζ)

1

∈F ifζ

0

∈D ifζ F r

Ap olynomialF

isan indicator

functionof somefraction

Fif andonly

2 ifF

−F

=0 D. on

Itis represented

as

F=

X α∈L

b X α α

Notethat b

=b α [−α

because ]

isreal F valued.

(10)

Meanvalue ofa

response on f

F

F E (f 1 )=

#F

X

∈F ζ

f(

= ζ) 1

#F

X

∈D ζ

F(

ζ) f(

= ζ) N

E #F (F D

f) .

α IfX

β andX are simpleo

rinteraction termsthen:

E 1.

(X F

)= α N #F

α b

E 2.

(X F

X α

)= β F E

(X

−α

)= ] N

b #F

−α ]

Contrastsand orhogonalities

F on

- Acontrast F on

isa response

suchthat f

F E (f )=

0.

- Two

responses andg f

are orthogonal

F on

F ifE g) (f

=0.

(11)

Mainresults: Orthogonalities

Generalization of Fontana, Pistone,

Rogantin (2000)

to the

case of

mixedfractional factorial

designs.

Impo rtantstatistical

featuresof thefraction

canb eread outfrom

the

form ofthe

polynomial representation

ofthe indicator

function.

1.

Asimple termo

ran interactionterm

α X isa contraston

Fif and

onlyif b

=b α [−α

=0 ]

.

2.

Two simple

or interaction

terms

α X X and

are β

orthogonal F on

ifand onlyif

b

−β

=b ]

−α

=0 ]

;

3.

X If is α

a contrast

then, for β any

γ and such

α= that

−γ [β ]o r

[γ α=

−β ],

β X iso rthogonalto

γ X .

(12)

Mainresults: T yp

esof fractions

1.

F If F and

are 0

complementary fractions

b and and α

0 b are α

the

coefficients of

the respective

indicator functions,

b then

=1 0 −b

b and

= α 0 −b

α

2.

Lb Let ethe setof

indices

∈L α suchthat

b

6= α

0and l= let

#L.

Fis Then regular

ifand onlyif

thenon-zero coefficients

are ofthe

form:

b

= α

k ω

. l

(13)

Regular fractions(p

roof )

Hb Let ea sub-groupof

#H= Land h.

LetΩ be n

theset ofthe

roots ofthe

unit:

= n

,. 1

..

}. n−1

Lete H→ :

be n

ahomomo rphism:

e([

α+

=e β]) )e )

α LetX

−e ),

∈H α ,b ethe systemof

definingequations ofa

regular fraction

F.

ThenX (A α

)=

e(

for α)

∈H allα ifand

onlyif

∈F A . Thatis:

X

α∈H α (X

(A

−e ) (X ))

(A α

−e ) )) h =2

X

α∈H

e(

α)

α X (A )

! , =0

1 h X

α∈H

e(

α)

α X (A

−1 )

=0 ifand

onlyif

∈F A

Thefunction

1 G=

h

P e( α∈H

α)

α X isan indicator

function,b ecauseG

2 =G D. on

Infact ahomomo eis

rphismand:

2 G 1 =

2 h X

α∈H

X

∈H β

e(

α) e(

β)

X

= ]

1

2 h X

∈H α

X

β∈H

e([

α+

β])

X

= ]

1

2 h X

∈H γ

he

γ )X

=G.

ThenG isthe

indicator functionof

F, Hequals Land to

b

= α e(

,fo α)

rall

∈H α .

(14)

Viceversa,let 1 F=

l X

α∈L

e(

α)

α X

be theindicato

rfunction F. of

We have

X

α∈L α (X

−e (X ))

−e α

))

=2 1 l

1 l X

∈L α

e(

α)

α X

!

=

 0 F on

2l D on

F r .

Inconclusion

α X

=e

∈L ),α ,is theset

ofthe definingequations

F. of

Theset Lis

closedfo r[

.]

;in n

factif

∈L α,β ,then

X

=e ]

)e )=

e([

α+

β])

(15)

Example

We consideras

examplethe classical3

−2 4 III

fraction,considered befo

re.

Itsindicato rfunction

is:

= F 1

9



1+

2 X

3 X

4 X

2 2 +X

2 3 X

2 4 X

1 +X

2 X

2 3 X

2 +X

2 2 X

3 X

1 +X

2 2 X

4 X

2 +X

2 X

2 4 X

1 +X

3 X

2 4 X

2 +X

2 3 X

4 X



We checkthat

itis aregula

rfraction.

(16)

Generationof fractions

Thefollo wingresult

shows how

toderive algebraic

equationsdescribing

theindicato rfunction

ofa fractionwith

agiven statisticalp

roperties.

Theco efficientsb

ofthe α

indicator functionof

Fa rerelated

according

to:

b

= α X

]=α β b b

γ

(17)

Bibliography

- Fontana, R.,Pistone,

G.and Rogantin,M.

P . (2000).

Classificationof tw

o-level

factorial fractions,J.

Statist.

Plann.

Inference 87(1), 149–172.

- Galetto,

F., Pistone,

G.

and Rogantin,

M.

P . (2003).

Confounding revisited

withcommutative computationalalgeb

ra,J.

Statist.

Plann.

Inference Inp ress.

- Pistone,

G., Riccomagno,

E.

and Wynn,

H.

P . (2001).

Algebraic Statistics:

ComputationalCommutative Algebra

inStatistics ,Chapman&Hall.

- T ang, B.and

Deng,L.

Y.(1999).

MinimumG -aberration 2

for nonregular

fracti-

nalfacto rialdesigns,

TheAnnals ofStatistics

27(6), 1914–1926.

- Wu, C.F.

J.and Hamada,M.

(2000).

Experiments ,John

Wiley&

SonsInc.,

New Y o rk.

Planning, analysis,

and parameter design

optimization, A Wiley-

IntersciencePublication.

- Y e, K.

Q.

(2003).

Indicator function

and its Application

in tw o-level

factorial

designs,The Annalsof

Statistics . Inp ress.

Riferimenti

Documenti correlati

L’articolo 3 introduce, nei limiti dello stanziamento annuo previsto dalla legge regionale di bilancio, misure a sostegno delle vittime del dovere, vale a dire: esenzione

The medial part (all motor) is from C8 and T1 ventral rami, via the lower trunk and the medial cord (median nerve muscles can be divided into two segmental categories: some

“Con questa programmazione per il prossimo triennio rimaniamo fedeli agli obiettivi che ci siamo posti all’inizio della legislatura, come il progetto del Polo

Per quanto riguarda gli edifici scolastici presenti sulle Frazioni, nel plesso di Orentano che ospita sia la scuola Primaria che la Secondaria, sono stati realizzati

Il Comune di Castelfranco di Sotto informa che dai primi di ottobre è ripartita l’attività motoria per il Capoluogo e per la frazione di Orentano. L’attività che viene proposta è

Il ritiro degli stessi sarà possibile presso la sede del Comando di Polizia Municipale ubicata a Castelfranco di Sotto in Via Magenta n°51 nei consueti orari di apertura al

Domenica 29 ottobre a Castelfranco di Sotto confluiscono tante iniziative che porteranno a vivere il paese in una giornata di festa dedicata ai bambini e alle loro famiglie..

- che la segnalazione di irregolarità non gravi, di sintomi di criticità, e le considerazioni in ordine all’eventuale mancato rispetto della normativa, dei criteri e delle