• Non ci sono risultati.

COOLER DYNAMIC ANALYSIS 1 - Cooler Input

N/A
N/A
Protected

Academic year: 2021

Condividi "COOLER DYNAMIC ANALYSIS 1 - Cooler Input"

Copied!
10
0
0

Testo completo

(1)

COOLER DYNAMIC ANALYSIS 1 - Cooler Input

RPM

EA16

 750 rpmRPM

EA15

 1470 rpm

ω

cooler_EA16

RPM

EA16

78.54 rad

s

 ω

cooler_EA15

RPM

EA15

153.938 rad

s



f

cooler_EA16

ω

cooler_EA16

2 π   12.5 Hz

 f

cooler_EA15

ω

cooler_EA15

2 π   24.5 Hz



2 - Supporting Beam Input

E  210 GPaA

b

 113 cm2 I

y

 18260 cm4 I

z

 6310 cm4 L

b

 5.70 m

3 - Mass Coordinates

Mass relative span:

L

1

 1.0 mL

2

 2.0 mL

3

 2.0 m

Mass absolute distance:

x

1

 L

1

1 m x

2

 x

1

L

2

3 m x

3

 x

2

L

3

5 m L

4

 L

b

x

3

0.7m

check_1 "YES" if L

4

0

"NO" otherwise

"YES"



4 - Load input

W

1

 100 kNW

2

 50 kNW

3

 30 kN

m

1

W

1

g1.02 104 kg



m

2

W

2

g5.099 103 kg



m

3

W

3

g3.059 103 kg



(2)

5 - Local Matrix

I  I

y

1.826 10 4 m 4

K

1_LOC

2.373 109 0 0 2.373

  10 9 0 0

0 4.602 108 2.301 108

0 4.602

  10 8 2.301 108

0 2.301 108 1.534 108

0 2.301

  10 8 7.669 107

2.373

  10 9 0 0 2.373 109

0 0

0 4.602

  10 8 2.301

  10 8 0 4.602 108

2.301

  10 8

0 2.301 108 7.669 107

0 2.301

  10 8 1.534 108

 

 

 

 

 

 

 

 

 

 

K

2_LOC

1.187 109 0 0 1.187

  10 9 0 0

0 5.752 107 5.752 107

0 5.752

  10 7 5.752 107

0 5.752 107 7.669 107

0 5.752

  10 7 3.835 107

1.187

  10 9 0 0 1.187 109

0 0

0 5.752

  10 7 5.752

  10 7 0 5.752 107

5.752

  10 7

0 5.752 107 3.835 107

0 5.752

  10 7 7.669 107

 

 

 

 

 

 

 

 

 

 

K

3_LOC

1.187 109 0 0 1.187

  10 9 0 0

0 5.752 107 5.752 107

0 5.752

  10 7 5.752 107

0 5.752 107 7.669 107

0 5.752

  10 7 3.835 107

1.187

  10 9 0 0 1.187 109

0 0

0 5.752

  10 7 5.752

  10 7 0 5.752 107

5.752

  10 7

0 5.752 107 3.835 107

0 5.752

  10 7 7.669 107

 

 

 

 

 

 

 

 

 

 

K

4_LOC

3.39 109 0 0

3.3910 9 0 0

0 1.342 109 4.695 108

0 1.342

  10 9 4.695 108

0 4.695 108 2.191 108

0 4.695

  10 8 1.096 108

3.3910 9 0 0 3.39 109

0 0

0 1.342

  10 9 4.695

  10 8 0 1.342 109

4.695

  10 8

0 4.695 108 1.096 108

0 4.695

  10 8 2.191 108

 

 

 

 

 

 

 

 

 

 

(3)

6 - Global Matrix

C

1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 

 

 

 

 

 

 

 

 C

2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 

 

 

 

 

 

 

 



C

3

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 

 

 

 

 

 

 

 

 C

4

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 

 

 

 

 

 

 

 



K

1

 C

1T

K

1_LOC

C

1

K

2

 C

2T

K

2_LOC

C

2

K

3

 C

3T

K

3_LOC

C

3

K

4

 C

4T

K

4_LOC

C

4

K

TOT

 K

1

K

2

K

3

K

4

OC 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



K

RID

 OC K

TOT

OC

T

7 - Load Vector

W

L

0 0W

1

N 0 0W

2

N 0 0W

3

N 0 0

 

 

 

W

L

0 1 2 3 4 5 6 7

0 0 0 -1·10

5

0 0 -5·10

4

0 ...

(4)

8 - Eigen Values

OC

DYN

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

 

 

 

 

 

 

 

 

 

 



Dynamic Matrix:

K

DYN

 OC

DYN

K

TOT

OC

DYNT

K

DYN

1.534 108 2.301

  10 8 7.669 107

0 0 0 0 0

2.301

  10 8 5.177 108

1.726

  10 8 5.752

  10 7 5.752 107

0 0 0

7.669 107 1.726

  10 8 2.301 108

5.752

  10 7 3.835 107

0 0 0

0 5.752

  10 7 5.752

  10 7 1.15 108

0 5.752

  10 7 5.752 107

0

0 5.752 107 3.835 107

0 1.534 108

5.752

  10 7 3.835 107

0

0 0 0 5.752

  10 7 5.752

  10 7 1.399 109

4.12 108 4.695 108

0 0 0 5.752 107 3.835 107 4.12 108 2.958 108 1.096 108

0 0 0 0 0 4.695 108 1.096 108 2.191 108

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mass Matrix:

M

DYN

1 0 0 0 0 0 0 0

0 m

1

kg 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 m

2

kg 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 m

3

kg 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 0 0 0 0 0 0 0

0 1.02 104

0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 5.099 103

0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 3.059 103

0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

 

 

 

 

 

 

 

 

 

 

 

 



Modal Matrix:

M

modal

 M

DYN

1K

DYN

Eigenvalues:

Λ  sort eigenvals M  

modal

 

T

(5)

Natural Frequencies:

ω

0

Λ

T

rad

s

34.636 124.096 283.357 9.763 103 1.127 104 1.289 104 1.689 104 1.945 104

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rad

s

 f

0

ω

0

2 π

5.512 19.75 45.098 1.554 103 1.794 103 2.051 103 2.688 103 3.096 103

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hz

 T

0

f

0

1

0.181 0.051 0.022 6.436 10 4 5.573 10 4 4.876 10 4 3.72 10 4 3.23 10 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s



9 - Hysteretic Damping matrix

α  0 β  0.04

C

H

α M

DYN

β K

DYN

C

H

6.135 106 9.203

  10 6 3.068 106

0 0 0 0 0

9.203

  10 6 2.071 107

6.902

  10 6 2.301

  10 6 2.301 106

0 0 0

3.068 106 6.902

  10 6 9.203 106

2.301

  10 6 1.534 106

0 0 0

0 2.301

  10 6 2.301

  10 6 4.602 106

0 2.301

  10 6 2.301 106

0

0 2.301 106 1.534 106

0 6.135 106

2.301

  10 6 1.534 106

0

0 0 0 2.301

  10 6 2.301

  10 6 5.596 107 1.648 107 1.878 107

0 0 0 2.301 106 1.534 106 1.648 107 1.183 107 4.382 106

0 0 0 0 0 1.878 107 4.382 106 8.765 106

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10 - Harmonic Forces

F

h_EA15

 20 kNf

cooler_EA15

24.5 HzF

h_EA16

 10 kNf

cooler_EA16

12.5 Hz

F

DYN_EA15

( ) f F

h_EA15

N

2 π   f

  2

2 π   f

cooler_EA15

  2



F

DYN_EA16

( ) f F

h_EA16

N

2 π   f

  2

2 π   f

cooler_EA16

  2



F

DYN_EA15_SS

( ) f 0 F

DYN_EA15

( ) 0 0 0 0 0 0 f

F

DYN_EA16_SS

( ) f 0 0 0 F

DYN_EA16

( ) 0 F f

DYN_EA16

( ) 0 0 f

(6)

0 20 40 60 80 100 2 10

5

4 10

5

6 10

5

8 10

5

HARMONIC FORCES

[Hz]

[N]

FDYN_EA15

( )

f FDYN_EA16

( )

f

f

11 - Direct integration of motion equations

Κ

DYN

( ) fK

DYN

 C 1

H

  2 π   f2M

DYN

 

 

Dynamic displacements calculation:

U

EA15

( ) f  Κ

DYN

( ) f 1F

DYN_EA15_SS

( ) f

T

U

EA16

( ) f  Κ

DYN

( ) f 1F

DYN_EA16_SS

( ) f

T

Dynamic displacements under bearing points:

u

EA15_1

( ) f U

EA15

( ) f

 1

u

EA15_2

( ) f U

EA15

( ) f

 3

u

EA15_3

( ) f U

EA15

( ) f

 5

u

EA16_1

( ) f U

EA16

( ) f

 1

u

EA16_2

( ) f U

EA16

( ) f

 3

u

EA16_3

( ) f U

EA16

( ) f

 5

f  0 0.01   100

(7)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 1.4 10

4

2.8 10

4

4.2 10

4

5.6 10

4

7 10

4

8.4 10

4

9.8 10

4

1.12 10

3

1.26 10

3

1.4 10

3

DYNAMIC RESPONSE - EA15

[Hz]

[m]

uEA15_1

( )

f uEA15_2

( )

f uEA15_3

( )

f

f

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 8 10

4

1.6 10

3

2.4 10

3

3.2 10

3

4 10

3

4.8 10

3

5.6 10

3

6.4 10

3

7.2 10

3

8 10

3

DYNAMIC RESPONSE - EA16

[Hz]

[m]

uEA16_1

( )

f uEA16_2

( )

f uEA16_3

( )

f

f

(8)

12 - AMPLITUDE OF VIBRATIONS - RMS

u

RMS_1

( ) f  u

EA15_1

( ) f 2u

EA16_1

( ) f 2 u

RMS_2

( ) f  u

EA15_2

( ) f 2u

EA16_2

( ) f 2 u

RMS_3

( ) f  u

EA15_3

( ) f 2u

EA16_3

( ) f 2

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 8 10

4

1.6 10

3

2.4 10

3

3.2 10

3

4 10

3

4.8 10

3

5.6 10

3

6.4 10

3

7.2 10

3

8 10

3

AMPLITUDE OF VIBRATIONS - RMS

[Hz]

[m]

uRMS_1

( )

f uRMS_2

( )

f uRMS_3

( )

f

f

(9)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 4.5 10

4

9 10

4

1.35 10

3

1.8 10

3

2.25 10

3

2.7 10

3

3.15 10

3

3.6 10

3

4.05 10

3

4.5 10

3

NODE 1

[Hz]

[m]

uRMS_1

( )

f

uEA15_1

( )

f uEA16_1

( )

f

f

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 7 10

4

1.4 10

3

2.1 10

3

2.8 10

3

3.5 10

3

4.2 10

3

4.9 10

3

5.6 10

3

6.3 10

3

7 10

3

NODE 2

[Hz]

[m]

uRMS_2

( )

f

uEA15_2

( )

f uEA16_2

( )

f

f

(10)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 8 10

4

1.6 10

3

2.4 10

3

3.2 10

3

4 10

3

4.8 10

3

5.6 10

3

6.4 10

3

7.2 10

3

8 10

3

NODE 3

[Hz]

[m]

uRMS_3

( )

f

uEA15_3

( )

f uEA16_3

( )

f

f

Riferimenti

Documenti correlati

Prima di scollegare la spina dalla presa di corrente, spegnere sempre

Una tecnologia potente e rivoluzionaria di riscaldamento-raffreddamento (Heater-Cooler) che elimina l'ambiente di crescita per i batteri Mycobacterium Chimaera, elimina

In this paper we extend the dynamic control design from the boundary control with delays to the interior local controls with delay for a Timoshenko beam.. Therefore, the final work

Le macchine HTC possono essere dotate di Mist Cooler System per il raffreddamento efficiente degli utensili di levigatura.. Mist Cooler System è disponibile anche come

Figure 8: Temperature distribution on the external oil channel wall on the central test section for case B1.. 4.5

La prima formulazione ricalca la definizione del problema adottata dalla maggior parte di voi (turni in termini di singole farmacie), la seconda (turni in termini di centroidi) `

In the case of indirect evaporative heat exchangers, the same required parameters of the supply air can be reached, but, taking into account, that air is cooled sensibly

If the interior light is left on, the temperature inside the wine cooler will be higher..