• Non ci sono risultati.

for providing us the data of the Spanish Market [3] R.N

N/A
N/A
Protected

Academic year: 2021

Condividi "for providing us the data of the Spanish Market [3] R.N"

Copied!
4
0
0

Testo completo

(1)

Bibliography

[1] L.Bachelier, Th´eorie de la sp´eculation [Ph.D. thesis in mathematics], Annales Scien- tifiques de l’Ecole Normale Sup´erieure III-17, 21-86 (1900).

[2] We thank Sociedad de Bolsas S.A. for providing us the data of the Spanish Market

[3] R.N. Mantegna and H.E. Stanley, An Introduction to Econophysics: Correlations and Complexity in Finance, Cambridge University Press, Cambridge MA (2000).

[4] E.F. Fama Efficient Capital Markets: A Review of Theory and Empirical Work, J. Fin.

25, 383 (1970).

[5] P.K. Clark, A Subordinate stochastic process model with finite variance for speculative prices, Econometrica 41, 135-156 (1973).

[6] P. L´evy, Th´eorie de l’Addition des Variables Al´eatoires, Gauthier-Villars, Paris (1954).

[7] B.V. Gnedenko and A.N. Kolmogorov, Limit Distributions for sums of Random Vari- ables, Edison-Wesley, Reading MA (1954).

[8] R.N. Mantegna and H.E. Stanley, Scaling Behavior in the Dynamics of an Economic Index, Nature 376, 46-49 (1995).

[9] P. Gopikrishnan, M. Meyer, L.A.N. Amaral and H.E. Stanley, Inverse Cubic Law for the Distribution of Stock Price Variations, Eur. Phys. J. B 3, 139-140 (1988).

[10] P. Gopikrishnan, M. Meyer, L.A.N. Amaral, V. Plerou and H.E. Stanley, Scaling of the distribution of price fluctuations of individual companies, Phys. Rev. E 60, 6519-6529 (1999).

80

(2)

BIBLIOGRAPHY 81

[11] T. Lux, The Socio-Economic Dynamics of Speculative Markets: Interacting Agents, Chaos, and the Fat Tails of Return Distributions, J. Econ. Behav. Organ 33, 143-165 (1988).

[12] R.N. Mantegna, Degree of Correlation Inside a Financial Market, Applied Nonlinear Dynamics and Stochastic System near the Millennium, J.B. Kadtke and A. Bulsara AIP Press, New York 197-202 (1997).

[13] R.N. Mantegna, Hierarchical Structure in Financial Markets, Eur. Phys. J. B 11, 193- 197 (1999).

[14] D.B. West, Introduction to Graph Theory, Prentice-Hall, Englewood Cliffs NJ, (1996).

[15] V. Pareto, Cours d’Economie Politique, vol. 2, Lausanne and Paris (1897).

[16] J. Steindl, Random Processes and the Growth of Firms - A Study of the Pareto Law, Charles Griffin & Company, London (1965).

[17] A.B. Atkinson and A.J. Harrison, Distribution of Total Wealth in Britain, Cambridge University Press, Cambridge (1978).

[18] J. Persky, Retrospectives: Pareto’s Law, Journal of Economic Perspectives 6, 181-192 (1992).

[19] M. Levy and S. Solomon New Evidence for the Power-Law Distribution of Wealth, Physica A 242, 90-93 (1997).

[20] J. D´ıaz-Gim´enez, V. Quadrini and J.V. R´ıos-Rull, Dimensions of Inequality: Facts on the U.S. Distributions of Earnings, Income, and Wealth , Quarterly Review of the Federal Reserve Bank of Minneapolis 21, 2,3-21 (1997).

[21] P. Embrechts, C. Kluppelberg and T. Mikosch, Modelling Extremal Events for Insur- ance and Finance, Springer, Berlin (1997).

[22] B.M. Hill, A simple general approach to inference about a tail of a distribution, Ann.

Stat. 3, 1163-1174 (1975).

(3)

BIBLIOGRAPHY 82

[23] M.L. Mehta, Random Matrices, Academic Press, Boston (1991).

[24] E.P. Wigner, On a class of analytic function from the quantun theory of collisions, Ann.

Math. 53, 36-65 (1951).

[25] A. Edelman, Eigenvalues and condition numbers of random matrices , J. Matrix Anal.

Appl. 9, 543-560 (1988), and references therein.

[26] J. Feinberg and A. Zee, Renormalizing rectangles and other topics in random matrix theory, J. Stat. Phys. 87, 473-504 (1997).

[27] F. Solomon, Probability and Stochastic Processes, Prentice-Hall, Englewood Cliffs (1987).

[28] R. Cont, Scaling and Correlation in Financial Data, Cond-Mat/9705075.

[29] Y. Liu, P. Cizeau, M. Meyer, C.-K. Peng and H.E. Stanley,Quantification of Correla- tions in Economic Time Series, Physica A 245, 437-440 (1997).

[30] Y. Liu, P. Gopikrishnan, P. Cizeau, M. Meyer, C.-K. Peng and H. E. Stanley, The Statistical Properties of the Volatility of Price Fluctuations, Phys. Rev. E 59, 1390- 1400 (1999).

[31] R. Cont and J.P. Bouchaud, Herd Behavior and aggregate fluctuations in financial markets, Macroeconomics Dynamics 4, 170 (2000).

[32] E. Ising, Beitrag zur Theorie des Ferromegnetismus, Z. Phys. 31, 253-258 (1925).

[33] J.P. Bouchaud and R. Cont, A Langevin approach to stock market fluctuations and crashes, Eur. Phys. J. B 6, 543-550 (1998).

[34] A. kempf and O. Korn, Market depth and order size, Lehrstuhl f¨ur Finanzierung, Uni- versit¨at Mannheim (1997).

[35] S. Bornholdt, Expectation Bubbles ia a Spin Model of Markets: Intermittency from Frustration across scales, Jurnal of Modern Physics C 12 No. 5, 667-674 (2001).

(4)

BIBLIOGRAPHY 83

[36] D. Challet and Y.C. Zhang, Emergence of Cooperation and Organization in an Evolu- tionary Game, Physica A 246, 407-418 (1997).

[37] D. Sornette and A. Johansen, A hierarchical model of financial crashes, Physica A 261, 581-598 (1998).

[38] D.S. Scharfstein and J.C. Stein, Herd behavior and investment, American Economic Review 80, 465-479 (1990).

[39] M. Grinblatt, S. Titman and R. Wermers, Momentum investment strategies, portfolio performance and herding: a study og mutual fund behavior, American Economic Re- view 85 (5), 1088-1104 (1995).

[40] B. Trueman, Analysts forecasts and herding behavior, Review of financial studies 7 (1), 97-124 (1994).

[41] I. Welch, Herding among security analysts, Jurnal of Financial Economics 58 (3), 369- 396 (2000).

[42] V.M. Egu´ıluz and M.G. Zimmermann, Transmission of Information and Heard Behav- ior: An Application to Financial Markets, Phys. Rev. Lett. 85, 5659-5662 (2000).

[43] J.D. Farmer, Market force, ecology and evolution, Ind. Corp. Change 11, 895-953 (2002).

[44] P. Erd¨os and A. Renyi, On the evolution of Random Graphs, Publications of the Math- ematical Institute of the Hungarian Academy of Sciences 5, 17-61 (1960).

[45] B. Bollobas, Random Graphs, Academic Press, New York (1985).

[46] P. Gopikrishnan, M. Meyer, L.A.N. Amaral, V. Plerou and H.E. Stanley, Scaling of the distribution of fluctuations of financial market indices, Phys. Rev. E 60, 5305-5316 (1999).

Riferimenti

Documenti correlati

Since both the static frequency sampling algorithm and the delta-encoding and static threshold algorithm require the a-priori choice of their parameters, it becomes difficult

Se dalla pre- fazione alla terza parte della Lira, che è del 1614, e dalla lettera di Stigliani (che indica nel 1636 – riprendendo le stesse parole già usate nel 1616 in una

Non sfuggirà, anche in questi casi – con tutto il rispetto per le figure più illuminate di queste professioni – una certa sufficien- za di molti ricercatori e operatori coinvol-

One explanation may be that there was a much higher proportion of sub- jects < 65 years included in the first-line studies compared with second-line studies, which also reported

In this work I argue that an extension of the traditional notion of controlled experiment is necessary to give reasons for the different experimental practices

This paper shows that the country-level R-square, computed using the individual firm total risk as weighting factor, can be interpreted as a Chisini mean of the individual

Soil moisture available for crops is determined by the soil’s water storage capacity and the addition of water to a soil, which again is determined by its texture,

normativo che lo destinava tacitamente ed esclusivamente a forme di natura collettiva. Prima di iniziare ad esplorare la normativa sulla previdenza complementare è il caso