• Non ci sono risultati.

Annexes of Experimental Activities

N/A
N/A
Protected

Academic year: 2021

Condividi "Annexes of Experimental Activities"

Copied!
31
0
0

Testo completo

(1)

Annexes of Experimental

Activities

A) Calculation of the applied force

The real forces applied to the specimens were calculated by the system shown in Figure 11.11.

W

T

P

Tx Ty=F

R

γ Rx Ry

α

Fr L1 L2 L3

Figure 11.11: System of loading Considering in the Figure 11.11:

F r is the friction force between the lever and the metal axis,

R is the constrain force,

T is the hanger force,

F is the applied load,

(2)

P = 11.58N is the lever load,

L1= 50mm is the distance between the hinge and the hanger force,

L2= 203mm is the distance between the hinge and the barycenter of the lever,

L3= 366mm is the distance between the hinge and the plates load,

α is the angle between the lever and the horizontal axis,

γ is the angle between the cable force T and the vertical axis.

The equilibrium system is given by X

X = F rx− Rx− Tx= 0 (11.129)

X

Y = Ty− W − P − F ry− Ry= 0 (11.130)

X

M = W L3cosα+ P L2cosα − T L1cos(α + γ) − F r · d = 0 (11.131)

wherein:

F rx= µRy

F ry = µRx

µ is the friction coefficient between the lever and the metal axis

d is the diameter of hinge bar

R=qR2 x+ R2y F r= µR = µqR2 x+ Ry2 Tx= T sinγ Ty= F = T cosγ Substituting, X X = µRy− Rx− T sinγ= 0 (11.132) X Y = T cosγ − W − P − µRx− Ry = 0 (11.133) X

M = W L3cosα+ P L2cosα − T L1cos(α + γ) − µ

q

R2

x+ R2y· d= 0 (11.134)

and solving for Rx and Ry

Rx=

µ(T cosγ − W − P + µT sinγ)

(3)

Ry=

T cosγ − W − P+ µT sinγ

µ2+ 1 (11.136)

From the rotation equilibrium in Equation (11.131) and T = F

cosγ:

W L3cosα+ P L2cosα −cosγF L1cos(α + γ) −

−µ r µ(F −W −P +µF tgγ) µ2+1 − F tgγ 2 +F −W −P +µF tgγ µ2+1 2 · d= 0 (11.137) By interactions of Equation (11.137), the effective force F applied on the specimens can be calculated. 600 1060 60 60 740 370 200

(4)

B) Evaluation of the friction coefficient between the lever

and the axis

The friction coefficient µ between the levers and the metal axes was estimated through the dynamic theory of the simple pendulum with friction in the hinge support, in which the friction causes a certain loss of mechanical energy at every half period done by the pendulum.

Actually, considering the system in Figure 11.13, the equilibrium system is given by

WT = m · aT

WN = T (11.138)

where:

W = m · g is the weight,

WN = cos θ · W is the radial weight,

WT = − sin θ · W is the tangential weight and

aT = L ·

2θ

∂t2 is the tangential acceleration.

Then, the dynamic equation becomes

2θ ∂t2 + L g sin θ = 0 (11.139) T Ty Tx WN WT W

θ

h L m θ θ

Figure 11.13: Pendulum system

For small angle sin θ ≈ θ and cos θ ≈ 1. Therefore Equation (11.138) becomes 2θ

∂t2 + L g · θ= 0

(5)

The friction in the hinge is given by F r = µ · T = µ · m · g.

Considering the boundary condition of pendulum with an initial angle θ0, the initial

energy of the overall system is

E0= m · g · h0 (11.141)

where h0= L · (1 − cos θ0).

After the first half period the loss of energy is expressed by

4E = E0− E1= m · g · h0− m · g · h1= m · g(h0− h1) (11.142)

The loss of energy 4E due to the friction in the hinge is given by

4E = F r · θT · R= µ · m · g · θT · R (11.143)

where:

θT is the total angle made by the pendulum, given by θT = θ0+ θ1,

R is the radius of the axes which make up the hinge.

Then, by Equations (11.142)-(11.143), the friction coefficient µ is given by

µ=h0− h1 θT· R =

L(cos θ1−cos θ0)

0+ θ1) · R (11.144)

According to Taylor series expansion

cos θ1−cos θ0= − θ2 1 2 + θ2 0 2 + θ4 1 24− θ4 0 24− θ6 1 720+ θ6 0 720+ O(θ)8 (11.145)

if the terms over fourth order are neglected

cos θ1−cos θ0≈

θ20− θ2 1

2 (11.146)

Thus, by substituting Equation (11.146) into (11.144), the friction coefficient can be ex-pressed as

µ=L(θ0− θ1)

2R (11.147)

The friction coefficient was evaluated through a test in which the total number of half

periods made by the pendulum, starting from a little angle θ0, was counted. Therefore,

if the final angle is equal to zero and if n is the total number of half periods, the friction coefficient turns out to be

µ= L · θ0

(6)

C) Influence of friction in the supports on the deflection

Though the large deflection and second order effects can not be taken into account, extensive investigation on the influence of the tension forces on the deflection due to the friction in the supports has been carried out. In Figure 11.14 are shown the experiment models of the first and second order analysis.

F F a = 2'000a 2'000 mm a aa = 2'000 P P S S a = 2'000w(x) x F F a = 2'000 2'000 mm a = 2'000 a a a x a = 2'000 L First order analysis

Second order analysis

(a)

(b)

Figure 11.14: First and second order analysis

In the experiment processing, second order analysis is not taken into account because the maximum deflection of the specimens did not exceed 1/10 of the total nominal span L [39]; moreover, horizontal forces due to the inclination of the hanger were also neglected. Indeed, pure bending and shear-bending states in Figure 9.1 can only exist through an experimental model in first order analysis, as in Figure 11.14 (a).

Considering the second order analysis and the inclination of the forces in the model, system in Figure 11.14 (b) must be considered. Let us introduce a simplification into the model thanks to the symmetry, the new experimental model is shown in Figure 11.15.

F

a = 2'000 2'000 mm a a/2

P

S

1 2

S-P

x1 x2

Figure 11.15: Experimental model with second order analysis

In the sistem in Figure 11.15, the bending forces in the two segments are given by

M1(x1) = F · x1− S · w1(x1)

M2(x2) = F · a − (S + P ) · w2(x2) + P · w1(a) (11.149)

Thanks to Euler-Bernoulli’s beam model, the bending moments are also expressed as

(x ) = EJ ·∂2w (x )

(x ) = EJ ·∂2w (x )

(7)

Thus, we obtain the following differential equations EJ ·∂2w1(x1) ∂x2 1 − S · w1(x1) = F · x EJ · 2w2(x2) ∂x2 2 −(S + P ) · w2(x2) = F · a + P · w1(a) (11.151) with the boundary conditions as

w1(0) = 0 ∂w∂x1(a) =∂w∂x2(0)

w1(a) = w2(0)

∂w2(a2)

∂x = 0

(11.152) By solving Equations (11.151)-(11.152), the value of S remains unknown. Actually, the extension of the beam produced by the forces S is equal to the difference between the length of the arc along the deflection curve and the initial length L. For small deflection, the extension is given by λ= S · L EA = 1 2    a ˆ 0  ∂w1(x1) ∂x1 2 dx1+ a/2 ˆ 0  ∂w2(x2) ∂x2 2 dx2    (11.153)

By Equation (11.153) and the solutions w1(x1, S), w2(x2, S) of the differential Equations

(11.151)-(11.152), it is possible to obtain the value of S and therefore evaluate the real

deflections w1(x2), w2(x2).

Now, the comparison between the tension forces S on the supports and the maximum forces allowable due to the friction must be compared in order to investigate if the beam can slide or not on the supports. The maximum forces produced by the friction between the beam and metal support with lubricant is given by

SM AX ≈ µ · F (11.154)

with µ the friction coefficient equal to 0.2.

Figure 11.16 shows that the the restraint forces S is always higher than the maximum

friction forces SM AX in the our range of applied load (1460 N÷2589 N). Therefore, the

specimens always slide until the restraint forces S becomes equal to the maximum friction

forces SM AX. Thus, the tension forces at the ends of the specimens are given by the value

of SM AX0.2 · F . 500 1000 1500 2000 2500 3000 5000 10 000 15 000 20 000 F (N) S (N ) SMAX S

(8)

By introducing S = SM AX into the solution of the deflections w1(x1, S), w2(x2, S), the

maximum deflection in the mid-span w2(a/2) of the overall beam can be obtained. Figure

11.17 shows the comparison between the elastic deflection with the restraint forces and the deflection without them. Moreover, Figure 11.17 shows the ratio between the two values of deflection. The maximum discrepancy is about 0.96 at the highest value of the applied force (2589 N). Figure 11.17 also shows the ratio of the deflections versus the friction coefficient for the maximum applied force.

500 1000 1500 2000 2500 3000 10 20 30 40 0 0 50

Deflection in first order analysis Deflection in second order analysis

F (N) w II / w I 500 1000 1500 2000 2500 3000 0 0.6 0.8 1.0 1.2 F (N) w (m m ) Friction coefficient w II / w I 0 0.2 0.4 0.6 0,5 0.8 1.0 0 1 1,5 2

(9)

D) Experimental data

D.1) Pure bending state

TEMPERATURE STRESS 26.08 °C 170.1 MPa Moisture t0 n m Elastic deflection 22.88% 1 min 0.172 0.0118 1.43 mm

26% - 26°C

TEMPERATURE STRESS 32.12 °C 170.1 MPa Moisture t0 n m Elastic deflection 22.76% 1 min 0.205 0.00727 1.97 mm

26% - 32°C

TEMPERATURE STRESS 41.40 °C 170.1 MPa Moisture t0 n m Elastic deflection 14.73% 1 min 0.213 0.0118 2.44 mm

26% - 41°C

TEMPERATURE STRESS 26.16 °C 231.8 MPa Moisture t0 n m Elastic deflection 22.90% 1 min 0.1716 0.01514 2.45 mm

35% - 26°C

TEMPERATURE STRESS 32.09 °C 231.8 MPa Moisture t0 n m Elastic deflection 15.39% 1 min 0.138 0.01883 2.50 mm

35% - 32°C

TEMPERATURE STRESS 41.36 °C 231.8 MPa Moisture t0 n m Elastic deflection 14.12% 1 min 0.0806 0.03568 3.94 mm

35% - 41°C

TEMPERATURE STRESS 26.24 °C 300.3 MPa Moisture t0 n m Elastic deflection 22.26% 1 min 0.199 0.0258 4.40 mm

45% - 26°C

TEMPERATURE STRESS 32.32 °C 300.3 MPa Moisture t0 n m Elastic deflection 17.26% 1 min 0.158 0.0482 4.60 mm

45% - 32°C

TEMPERATURE STRESS 41.22 °C 300.3 MPa Moisture t0 n m Elastic deflection 13.94% 1 min 0.192 0.04912 4.95 mm

45% - 41°C

TEMPERATURE STRESS 26.08 °C 170.1 MPa Moisture t0 n m Elastic deflection 22.88% 1 min 0.123 0.019 1.72 mm LONG-TERM (26% - 26°C)

(10)

26% - 26°C T im e (m in) Creep de flec tion (m m) 100 200 300 400 500 600 700 800 900 1000 1 100 1200 1300 1400 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

Experimental data (Sp.1) Findley law (Sp.1) Experimental data (Sp.2) Findley law (Sp.2) Findley law (A

verage) 0 0 E la st ic de fl ec ti on: 1.43 mm Figure 11.19: 26% -26 °C (Pure bending state)

(11)

26% - 32°C T im e (m in) Creep de flec tion (m m) 100 200 300 400 500 600 700 800 900 1000 1 100 1200 1300 1400 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

Experimental data (Sp.1) Findley law (Sp.1) Experimental data (Sp.2) Findley law (Sp.2) Findley law (A

verage) 0 0 E la st ic de fl ec ti on: 1.97 mm Figure 11.20: 26% -32 °C (Pure bending state)

(12)

26% - 41°C T im e (m in) Creep de flec tion (m m) 100 200 300 400 500 600 700 800 900 1000 1 100 1200 1300 1400 0.1 0.02 0.03 0.04 0.05 0.06 0.07

Experimental data (Sp.1) Findley law (Sp.1) Experimental data (Sp.2) Findley law (Sp.2) Findley law (A

verage) 0 0 E la st ic de fl ec ti on: 2.44 mm Figure 11.21: 26% -41 °C (Pure bending state)

(13)

35% - 26°C T im e (m in) Creep de flec tion (m m) 100 200 300 400 500 600 700 800 900 1000 1 100 1200 1300 1400 0.01 0.02 0.03 0.06 0.05 0.04

Experimental data (Sp.1) Findley law (Sp.1) Experimental data (Sp.2) Findley law (Sp.2) Findley law (A

verage) 0 0 E la st ic de fl ec ti on: 2.45 mm Figure 11.22: 35% -26 °C (Pure bending state)

(14)

35% - 32°C T im e (m in) Creep de flec tion (m m) 100 200 300 400 500 600 700 800 900 1000 1 100 1200 1300 1400 0.01 0.02 0.03 0.06 0.05 0.04

Experimental data (Sp.1) Findley law (Sp.1) Experimental data (Sp.2) Findley law (Sp.2) Findley law (A

verage) 0 0 E la st ic de fl ec ti on: 2.50 mm Figure 11.23: 35% -32 °C (Pure bending state)

(15)

35% - 41°C T im e (m in) Creep de flec tion (m m) 100 200 300 400 500 600 700 800 900 1000 1 100 1200 1300 1400 0.01 0.02 0.03 0.06 0.05 0.04

Experimental data (Sp.1) Findley law (Sp.1) Experimental data (Sp.2) Findley law (Sp.2) Findley law (A

verage) 0 0.09 0.08 0.07 0 E la st ic de fl ec ti on: 3.94 mm Figure 11.24: 35% -41 °C (Pure bending state)

(16)

45% - 26°C T im e (m in) Creep de flec tion (m m) 100 200 300 400 500 600 700 800 900 1000 1 100 1200 1300 1400 0.02 0.06 0.04

Experimental data (Sp.1) Findley law (Sp.1) Experimental data (Sp.2) Findley law (Sp.2) Findley law (A

verage) 0 0.08 0 0.1 0.12 E la st ic de fl ec ti on: 4.40 mm Figure 11.25: 45% -26 °C (Pure bending state)

(17)

45% - 32°C T im e (m in) Creep de flec tion (m m) 100 200 300 400 500 600 700 800 900 1000 1 100 1200 1300 1400 0.02 0.06 0.04

Experimental data (Sp.1) Findley law (Sp.1) Experimental data (Sp.2) Findley law (Sp.2) Findley law (A

verage) 0 0.08 0 0.1 0.12 0.14 0.16 0.18 E la st ic de fl ec ti on: 4.60 mm Figure 11.26: 45% -32 °C (Pure bending state)

(18)

T im e (m in) Creep de flec tion (m m) 100 200 300 400 500 600 700 800 900 1000 1 100 1200 1300 1400 0.1 0.05

Experimental data (Sp.1) Findley law (Sp.1) Experimental data (Sp.2) Findley law (Sp.2)

0 0.15 0 0.2 0.25 Findley law (A verage) 45% - 41°C E la st ic de fl ec ti on: 4.95 mm Figure 11.27: 45% -41 °C (Pure bending state)

(19)

26% - 26°C Creep de flec tion (m m) 0.01 0.02 0.03 0.06 0.05 0.04

Experimental data (Sp.1) Findley law (Sp.1) Experimental data (Sp.2) Findley law (Sp.2) Findley law (A

verage) 0 E la st ic de fl ec ti on: 1.72 mm T im e (da ys ) 10 20 30 40 0 0.08 0.07 Figure 11.28: Long-term exp er imen t in pure bending state (26% -26 °C)

(20)

D.2) Shear-bending state

TEMPERATURE STRESS 26.08 °C 170.1 MPa Moisture t0 n m Elastic deflection 22.88% 1 min 0.184 0.113 23.32 mm

26% - 26°C

TEMPERATURE STRESS 32.12 °C 170.1 MPa Moisture t0 n m Elastic deflection 22.76% 1 min 0.197 0.0843 24.11 mm

26% - 32°C

TEMPERATURE STRESS 41.40 °C 170.1 MPa Moisture t0 n m Elastic deflection 14.73% 1 min 0.202 0.126 24.47 mm

26% - 41°C

TEMPERATURE STRESS 26.16 °C 231.8 MPa Moisture t0 n m Elastic deflection 22.90% 1 min 0.171 0.173 32.38 mm

35% - 26°C

TEMPERATURE STRESS 32.09 °C 231.8 MPa Moisture t0 n m Elastic deflection 15.39% 1 min 0.139 0.225 32.74 mm

35% - 32°C

TEMPERATURE STRESS 41.36 °C 231.8 MPa Moisture t0 n m Elastic deflection 14.12% 1 min 0.111 0.3613 34.24 mm

35% - 41°C

TEMPERATURE STRESS 26.24 °C 300.3 MPa Moisture t0 n m Elastic deflection 22.26% 1 min 0.223 0.238 42.50 mm

45% - 26°C

TEMPERATURE STRESS 32.32 °C 300.3 MPa Moisture t0 n m Elastic deflection 17.26% 1 min 0.1642 0.401 42.96 mm

45% - 32°C

TEMPERATURE STRESS 41.22 °C 300.3 MPa Moisture t0 n m Elastic deflection 13.94% 1 min 0.1925 0.472 43.92 mm

45% - 41°C

TEMPERATURE STRESS 26.08 °C 170.1 MPa Moisture t0 n m Elastic deflection 22.88% 1 min 0.128 0.185 23.50 mm LONG-TERM (26% - 26°C)

(21)

26% - 26°C T im e (m in) Creep de flec tion (m m) 100 200 300 400 500 600 700 800 900 1000 1 100 1200 1300 1400 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5

Experimental data (Sp.1) Findley law (Sp.1) Experimental data (Sp.2) Findley law (Sp.2) Findley law (A

verage) 0 0 E la st ic de fl ec ti on: 23.32 mm 0.45 Figure 11.30: 26% -26 °C (Shear-b ending state)

(22)

26% - 32°C T im e (m in) Creep de flec tion (m m) 100 200 300 400 500 600 700 800 900 1000 1 100 1200 1300 1400 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Experimental data (Sp.1) Findley law (Sp.1) Experimental data (Sp.2) Findley law (Sp.2) Findley law (A

verage) 0 0 E la st ic de fl ec ti on: 24.1 1 m m 0.45 Figure 11.31: 26% -32 °C (Shear-b ending state)

(23)

26% - 41°C T im e (m in) Creep de flec tion (m m) 100 200 300 400 500 600 700 800 900 1000 1 100 1200 1300 1400 0.1 0.2 0.3 0.4 0.5 0.6

Experimental data (Sp.1) Findley law (Sp.1) Experimental data (Sp.2) Findley law (Sp.2) Findley law (A

verage) 0 0 E la st ic de fl ec ti on: 24.47 mm 0.7 Figure 11.32: 26% -41 °C (Shear-b ending state)

(24)

35% - 26°C T im e (m in) Creep de flec tion (m m) 100 200 300 400 500 600 700 800 900 1000 1 100 1200 1300 1400 0.1 0.2 0.3 0.4 0.5 0.6

Experimental data (Sp.1) Findley law (Sp.1) Experimental data (Sp.2) Findley law (Sp.2) Findley law (A

verage) 0 0 E la st ic de fl ec ti on: 32.38 mm 0.7 Figure 11.33: 35% -26 °C (Shear-b ending state)

(25)

35% - 32°C T im e (m in) Creep de flec tion (m m) 100 200 300 400 500 600 700 800 900 1000 1 100 1200 1300 1400 0.1 0.2 0.3 0.4 0.5 0.6

Experimental data (Sp.1) Findley law (Sp.1) Experimental data (Sp.2) Findley law (Sp.2) Findley law (A

verage) 0 0 E la st ic de fl ec ti on: 32.74 mm 0.7 Figure 11.34: 35% -32 °C (Shear-b ending state)

(26)

35% - 41°C T im e (m in) Creep de flec tion (m m) 100 200 300 400 500 600 700 800 900 1000 1 100 1200 1300 1400 0.1 0.2 0.3 0.4 0.5 0.6

Experimental data (Sp.1) Findley law (Sp.1) Experimental data (Sp.2) Findley law (Sp.2) Findley law (A

verage) 0 0 E la st ic de fl ec ti on: 34.24 mm 0.7 0.8 0.9 1 Figure 11.35: 35% -41 °C (Shear-b ending state)

(27)

45% - 26°C T im e (m in) Creep de flec tion (m m) 100 200 300 400 500 600 700 800 900 1000 1 100 1200 1300 1400 0.2 0.4 0.6

Experimental data (Sp.1) Findley law (Sp.1) Experimental data (Sp.2) Findley law (Sp.2) Findley law (A

verage) 0 0 E la st ic de fl ec ti on: 42.50 mm 0.8 1 1.2 1.4 Figure 11.36: 45% -26 °C (Shear-b ending state)

(28)

45% - 32°C T im e (m in) Creep de flec tion (m m) 100 200 300 400 500 600 700 800 900 1000 1 100 1200 1300 1400 0.2 0.4 0.6

Experimental data (Sp.1) Findley law (Sp.1) Experimental data (Sp.2) Findley law (Sp.2) Findley law (A

verage) 0 0 E la st ic de fl ec ti on: 42.96 mm 0.8 1 1.2 1.4 1.6 Figure 11.37: 45% -32 °C (Shear-b ending state)

(29)

45% - 41°C T im e (m in) Creep de flec tion (m m) 100 200 300 400 500 600 700 800 900 1000 1 100 1200 1300 1400 0.5 1

Experimental data (Sp.1) Findley law (Sp.1) Experimental data (Sp.2) Findley law (Sp.2) Findley law (A

verage) 0 0 E la st ic de fl ec ti on: 43.92 mm 1.5 2 2.5 Figure 11.38: 45% -41 °C (Shear-b ending state)

(30)

26% - 26°C T im e (da ys ) Creep de flec tion (m m) 10 20 30 40 0,05 0,15 0,25 0,35 0,45 0,65 0,85

Experimental data (Sp.1) Findley law (Sp.1) Experimental data (Sp.2) Findley law (Sp.2) Findley law (A

verage) 0 0 E la st ic de fl ec ti on: 23,50 mm 0,75 0,55 Figure 11.39: Long-term exp er imen t in shear-b ending state (26% -26 °C)(26% -26 °C)

(31)

“It appears reasonable to assume that the curves

for different temperatures are of the same shape,

but that increase of temperature displaces the

creep curve for constant load to the left; we can

then say that increase of temperature has the

effect of contraction the time scale”

H. Leaderman (1943)

Figura

Figure 11.11: System of loading
Figure 11.12: Loading setup
Figure 11.13: Pendulum system
Figure 11.14: First and second order analysis
+5

Riferimenti

Documenti correlati

Knowles usa il termine andragogia (coniato da Kapp nel 1833) in contrapposizione a pedagogia: nella prima vede l’apprendimento come processo di ricerca individuale, nella

Proceeding regarding the assessment of influence of planned undertaking on the environment is regulated by the act of the 3 rd of October 2008 on providing information on

A questo scopo negli anni tra il 2004 e il 2006 è stata istallata una re- te di dilatometri nei Campi Flegrei, sul Vesuvio e sull' isola di Stromboli, mentre nel periodo 2008-2009

This result strongly suggests that we are observing discrete shifts from part-time to full-time work, as conjectured by Zabalza et al 1980 and Baker and Benjamin 1999, rather

In particular, generational accounting tries to determine the present value of the primary surplus that the future generation must pay to government in order to satisfy the

Thor- ough histological sampling is necessary when examining primary bone tumours and obviously may require decalcification of slices or areas of tumour obtained with a band saw

In vitro antibacterial efficacy of Vicryl plus suture (coated Polyglactin 910 with triclosan) using zone of inibition assays.. Objectives: This study evaluates the in

Here, to make up for the relative sparseness of weather and hydrological data, or malfunctioning at the highest altitudes, we complemented ground data using series of remote sensing