[1] J. Langner, PET Schema, [Online], Available:
http://upload.wikimedia.org/wikipedia/commons/c/c1/PET-schema.png. [2] H. Jadvar, “PET Physics and Instrumentation”, Clinical PET and PET/CT,
London: Springer London, 2005.
[3] T.B. Lynch, “PET Physics and Instrumentation”, PET/CT in Clinical Practice, London: Springer London, 2007.
[4] M.J. Martinez, S.I. Ziegler and T. Beyer, “PET and PET/CT: Basic Princi- ples and Instrumentation”, PET in Oncology,Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.
[5] J. Maus, “Annihilation”, own work part of PhD thesis, Available:
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-23509.
[6] D.L. Bailey, “Data Acquisition and Performance Characterization in PET”
Positron Emission Tomography Basic Sciences, London, Springer London, 2005.
[7] Manticorp, “Scintillation Counter Schematic”, Own work, Licensed under CC BY-SA 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/
File:Scintillation_Counter_Schematic.jpg.
[8] G. Tomasi, F. Turkheimer and E. Aboagye, “Importance of Quantification for the Analysis of PET Data in Oncology: Review of Current Methods and Trends for the Future”, Molecular imaging and biology MIB the official publication of the Academy of Molecular Imaging, vol. 13, no. 2, pp. 1-16, 2011.
[9] R.N. Gunn, S.R. Gunn and V.J. Cunningham, “Positron emission tomography compartmental models”, Journal of cerebral blood flow and metabolism : offi- cial journal of the International Society of Cerebral Blood Flow and Metabolism, vol. 21, no. 6, pp. 635-652, 2001.
[10] J. Logan, “Graphical analysis of PET data applied to reversible and irreversible tracers”, Nuclear medicine and biology, vol. 27, no. 7, pp. 661–670, 2000.
[11] V.J. Cunningham and T. Jones, “Spectral analysis of dynamic PET studies”, Journal of cerebral blood flow and metabolism : official journal of the Interna- tional Society of Cerebral Blood Flow and Metabolism, vol. 13, no. 1, pp. 15–23, 1993.
[12] T.E. Nichols, J. Qi and R.M. Leahy, “Continuous Time Dynamic PET Imaging Using List Mode Data”, no. Ml, pp. 98–111, 1999.
Bibliografia
[13] H.W. Atabe, Y.I. Koma, Y.K. Imura, M.N. Aganawa and M.S. Hidahara, “PET kinetic analysis — compartmental model”, Annals of Nuclear Medicine, vol. 20, no. 9, pp. 583-588, 2006.
[14] R. Boellaard, “Standards for PET image acquisition and quantitative data analysis”, Journal of nuclear medicine : official publication, Society of Nuclear Medicine, vol. 50 Suppl 1, p. 11S–20S, 2009.
[15] C. Comtat et al.,“Fast reconstruction of 3D PET data with accurate statistical modeling”, IEEE Trans. Nucl. Sci., vol. 45,pp. 1083–89, 1998.
[16] A. Rahmim, J. Qi and V. Sossi, “Resolution modeling in PET imaging: theory practice benefits and pitfalls”, Med. Phys., vol. 40, 064301, 2013.
[17] A.J. Reader and J. Verhaeghe, “4D image reconstruction for emission tomography”, Phys. Med. Biol., 59 R371, 2014.
[18] A. Reilhac et al., “Simulation-based evaluation of OSEM iterative recon- struction methods in dynamic brain PET studies”, Neuroimage, 39 359–68, 2008.
[19] J. Verhaeghe and A.J. Reader, “AB-OSEM reconstruction for improved Pa- tlak kinetic parameter estimation: a simulation study”, Phys. Med. Biol., 55 6739–57,2010.
[20] C.S. Patlak, R.G. Blasberg and J.D. Fenstermacher, “Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data”, J. Cereb.
Blood Flow Metab., 3 1–7, 1983.
[21] G. Wang, L. Fu and J. Qi, “Maximum a posteriori reconstruction of the pa- tlak parametric image from sinograms in dynamic PET”, Phys. Med. Biol., 53 593–604,2008.
[22] C. Tsoumpas, F.E. Turkheimer and K. Thielemans, “Study of direct and in- direct parametric estimation methods of linear models in dynamic positron emission tomography”, Med. Phys., 35 1299–309, 2008
[23] J. Tang et al, “Direct 4D reconstruction of parametric images incorporating anato-functional joint entropy”, Phys. Med. Biol., 55 4261–72,2010.
[24] G.I. Angelis et al, “Convergence optimization of parametric MLEM reconstruc- tion for estimation of Patlak plot parameters”, Comput. Med. Imag. Graph., 35 407–16,2011.
[25] J.Logan, “Graphical analysis of PET data applied to reversible and irreversible tracers”, Nucl. Med. Biol., 27 661–70, 2000.
[26] A. Rahmim et al, “Direct 4D parametric imaging for linearized models of re- versibly binding PET tracers using generalized AB-EM reconstruction”, Phys.
Med. Biol, 57 733–55,2012.
[27] Y. Rakvongthai et al., “Direct reconstruction of cardiac PET kinetic parametric images using a preconditioned conjugate gradient approach”, Med. Phys., 40 102501, 2013.
108
[28] A. Rahmim, J. Tang and H. Mohy-ud-Din, “Direct 4D parametric imaging in dynamic myocardial perfusion PET”, Front. Biomed. Technol., 1 4–13,2014.
[29] K.H. Su, T.C. Yen and Y.H. Fang, “A novel approach for direct reconstruction of parametric images for myocardial blood flow from PET imaging”, Med. Phys., 40 102505,2013.
[30] M.E. Kamasak et al, “Direct reconstruction of kinetic parameter images from dynamic PET data”, IEEE Trans. Med. Imag., 24 636–50, 2005.
[31] G. Wang and J. Qi, “Generalized algorithms for direct reconstruction of parametric images from dynamic PET data”, IEEE Trans. Med. Imag., 28 1717–26,2009.
[32] P. Gravel and A.J. Reader, “Direct 4D PET MLEM reconstruction of para- metric images using the simplified reference tissue model with the basis func- tion method”, IEEE and Medical Imaging Conf. Nuclear Science Symp., pp 1–7 (NSS/MIC),2013
[33] A.J. Reader et al., “EM algorithm system modeling by image-space techniques for PET reconstruction”, IEEE Trans. Nucl. Sci., 50 1392–97, 2003.
[34] G. Wang and J. Qi, “An optimization transfer algorithm for nonlinear parame- tric image reconstruction from dynamic PET data”, IEEE Trans. Med. Imag., 31 1977–88, 2012.
[35] G. Wang and J. Qi, “Direct estimation of kinetic parametric images for dynamic PET”, Theranostics, 3 802–15,2013.
[36] G. Wang and J. Qi, “Acceleration of the direct reconstruction of linear parametric images using nested algorithms”, Phys. Med. Biol., 55 1505–17,2010.
[37] J.C. Matthews et al., “The direct calculation of parametric images from dyna- mic PET data using maximum-likelihood iterative reconstruction”, Phys. Med.
Biol., 42 1155–73,1997.
[38] I. Hong I and A.J. Reader, “Ultrafast 4D PET image reconstruction with user-definable temporal basis functions”, Nucl. Sci. Symp. Conf. Record, pp 5475–8,2008.
[39] J. Qi and R.M. Leahy, “Iterative reconstruction techniques in emission computed tomography”, Physics in Medicine and Biology, 51 (15):R541-578, 2006.
[40] R.E. Carson and K. Lange, “A statistical model for positron emission tomogra- phy—the EM parametric image reconstruction algorithm—comment”, J. Am.
Stat. Assoc., 80 20–2, 1985.
[41] C. Tsoumpas et al, “The effect of regularization in motion compensated PET image reconstruction: a realistic numerical 4D simulation study”, Phys. Med.
Biol., 58 1759–73, 2013.
[42] J.C. Matthews et al, “Direct reconstruction of parametric images using any spatiotemporal 4D image based model and maximum likelihood expectation ma- ximisation”, IEEE Nuclear Science Symp. Conf. Record (NSS/MIC), 2435–41,
Bibliografia
2010.
[43] A. Reader, J. Matthews, F. Sureau et al., “Iterative kinetic parameter estima- tion within fully 4D PET image reconstruction”, IEEE Nucl. Sci. Syp. & Med.
Im. Conf, 3): 1752-56, 2006.
[44] K. Lange, D.R. Hunter, I. Yang, “Optimization transfer using surrogate objec- tive functions”, Journal of Computational and Graphical Statistics, 9(1):1–20, 2000.
[45] A.R. De Pierro, “A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography”, IEEE Transactions on Medical Imaging, 14(1):132–137, 1995.
[46] D.W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters”, Journal of the Society for Industrial and Applied Mathematics, 11(2):431–441, 1963.
[47] K. Madsen, H.B. Nielsen and O. Tingleff, “Methods for non-linear least squares problems”, Tech rep, Technical University of Denmark, 2004.
[48] A.M. Spence, M. Muzi, M.M. Graham et al., “ Glucose metabolism in hu- man malignant gliomas measured quantitatively with PET, 1-[C-11]glucose and FDG: analysis of the FDG lumped constant”, Journal of Nuclear Medicine, 39(3):440–448,1998.
[49] J.A. Fessler, “Image Reconstruction Toolbox”, [Online], Available:
http://web.eecs.umich.edu/~fessler/code/index.html.
[50] D.G. Feng, K.P. Wong, C.M. Wu and W.C. Siu, “A technique for extracting physiological parameters and the required input function simultaneously from PET image measurements: Theory and simulation study”, IEEE Transactions on Information Technology in Biomedicine, vol 1, no. 4, pp. 243-254, 1997.
110