• Non ci sono risultati.

On the matrix P of the web

N/A
N/A
Protected

Academic year: 2021

Condividi "On the matrix P of the web"

Copied!
15
0
0

Testo completo

(1)

On the matrix P of the web

Let n be a positive integer. Let i = 1, 2, . . . , n be the sites of the web. For each site i, let µ i and ν(i) be the number of sites pointed by i and the set whose elements are the sites pointed by i, respectively ( |ν(i)| = µ i ).

Moreover, for each site i let ρ(i) be the set whose elements are the sites which point to i. Note that the ρ(i) can be computed from the ν(i) via the algorithm:

For i = 1, 2, . . . , n ρ(i) := ∅;

for k = 1, 2, . . . , n

if i ∈ ν(k) then ρ(i) := ρ(i) ∪ {k}

Now let P be the n × n matrix whose ith row, i = 1, . . . , n, has all entries equal to zero except those whose indeces are in ν(i) which are set equal to 1/µ i . Note that

(P x) k =

 1 µ

k

P

s ∈ν(k) x s ν(k) 6= ∅

0 ν(k) = ∅ , k = 1, 2, . . . , n;

(P T x) k =

 P

s ∈ρ(k) 1

µ

s

x s ρ(k) 6= ∅

0 ρ(k) = ∅ , k = 1, 2, . . . , n;

x P x =

n

X

k=1

x k (P x) k = X

k:ν(k) 6=∅

x k

1 µ k

X

s ∈ν(k)

x s

= (P T x) x =

n

X

k=1

(P T x) k x k = X

k:ρ(k) 6=∅

x k

X

s ∈ρ(k)

1 µ s

x s .

Example: n = 5,

µ 1 = 0 ν(1) = ∅ µ 2 = 3 ν(2) = {1, 3, 5}

µ 3 = 2 ν(3) = {2, 5}

µ 4 = 0 ν(4) = ∅ µ 5 = 2 ν(5) = {1, 3}

Compute ρ(i), i = 1, 2, 3, 4, 5, and write the 5 × 5 matrix P . On ρ(P P ) and v such that P P v = ρ(P P )v

Upper bounds for ρ(P P ):

ρ(P P ) = ρ(P P ) = kP P k 2 = kP P k 2 ≤ kP P k F = kP P k F , ρ(P P ) ≤ min{min{kP P k 1 , kP P k 1 }, min{kP P k ∞ , kP P k ∞ }}

(note that kAA k 2,F = kA A k 2,F , ∀A; question: kAA k 1 = kA A k 1 ? ). One can easily prove the identities

(P P ) ij = 1

µ i µ j |ν(i) ∩ ν(j)|, (P P ) ij = X

k∈ρ(i)∩ρ(j)

1

µ 2 k .

(2)

So, we have the bounds

ρ(P P ) ≤ |{i : ν(i) 6= ∅}|

min i:ν(i) 6=∅ µ i

and

ρ(P P ) ≤ |{i : ρ(i) 6= ∅}| max i |ρ(i)|

min k:ν(k)6=∅ µ 2 k . Lower bounds for ρ(P P ):

ρ(P P ) = kP k 2 2 = max

x,kxk

2

=1 kP xk 2 2 . Thus we have

ρ(P P ) ≥ max

i:ρ(i) 6=∅ kP e i k 2 2 = max

i:ρ(i) 6=∅

X

k ∈ρ(i)

1 µ 2 k ,

ρ(P P ) ≥ max

i,j:i 6=j;ρ(i),ρ(j)6=∅ kP 1

√ 2 (e i + e j ) k 2 2

= 1

2 max

i,j:i6=j;ρ(i),ρ(j)6=∅

h X

k∈(ρ(i)∪ρ(j))\(ρ(i)∩ρ(j))

1

µ 2 k + X

k∈ρ(i)∩ρ(j)

4 µ 2 k

i

(check the latter!).

On the other side, from the equality

ρ(P P ) = kP k 2 2 = kP k 2 2 = max

x,kxk

2

=1 kP T x k 2 2

we obtain

ρ(P P ) ≥ max

i:ν(i) 6=∅ kP T e i k 2 2 = max

i:ν(i) 6=∅

1 µ i

= 1

min i:ν(i) 6=∅ µ i

,

ρ(P P ) ≥ max

i,j:i 6=j;ν(i),ν(j)6=∅ kP T 1

√ 2 (e i + e j ) k 2 2

= 1

2 max

i,j:i 6=j;ν(i),ν(j)6=∅

h 1 µ i

+ 1 µ j

+ 2 |ν(i) ∩ ν(j)|

µ i µ j

i (check the latter!).

Check the lower and upper bounds obtained for ρ(P P ) when P = ee T i , P = n 1 e i e T , P = 1 2 e(e i + e j ) T , P = n 1 (e i + e j )e T , e = [1 1 · · · 1] T , noting that in all cases the best lower bound can be equal to the upper bound.

Let us associate to P its best circulant approximation:

C P = F diag ((F P F ) ii )F = √

nF d(F C P T e 1 )F .

It is clear that there are two formulas for the eigenvalues of C P . Let us explicit

these formulas.

(3)

(a) Note that (F P F ) jj = 1

n X

k:ν(k) 6=∅

X

s ∈ν(k)

1 µ k

ω (s−k)(j−1) = 1 n

X

k:ρ(k) 6=∅

X

s ∈ρ(k)

1 µ s

ω (k−s)(j−1)

(use the two expressions obtained above for x P x:

(F e j ) (P F e j ) = P

k:ν(k) 6=∅ (F e j ) k 1 µ

k

P

s ∈ν(k) (F e j ) s

= P

k:ν(k)6=∅ √ 1

n ω (k −1)(j−1) 1 µ

k

P

s∈ν(k) √ 1

n ω (s −1)(j−1) ; (P T F e j ) (F e j ) = P

k:ρ(k) 6=∅ ( P

s ∈ρ(k) 1

µ

s

(F e j ) s )(F e j ) k

= P

k:ρ(k) 6=∅ ( P

s ∈ρ(k) 1 µ

s

√ 1 n ω (s −1)(j−1) ) √ 1 n ω (k −1)(j−1) . )

(b) Moreover, note that, if s i , i = −n + 1, . . . , −1, 0, 1, . . . , n − 1, denote the sums of the entries on the ith diagonal of P (f.i. . . ., s −1 = P n −1

i=1 (P ) i+1,i , s 0 = P n

i=1 (P ) ii , s 1 = P n−1

i=1 (P ) i,i+1 , . . .), then we have s 0 = 0 and, for i = 1, . . . , n − 1,

s i = X

t=1...n−i,t∈ρ(t+i)

1 µ t

= X

t=1...n−i,t+i∈ν(t)

1 µ t

,

s −i = X

t=1...n−i,t∈ν(t+i)

1

µ t+i = X

t=1...n−i,t+i∈ρ(t)

1 µ t+i . (In fact, for the s i :

s i = P n −i

t=1 P t,t+i = P n −i

t=1 (P e t+i ) t = P

t=1...n −i, ν(t)6=∅, t+i∈ν(t) 1 µ

t

. The latter equality holds because of the following remark:

(P e t+i ) k =

 1 µ

k

P

s ∈ν(k) (e t+i ) s ν(k) 6= ∅

0 ν(k) = ∅ =

 1

µ

k

ν(k) 6= ∅, t + i ∈ ν(k) 0 otherwise

(P e t+i ) t =

 1

µ

t

ν(t) 6= ∅, t + i ∈ ν(t) 0 otherwise

Analogously,

s i = P n −i

t=1 P t,t+i = P n −i

t=1 (P T e t ) t+i

= P

t=1...n −i, ρ(t+i)6=∅

P

s ∈ρ(t+i) 1 µ

s

(e t ) s

= P

t=1...n −i, ρ(t+i)6=∅, t∈ρ(t+i) 1 µ

t

. Example: s 1 = P

t=1...n −1, t:t→t+1 1 µ

t

. . ..

For the s −i :

s −i = P n−i

t=1 P t+i,t = P n−i

t=1 (P e t ) t+i

= P

t=1...n−i, ν(t+i)6=∅ 1 µ

t+i

P

s∈ν(t+i) (e t ) s , s −i = P n −i

t=1 P t+i,t = P n −i

t=1 (P T e t+i ) t

= P

t=1...n −i, ρ(t)6=∅

P

s ∈ρ(t) 1

µ

s

(e t+i ) s .

(4)

)

It can be shown that the first row of C P , say c T = [c 0 c 1 · · · c n −1 ], can be computed via the identities

c 0 = s 0 /n = 0, c i = (s i + s −n+i )/n, i = 1, . . . , n − 1.

So, C P = F d(z)F , z = √ nF c.

Any time something in the web changes, we have to update P and C P . In particular, we have to compute the new s i in order to define the new c i and thus the new vector z (of the eigenvalues of C P ). Now we show how such new s i can be computed from the old s i , in the main situations that may occur.

Case 1: nascita di un sito

P old → P new =

 P old 0

· · · µ

n+1

1 · · · 0



We call the new site n + 1, and we associate to it the new objects µ n+1 =?, ν(n + 1) = {?} ⊂ {1, 2, . . . , n}, ρ(n + 1) = ∅ (we need new memory allocations for them). We assume µ n+1 = |ν(n + 1)| small (µ n+1 ≥ 1 (?)).

Then we introduce two new numbers s n , s −n (we need other two new cells in memory for them), and we set:

s n := 0, s −n := 0, s j −n−1 := s j −n−1 + 1 µ n+1

, j ∈ ν(n + 1).

After this, we introduce another new number c n (we need a further new cell in memory for it), and we set:

c n := 0, c j := (s j + s −(n+1)+j )/n, j ∈ ν(n + 1).

Finally, set n := n + 1.

Case 2: morte di un sito contemporanea alla nascita di un altro

P old =

 · µ 1

r

· 0 · µ 1

r

·

 → P new =

0

· µ

newr

1 · 0 · µ

newr

1 · 0

Assume that the site r dies. Then we have to set s k −r := s k −r − 1

µ r

, k ∈ ν(r),

and apply (4) (see below) for j = r and ∀i ∈ ρ(r). Assume now that at the same time a new site is created. We call it r and we associate to it µ r =?, ν(r) = {?} ⊂ {1, 2, . . . , n}\{r}, ρ(r) = ∅ (i.e. we use the memory allocations of the died site). We assume µ r = |ν(r)| small (µ r ≥ 1 (?)). Then we have to set

s k −r := s k −r + 1 µ r

, k ∈ ν(r).

After this, we set

c k−r = (s k−r + s −n+k−r )/n, k ∈ ν(r), k − r > 0,

(5)

c n+k −r = (s n+k −r + s k −r )/n, k ∈ ν(r), k − r < 0.

3: Site i decides to point to the site j

P old =

 · µ 1

i

· 0 · · ·

 → P new =

 · µ

i

1 +1 · µ

i

1 +1 · · ·

 First we have to set:

s j −i := s j −i + 1

µ i + 1 , s k −i := s k −i + 1 µ i + 1 − 1

µ i , k ∈ ν(i).

Then set

c j −i = (s j −i + s −n+j−i )/n, if j − i > 0, or c n+j −i = (s n+j −i + s j −i )/n, if j − i < 0, and c k −i = (s k −i + s −n+k−i )/n, k ∈ ν(i), k − i > 0,

c n+k −i = (s n+k −i + s k −i )/n, k ∈ ν(i), k − i < 0.

Finally, we set µ i := µ i + 1, ν(i) := ν(i) ∪ {j}, ρ(j) := ρ(j) ∪ {i}. The latter identities require reordering (forward shift).

4: Site i decides not to point to the site j anymore

P old =

 · µ 1

i

· µ 1

i

· · ·

 → P new =

 · µ

i

1 −1 · 0 · · ·

 First we have to set:

s j −i := s j −i − 1 µ i

, s k −i := s k −i + 1 µ i − 1 − 1

µ i

, k ∈ ν(i)\{j}.

Then set

c j −i = (s j −i + s −n+j−i )/n, if j − i > 0, or c n+j −i = (s n+j −i + s j −i )/n, if j − i < 0, and c k−i = (s k−i + s −n+k−i )/n, k ∈ ν(i)\{j}, k − i > 0,

c n+k−i = (s n+k−i + s k−i )/n, k ∈ ν(i)\{j}, k − i < 0.

Finally, we set µ i := µ i − 1, ν(i) := ν(i)\{j}, ρ(j) := ρ(j)\{i}. The latter identities require reordering (backward shift).

Remark Note that, after case 1 or case 2 has been run, the site i which has created the new site (n in Case 1 and r in case 2) must have a link to such new site. In other words, after case 1 or case 2 we have to run (3) for j = n and i = i ∈ {1, . . . , n − 1} or for j = r and i = i ∈ {1, . . . , n}\{r}.

An algorithm generating the test matrix P and the corresponding approxi- mation C P

Given a natural number N one could generate a test matrix P of order N and,

simultaneously, its best circulant approximation C P (or, more precisely: non

negative integers µ 1 , . . . , µ N and sets ν(1), . . . , ν(N ) defining P ; and real num-

bers s −N+1 , . . . , s 0 , . . . , s N−1 , c 0 , . . . , c N−1 , z 1 , . . . , z N defining C P = F d(z)F )

by the following procedure:

(6)

• Consider an initial matrix matrix P of small size (i.e. choose a small n and define µ i ,ν(i), i = 1, . . . , n)

• Apply to P the operators (Case 1)-(3),(Case 2)-(3),(3),(4) repeatedly, in suitable order, each possibly more times, until n is equal to N . During this phase, for what concerns C P , update only the s i . (Note that the operator (Case 2)-(3) requires |ρ(r)| applications of (4); so it is expensive if |ρ(r)|

is large. However, the death of r means generally a small |ρ(r)| )

• When n = N compute also the first row c T of C P and the vector z = √ nF c of the eigenvalues of C P

Note that it is advisable to choose N as a power of 2, so that the F F T involved (in computing the vector z defining the preconditioner C P , and in each step of the Richardson method preconditioned by C P ) are more efficient.

Upper and lower bounds for ρ(P P ) A first upper bound is obtained as follows:

pρ(P P ) = kP k 2 = kP k 2 = max x:kxk

2

=1 kP T x k 2

≤ max x:kxk

2

=1 kP T x k 1

= max x:kxk

2

=1 P

i |( P

s:ν(s) 6=∅ x s P T e s ) i |

= max x:kxk

2

=1 P

i | P

s:ν(s) 6=∅ x s (P T ) i,s |

≤ max x:kxk

2

=1 P

i

P

s:ν(s)6=∅ |x s |(P T ) i,s

= max x:kxk

2

=1 P

s:ν(s) 6=∅ |x s | P

i (P T ) i,s

= max x:kxk

2

=1 P

s:ν(s) 6=∅ |x s |

= max x:kxk

2

=1&x

k

=0, ∀k ν(k)=∅ P

s:ν(s)6=∅ |x s |

= p|{s : ν(s) 6= ∅}|.

However, a lower upper bound can be obtained. In fact, we have that ρ(P P ) ≤ d where

d = min { |{i : ν(i) 6= ∅}|

min i:ν(i)6=∅ µ i

, |{i : ρ(i) 6= ∅}| max i |ρ(i)|

min k:ν(k)6=∅ µ 2 k }.

Proof.

kP P k ∞ = max i P

j |(P P ) ij | = max i P

j 1

µ

i

µ

j

|ν(i) ∩ ν(j)|

= max i 1 µ

i

P

j 1

µ

j

|ν(i) ∩ ν(j)|

= max i 1 µ

i

P

j:ν(j) 6=∅ 1

µ

j

|ν(i) ∩ ν(j)|

≤ max i µ 1

i

P

j:ν(j) 6=∅

1

µ

j

µ j = max i 1

µ

i

|{j : ν(j) 6= ∅}|

= |{j : ν(j) 6= ∅}| min

i:ν(i)6=∅

1 µ

i

, kP P k ∞ = max i P

j |(P P ) ij | = max i P

j

P

k ∈ρ(i)∩ρ(j) 1 µ

2k

≤ max i min

k:ν(k)6=∅

1 µ

2k

P

j

P

k ∈ρ(i)∩ρ(j) 1

= max i 1

min

k:ν(k)6=∅

µ

2k

P

j |ρ(i) ∩ ρ(j)|

= max i 1

min

k:ν(k)6=∅

µ

2k

P

j:ρ(j) 6=∅ |ρ(i) ∩ ρ(j)|

≤ |{j : ρ(j) 6= ∅}| max k |ρ(k)| min

k:ν(k)6=∅

1 µ

2k

.  (Question: is the following inequality

|{j : ν(j) 6= ∅}|

min i:ν(i) 6=∅ µ i ≤ |{j : ρ(j) 6= ∅}| max k |ρ(k)|

min k:ν(k) 6=∅ µ 2 k

(7)

or, equivalently,

|{j : ρ(j) 6= ∅}| max k |ρ(k)| ≥ |{j : ν(j) 6= ∅}| min

k:ν(k) 6=∅ |ν(k)|

true? Note that

max k |ρ(k)| ≤ |{j : ν(j) 6= ∅}|,

|{j : ρ(j) 6= ∅}| ≥ max k |ν(k)| ≥ min k:ν(k)6=∅ |ν(k)|.

)

Let us now obtain lower bounds for ρ(P P ) more general than those obtained in the previous section.

Choose x = √ 1

3 (e i + e j + e k ), i, j, k distinct, in ρ(P P ) ≥ kP T x k 2 2 , kxk 2 = 1, in order to obtain

ρ(P P ) ≥ r 3 = 1 3 max i,j,k:i,j,k distinct, ν(i),ν(j),ν(k) 6=∅

h 1

µ

i

+ µ 1

j

+ µ 1

k

+ 2|ν(i)∩ν(j)|

µ

i

µ

j

+ 2|ν(i)∩ν(k)|

µ

i

µ

k

+ 2|ν(j)∩ν(k)|

µ

j

µ

k

i . Note that if

P = 1

n (e i + e j + e k )e T ,

then in the above inequality the equal sign holds, i.e. d = ρ(P P ) = r 3 = 3/n.

Choose x = 1

3 (e i + e j + e k ), i, j, k distinct, in ρ(P P ) ≥ kP xk 2 2 , kxk 2 = 1, in order to obtain

ρ(P P ) ≥ c 3 = 1 3 max A

3

⊂{i:ρ(i)6=∅}, |A

3

|=3

h P

i ∈A

3

P

s ∈ρ(i)\∪

j∈A3 \{i}

ρ(j) 1 µ

2s

+ P

i ∈A

3

P

s ∈(∩

j∈A3\{i}

ρ(j)) \ρ(i) 4 µ

2s

+ P

s ∈∩

i∈A3

ρ(i) 9 µ

2s

i .

Note that if

P = 1

3 e(e i + e j + e k ) T ,

then in the above inequality the equal sign holds, i.e. d = ρ(P P ) = c 3 = n/3.

We guess that the following results (r) and (c) hold:

(r) Set r k = 1

k max

A

k

⊂{i:ν(i)6=∅},|A

k

|=k

h X

r ∈A

k

1 µ r

+ X

r,s ∈A

k

,r<s

2

µ r µ s |ν(r) ∩ ν(s)| i .

Then

r k ≤ ρ(P P ) ≤ d, ∀k ∈ {1, . . . , |{i : ν(i) 6= ∅}|}.

(8)

(Proof: apply the inequality

ρ(P P ) = kP k 2 2 ≥ kP T x k 2 2 , kxk 2 = 1, for x = 1 k (e i

1

+ . . . + e i

k

), 1 ≤ i 1 < i 2 < . . . < i k ≤ n).

Note that if P = 1

n (e i

1

+ e i

2

+ . . . + e i

k

)e T , 1 ≤ i 1 < i 2 < . . . < i k ≤ n, then r k = ρ(P P ) = d = n k .

(c) Now set

c k = 1

k max

A

k

⊂{i:ρ(i)6=∅},|A

k

|=k

h X k

r=1

X

γ

r

⊂A

k

, |γ

r

|=r

X

s ∈∩

j∈γr

ρ(j) \∪

j∈Ak \γr

ρ(j)

r 2 µ 2 s

i .

Then

c k ≤ ρ(P P ) ≤ d, ∀k ∈ {1, . . . , |{i : ρ(i) 6= ∅}|}.

(Proof: apply the inequality

ρ(P P ) = kP k 2 2 ≥ kP xk 2 2 , kxk 2 = 1, for x = 1 k (e i

1

+ . . . + e i

k

), 1 ≤ i 1 < i 2 < . . . < i k ≤ n).

Note that if P = 1

k e(e i

1

+ e i

2

+ . . . + e i

k

) T , 1 ≤ i 1 < i 2 < . . . < i k ≤ n, then c k = ρ(P P ) = d = n k .

Remark. By choosing k = 1, k = 2 and k = 3 in the above statements we retrieve the lower bounds for ρ(P P ) obtained explicitly.

If the lower bounds in (r) and (c) for ρ(P P ) are true, then we can say that max { max

1,..., |{i:ν(i)6=∅}| r k , max

1,..., |{i:ρ(i)6=∅}| c k } ≤ ρ(P P ) ≤ d d = min { |{i : ν(i) 6= ∅}|

min i:ν(i)6=∅ µ i

, |{i : ρ(i) 6= ∅}| max i |ρ(i)|

min k:ν(k)6=∅ µ 2 k }.

Question: is the sequence max {r k , c k }, k = 1, . . ., non decreasing? If yes, then one could compute its terms to obtain better and better lower bounds for ρ(P P ).

Examples.

c) P = ee T i , d = n r 1 = 1, c 1 = n r 2 = 2, c 2 =und r 3 = 3, c 3 =und

cc) P = 1 2 e(e i + e j ) T , d = n/2 r 1 = 1/2, c 1 = n/4

r 2 = 1, c 2 = n/2

(9)

r 3 = 3/2, c 3 =und r) P = 1 n e i e T , d = 1/n r 1 = 1/n, c 1 = 1/n 2 r 2 =und, c 2 = 2/n 2 r 3 =und, c 3 = 3/n 2

rr) P = 1 n (e i + e j )e T , d = 2/n r 1 = 1/n, c 1 = 2/n 2

r 2 = 2/n, c 2 = 4/n 2 r 3 =und, c 3 = 6/n 2 Set ˜ e = P t

i=1 e i . c1) P = ˜ ee T i , d = t r 1 = 1, c 1 = t r 2 = 2, c 2 =und r 3 = 3, c 3 =und

cc1) P = 1 2 ˜ ee T i + (e − 1 2 ˜ e)e T j , d = n r 1 = 1, c 1 = t/4 + (n − t)

r 2 = 2, c 2 = n/2 r 3 = 3, c 3 =und r1) P = 1 t e i ˜ e T , d = 1/t r 1 = 1/t, c 1 = 1/t 2 r 2 =und, c 2 = 2/t 2 r 3 =und, c 3 = 3/t 2

rr1) P = n 1 e i e T + 1 t e j ˜ e T , d = 2/t r 1 = 1/t, c 1 = 1/t 2 + 1/n 2

r 2 = 1 2 (3/n + 1/t), c 2 = 2/t 2 + 2/n 2 r 3 =und, c 3 = 3/t 2 + 3/n 2 (?) Question: from the equality

ρ(P P ) = ρ(P P ) = inf

k ( k(P P ) k k ∞ ) 1/k = lim

k ( k(P P ) k k ∞ ) 1/k

is it possible to define a non increasing sequence d k such that d 0 = d = |{i : ν(i) 6= ∅}|/ min µ k (recall that kP P k ∞ ≤ d) and ρ(P P ) ≤ d k ≤ d, ∀ k ? If yes, then one could compute its terms to obtain better and better upper bounds for ρ(P P ).

The proof of an inequality We now prove the inequality:

( min

k:ν(k) 6=∅ |ν(k)|) |{j : ν(j) 6= ∅}| ≤ (max k |ρ(k)|) |j : ρ(j) 6= ∅|.

So, for the d in the upper bound ρ(P P ) ≤ d (see above) we simply have d = |{k : ν(k) 6= ∅}|

min k:ν(k) 6=∅ µ k

. Without loss of generality, assume that

{j : ν(j) 6= ∅} = {1, 2, . . . , x}, x := |{j : ν(j) 6= ∅}|,

{j : ρ(j) 6= ∅} = {1, 2, . . . , y}, y := |{j : ρ(j) 6= ∅}|.

(10)

Thus, the x ×y upper left submatrix of P , which we call W , has no null row and no null column, whereas the entries of the remaining part of P are all zeroes:

P =

 W 0

0 0

 . (1) If min k:ν(k) 6=∅ |ν(k)| = 1, then x ≤ (max k |ρ(k)|)y.

Proof. We prove the thesis considering the two different cases y ≥ x and y < x. It is useful to observe that, by the hypotheses, the nonzero entries of the matrix W for y = x, x 2 , x 3 , . . . , x i , i+1 x must be (modulo permutations) in the positions shown in Figure 1.

y ≥ x: In this case max k |ρ(k)| ≥ 1 (see Figure 1, y = x). Thus 1 · x ≤ 1 · y ≤ (max k |ρ(k)|)y.

y < x: If y < x, then max k |ρ(k)| ≥ 2 (see Figure 1, y = x, x 2 ). If x 2 ≤ y too, then x ≤ 2y ≤ (max k |ρ(k)|)y. If y < x 2 , then max k |ρ(k)| ≥ 3 (see Figure 1, y = x 2 , x 3 ). If x 3 ≤ y too, then x ≤ 3y ≤ (max k |ρ(k)|)y. In general, let i ∈ {1, 2, . . .}. If y < x i , then max k |ρ(k)| ≥ i + 1 (see Figure 1, y = x i , i+1 x ). If

x

i+1 ≤ y too, then x ≤ (i + 1)y ≤ (max k |ρ(k)|)y.

Figure 1: W for min µ k = 1, y = x, x 2 , x 3 , . . . , x i , i+1 x







 ,















 ,

























· · ·































 ,







































 (2) If min k:ν(k) 6=∅ |ν(k)| = 2, then 2x ≤ (max k |ρ(k)|)y.

Proof. We prove the thesis considering the two different cases y ≥ 2x and y < 2x. It is useful to observe that, by the hypotheses, the nonzero entries of the matrix W for y = 2x, 2 x 2 , 2 x 3 , . . . , 2 x i , 2 i+1 x must be (modulo permutations) in the positions shown in Figure 2.

y ≥ 2x: In this case max k |ρ(k)| ≥ 1 (see Figure 2, y = 2x). Thus 2x ≤ 1 · y ≤ (max k |ρ(k)|)y.

y < 2x: If y < 2x, then max k |ρ(k)| ≥ 2 (see Figure 2, y = 2x, 2 x 2 ). If 2 x 2 ≤ y too, then 2x ≤ 2y ≤ (max k |ρ(k)|)y. If y < 2 x 2 , then max k |ρ(k)| ≥ 3 (see Figure 2, y = 2 x 2 , 2 x 3 ). If 2 x 3 ≤ y too, then 2x ≤ 3y ≤ (max k |ρ(k)|)y. In general, let i ∈ {1, 2, . . .}. If y < 2 x i , then max k |ρ(k)| ≥ i + 1 (see Figure 2, y = 2 x i , 2 i+1 x ).

If 2 i+1 x ≤ y too, then 2x ≤ (i + 1)y ≤ (max k |ρ(k)|)y.

(11)

Figure 2: W for min µ k = 2, y = 2x, 2 x 2 , 2 x 3 , . . . , 2 x i , 2 i+1 x









,

















,

























· · ·

































,









































(3) If min k:ν(k) 6=∅ |ν(k)| = 3, then 3x ≤ (max k |ρ(k)|)y.

Proof. We prove the thesis considering the two different cases y ≥ 3x and y < 3x. It is useful to observe that, by the hypotheses, the nonzero entries of the matrix W for y = 3x, 3 x 2 , 3 x 3 , . . . , 3 x i , 3 i+1 x must be (modulo permutations) in the positions shown in Figure 3.

y ≥ 3x: In this case max k |ρ(k)| ≥ 1 (see Figure 3, y = 3x). Thus 3x ≤ 1 · y ≤ (max k |ρ(k)|)y.

y < 3x: If y < 3x, then max k |ρ(k)| ≥ 2 (see Figure 3, y = 3x, 3 x 2 ). If 3 x 2 ≤ y too, then 3x ≤ 2y ≤ (max k |ρ(k)|)y. If y < 3 x 2 , then max k |ρ(k)| ≥ 3 (see Figure 3, y = 3 x 2 , 3 x 3 ). If 3 x 3 ≤ y too, then 3x ≤ 3y ≤ (max k |ρ(k)|)y. In general, let i ∈ {1, 2, . . .}. If y < 3 x i , then max k |ρ(k)| ≥ i + 1 (see Figure 3, y = 3 x i , 3 i+1 x ).

If 3 i+1 x ≤ y too, then 3x ≤ (i + 1)y ≤ (max k |ρ(k)|)y.

Figure 3: W for min µ k = 3, y = 3x, 3 x 2 , 3 x 3 . . . , 3 x i , 3 i+1 x









,

















,

























· · ·

(12)

































,









































(4) (min k:ν(k) 6=∅ |ν(k)|)x ≤ (max k |ρ(k)|)y.

Proof. Set µ min = min k:µ

k

>0 µ k . We prove the thesis considering the two different cases y ≥ µ min x and y < µ min x. It is useful to observe that, by the hypotheses, the nonzero entries of the matrix W for y = µ min x, µ min x

2 , µ min x 3 , . . ., µ min x

i , µ min x

i+1 must be (modulo permutations) in the positions shown in Figure 4.

y ≥ µ min x: In this case max k |ρ(k)| ≥ 1 (see Figure 4, y = µ min x). Thus µ min x ≤ 1 · y ≤ (max k |ρ(k)|)y.

y < µ min x: If y < µ min x, then max k |ρ(k)| ≥ 2 (see Fig.4, y = µ min x, µ min x 2 ).

If µ min x

2 ≤ y too, then µ min x ≤ 2y ≤ (max k |ρ(k)|)y. If y < µ min x 2 , then max k |ρ(k)| ≥ 3 (see Figure 4, y = µ min x 2 , µ min x

3 ). If µ min x

3 ≤ y too, then µ min x ≤ 3y ≤ (max k |ρ(k)|)y. In general, let i ∈ {1, 2, . . .}. If y < µ min x i , then max k |ρ(k)| ≥ i + 1 (see Figure 4, y = µ min x i , µ min x

i+1 ). If µ min x

i+1 ≤ y too, then µ min x ≤ (i + 1)y ≤ (max k |ρ(k)|)y.

Figure 4: W for µ min generic, y = µ min x, µ min x 2 , µ min x

3 . . . , µ min x

i , µ min x i+1









,

















,

























(13)

· · ·

































,









































Better upper bounds for ρ(P P ) ?

Let i, j ∈ {1, 2, . . . , n}. If ν(i) = ∅ or ν(j) = ∅, then ((P P ) k ) ij = 0, for all k ≥ 1. Otherwise, i.e. if both ν(i) and ν(j) are non empty, then

(P P ) ij = 1

µ i µ j |ν(i) ∩ ν(j)|, ((P P ) 2 ) ij = 1

µ i µ j

X

k:ν(k)6=∅

|ν(i) ∩ ν(k)| |ν(k) ∩ ν(j)|

µ 2 k ,

((P P ) 3 ) ij = 1 µ i µ j

X

k,s:ν(k),ν(s) 6=∅

|ν(i) ∩ ν(k)| |ν(k) ∩ ν(s)| |ν(s) ∩ ν(j)|

µ 2 k µ 2 s ,

. . .

((P P

)

k

)

ij

= 1 µ

i

µ

j

X

r1,...,rk−1:ν(rs)6=∅, ∀ s

|ν(i) ∩ ν(r

1

)||ν(r

1

) ∩ ν(r

2

)|· · ·|ν(r

k−1

) ∩ ν(j)|

µ

2r1

µ

2r2

· · ·µ

2rk−1

,

((P P ) k+1 ) ij = 1 µ j

X

r

k

:ν(r

k

) 6=∅

|ν(r k ) ∩ ν(j)|

µ r

k

((P P ) k ) i,r

k

.

Aim: find a sequence d k such that ρ(P P ) ≤ d k+1 ≤ d k ≤ d 0 , d k → ρ(P P ).

Recall that

ρ(P P ) = ρ(P P ) = ((ρ(P P )) k )

1k

= (ρ((P P ) k ))

1k

≤ k(P P ) k k

k1

≤ kP P k, k = 1, 2, . . . , ρ(P P ) = inf

k k(P P ) k k

1k

= lim

k k(P P ) k k

k1

, kP P k ∞ = max

i:µ

i

>0

X

j:µ

j

>0

|ν(i) ∩ ν(j)|

µ i µ j ≤ d 0 := d = |{j : ν(j) 6= ∅}|

µ min

.

(14)

Thus, from the inequality

k(P P ) 2 k ∞ = max i:µ

i

>0 1 µ

i

P

j:µ

j

>0 1 µ

j

P

k:µ

k

>0 |ν(i)∩ν(k)||ν(k)∩ν(j)|

µ

2k

≤ max i:µ

i

>0 1 µ

2i

P

j:µ

j

>0 |ν(i)∩ν(j)|

µ

j

 2

= kP P k 2 ≤ d 2 0 , we have that a first step towards our aim, could be the following: look for d 1

such that

k(P P ) 2 k ∞ = max

i:µ

i

>0

1 µ i

X

j:µ

j

>0

1 µ j

X

k:µ

k

>0

|ν(i) ∩ ν(k)| |ν(k) ∩ ν(j)|

µ 2 k ≤ d 2 1 , d 1 < d 0 . (Note that

ρ(P P ) ≤ . . . ≤ k(P P ) 8 k ∞

18

≤ k(P P ) 4 k ∞

14

≤ k(P P ) 2 k ∞

12

≤ k(P P ) k ∞ , k(P P ) 2

k

k

1

2k

→ ρ(P P ).

So, the ideal result we would like to obtain is the following: define an easily computable number d k such that

k(P P ) 2

k

k

1

2k

≤ d k ≤ k(P P ) 2

k−1

k

1

2k−1

, k = 1, 2, . . . . )

Computing ν(i) ∩ ν(j), |ν(i) ∩ ν(j)| and (P P ) ij = |ν(i)∩ν(j)|

µ

i

µ

j

The following algorithm for i = 1, . . . , n {

m i := null; (m i (j) := ( ∅, 0, 0) ∀ j = 1, . . . , n) if ν(i) 6= ∅ (µ i > 0) then {

η i := ν(i); c i := µ i ; f i := 1/µ i ; for j = i + 1, . . . , n {

η j = ∅; c j = 0;

for k ∈ ν(i) { if k ∈ ν(j) then {

η j := η j ∪ {k};

c j := c j + 1 } } (η j = ν(i) ∩ ν(j), c j = |ν(i) ∩ ν(j)|) if c j > 0 then { f j := c j /(µ i µ j )

}

for j = i, . . . , n { (η j 6= ∅ for at least j = i) m i (j) := (η j , c j , f j ) }

for j = 1, . . . , i − 1 { m i (j) := m j (i) } (m i 6= null) }

}

yields the vectors m i here below:

m 1 = [( , ) . . .]

. . .

m i = [( , ) . . . (ν(i) ∩ ν(j), |ν(i) ∩ ν(j)|, |ν(i)∩ν(j)|

µ

i

µ

j

) . . . ( , )]

. . .

m n = [( , ) . . .].

(15)

Question: is it possible to compute k(P P ) 2

k

k ∞ from k(P P ) 2

k−1

k ∞ with less than |{j : ν(j) 6= ∅}| 3 arithmetic operations ?

ρ(H) as the limit of a sequence (written about two years ago) (Given γ k ∈ S ⊂ X and γ ∈ X, by writing

γ k → γ

we mean the convergence to zero of the sequence of non negative real numbers ξ k = kγ k − γk, where k may be the absolute value (X = R, C), a vector norm (X = R n , C n ), a matrix norm (X = R n ×n , C n ×n ), a functional norm (X = C 0 , L 2 ).)

Let H be a n × n matrix and ρ k the sequence of non negative real numbers ρ k = ( kH k k) 1/k , k ≥ 1.

It is simple to verify that ρ(H) ≤ ρ k ≤ ρ 1 = kHk, ∀k and that . . . ρ 8 ≤ ρ 4 ≤ ρ 2 ≤ ρ 1 ; . . . ρ 6 ≤ ρ 3 ≤ ρ 1 ; . . .. It is not simple to establish if the sequence ρ k is non increasing or not. In particular, is it true that

ρ 3 ≤ ρ 2 ? (surely we have ρ 3 ≤ ρ 2 kHk 1/3 kH 2 k 1/6 )

However, even if we succeed in proving the non increasing behaviour of ρ k , or, more simply, the convergence of ρ k , we could only conclude that

ρ(H) ≤ lim k ρ n ≤ ρ s .

In the following theorem, instead, it is noticed that a stronger result holds: the sequence ρ k converges (from above) to ρ(H).

Lemma Given H ∈ C n ×n and ε > 0 there exists a matrix norm ˆ k = ˆk H,ε such that ˆ kHˆk < ρ(H) + ε.

Proof. The thesis is verified, for example, by setting ˆ kAˆk = kSAS −1 k ∞

where S = DQ, with Q unitary such that T = QAQ −1 is upper triangular, and D diagonal with D ii = 1/δ i , δ suitable.

Theorem Given H ∈ C n ×n , indipendently from the choice of the matrix norm k · k, we have

ρ(H) = lim

k kH k k 

k1

.

Proof. Set ρ = inf ρ k , for a particular choice of k. Then it can be shown that ρ k , for any choice of k, converges to ρ. It follows that the definition of ρ does not depend upon the choice of k. Since ρ k ≥ ρ(H), we have ρ ≥ ρ(H). But we also have ε + ρ(H) > ρ, for any ε > 0. In fact, by the Lemma there exists ˆ k such that (ˆ kH k ˆ k) 1/k ≤ ˆkHˆk < ρ(H) + ε, and ρ = inf(ˆkH k ˆ k) 1/k . Thus ρ must be equal to ρ(H). QED

Problem: ρ 1 ≥ ρ 2 ≥ ρ 4 ≥ ρ 8 ≥ . . ., are better and better approximations of ρ(H). Is it possible to introduce a norm k · k such that these approximations are easily computable and converge rapidly to ρ(H) ?

Corollary Given H ∈ C n ×n , H k → 0 if and only if ρ(H) < 1.

Proof. ρ(H) < 1 ⇒ (kH k k) 1/k ≤ ν < 1, ∀k ≥ N ⇒ kH k k ≤ ν k ⇒ kH k k → 0. Viceversa, kH k k → 0 ⇒ ∃k : kH k k < 1 ⇒ ∃k : ρ(H) k = ρ(H k ) < 1

⇒ ρ(H) < 1. QED

Riferimenti

Documenti correlati

The preparation part closes with a chapter devoted to Monte Carlo sim- ulations and the type of possible applications of the resulting collections of train paths to capacity

Then we have studied the abundance gradients along the Galactic disk produced by our best cosmological model and their dependence upon several parameters: a threshold in the surface

Reduce the equation to canonical form, find the coordinates, with respect to the standard basis of V 2 , of the center/vertex and find the equations/equation of the symmetry

These results demonstrate that near-field spectroscopy of semiconductor quantum structures does not provide just a spatial selection of inhomogeneous surface systems, in addition

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.. Solution. } and the multisets

Therefore the product of the absolute values of the roots of one of the polynomials g and h is equal

[r]

This is a contradiction because a positive integer is the sum of two squares if and only if all the prime factors congruent to 3 mod 4 have an even exponent in