• Non ci sono risultati.

Cosmic ray backgrounds for dark matter searches

N/A
N/A
Protected

Academic year: 2021

Condividi "Cosmic ray backgrounds for dark matter searches"

Copied!
34
0
0

Testo completo

(1)

Subir  Sarkar

Rudolf  Peierls  Centre  for  Theoretical  Physics,  Oxford

&

Niels  Bohr  Institute,  Copenhagen [with  Philipp  Mertsch,  KIPAC  Stanford]

Cosmic ray backgrounds for dark matter searches

AMS  Days  @  CERN:   The  future  of  cosmic  ray  physics ,  Geneva,  15-­‐17  April  2015

(2)

If    O(10%)  of  the  shock  K.E.  of  ~1051  erg  can  be  converted  into  hadronic  cosmic  rays,  then  the   observed  ~3  SN/century  can  maintain  the  energy  density  of  ~0.3  eV/cm3  in  galactic  cosmic  rays  

Supernova remnants are believed to be Pevatrons … responsible for the acceleration of Galactic cosmic rays up to the ‘knee’ at ~10

3

TeV

γ-­‐ray  spectrum  consistent   with  accelera3on  of  hadrons

 

W44,  Fermi   W44,  Herschel  

(3)

Adriani  et  al,  Nature  458:607,2009  

PAMELA  measured  a  rising   positron  fraction:

Anomaly  ⟹  excess  above   astrophysical  background

Source  of  anomaly:

• 

Dark  matter?  

(500+  models)

• 

Nearby  pulsars?

• 

Nearby  supernova   remnants?

The PAMELA anomaly

(Gast  &  Schael,  ICRC 09)

(4)

The Fermi anomaly

…  and  con`irmed  that  the   positron  fraction  is  rising  – using  the  Earth s  magnetic  

`ield  to  do  charge  separation

Abdo  et  al,  PRL  108:011103,2012  

Fermi -­‐ LAT  also  saw   excess   e

±  

over  the   expectation  from  the   cosmic  ray    propagation    

(GALPROP)  model

Abdo   et  al ,  PRL  102:181101,2009    

(5)

First result from AMS-02

Aguilar  et  al,  Phys.Rev.Lett.110:141102,2013  

“As the most precise measurement of the cosmic ray positron flux to date, these results show clearly the power and capabilities of the AMS detector,” said AMS spokesperson, Samuel Ting. “Over the coming months, AMS will be able to tell us conclusively whether these positrons are a signal for dark matter, or whether they have some other origin.”

(6)

Rate      

(e.g.  few  hundred  GeV  neutralino  LSP   or  Kaluza-­‐Klein  state)  

⇧⇧

⇧ ⇧

⇧ ⇧

⌥⌥⌥

⌥ ⌥

1 10 102 103 104

1 10

0.3 3 30

Positron energy in GeV

Positronfraction

background?

PAMELA 08

⇤⇤

⇧ ⇧

⌥⌥⌥ ⌥ ⌥

⌅⌅

⌅⌅⌅⌅⌅⌅⌅⌅

⇥⇥

⇥⇥⇥⇥⇥⇥⇥⇥⇥ ⇥

⌃⌃ ⌃⌃⌃ ⌃ ⌃

10 102 103 104

10⇤3 10⇤2 10⇤1

Energy in GeV E3 e e ⇥GeV2 ⇤cm2 sec

HESS08 ATIC08

PPB⇤BETS08 EC

background?

⇤⇤⇤⇤⇤⇤⇤⇤

⇤⇤⇤⇤

1 10 102 103 104

10⇤5 10⇤4 10⇤3 10⇤2

p kinetic energy in GeV

p⇤p

background? PAMELA 08

DM with M ⌅ 4 TeV that decays into ⇧

Indeed dark matter has been widely invoked as the source of the excess e

+

.

DM  annihilation   DM  decay  

Rate  

(lifetime  ~109  x  age  of  universe  e.g.  

dim-­‐6  operator  suppressed  by  MGUT   for  a  TeV  mass  techni-­‐baryon)  

Nardi,  Sannino  &  Strumia,  JCAP  0901:043,2009   Bergström,  Bringmann  &  Edjsö,  PR  D78:127850,2008  

(7)

But DM annihilation needs a huge boost factor to match flux

è  Such  a  large  annihilation  #-­‐section  would  imply  a  negligible  relic  abundance   unless  an  inverse  velocity  dependence  is  invoked  e.g.   Somerfeld  enhancement     (this  requires  hypothetical  light  gauge  bosons  to  provide  a  new  long  range  force)      

Cirelli,  Kadastik,  Raidal  &  Strumia,  Nucl.Phys.B813:1,2009  

Arkani-­‐Hamed  et  al,  PR  D79:015014,2009  

(8)

⇧⇧

⇧ ⇧

⇧ ⇧

⌃⌃⌃

⌃ ⌃

1 10 102 103 104

1 10

0.3 3 30

Positron energy in GeV

Positronfraction

background?

PAMELA 08

⇤ ⇤⇤⇤⇤⇤⇤⇤⇤ ⇤⇤⇤

⇧⇧⇧ ⇧ ⇧

⌥⌥

⌥⌥⌥⌥⌥⌥⌥⌥

⌅⌅

⌅⌅⌅⌅⌅⌅⌅⌅⌅ ⌅

⇥⇥⇥⇥⇥⇥ ⇥

10 102 103 104

10⇤3 10⇤2 10⇤1

Energy in GeV E3 e e ⇥GeV2 ⇤cm2 sec

ATIC

PPB⇤BETS08 EC

background?

⇤⇤⇤⇤⇤⇤⇤⇤

⇤⇤⇤⇤

1 10 102 103 104

10⇤5 10⇤4 10⇤3 10⇤2

p kinetic energy in GeV

p⇤p

background? PAMELA 08

DM with M ⌅ 150 GeV that annihilates into WW

But the observed antiproton flux is consistent with the background expectation (from standard cosmic ray propagation in the Galaxy)

Cirelli  et  al,  Nucl.Phys.B813:1,2009  

⇧⇧

⇧ ⇧

⇧ ⇧

⌃⌃⌃

⌃ ⌃

1 10 102 103 104

1 10

0.3 3 30

Positron energy in GeV

Positronfraction

background?

PAMELA 08

⇤ ⇤⇤⇤⇤⇤⇤⇤⇤ ⇤⇤⇤

⇧⇧⇧ ⇧ ⇧

⌥⌥

⌥⌥⌥⌥⌥⌥⌥⌥

⌅⌅

⌅⌅⌅⌅⌅⌅⌅⌅⌅ ⌅

⇥⇥⇥⇥⇥⇥ ⇥

10 102 103 104

10⇤3 10⇤2 10⇤1

Energy in GeV E3 e e ⇥GeV2 ⇤cm2 sec

ATIC

PPB⇤BETS08 EC

background?

⇤⇤⇤⇤⇤⇤⇤⇤

⇤⇤⇤⇤

1 10 102 103 104

10⇤5 10⇤4 10⇤3 10⇤2

p kinetic energy in GeV

p⇤p

background?

PAMELA 08

DM with M ⌅ 150 GeV that annihilates into WW

⇧⇧

⇧ ⇧

⇧ ⇧

⌃⌃⌃

⌃ ⌃

1 10 102 103 104

1 10

0.3 3 30

Positron energy in GeV

Positronfraction

background?

PAMELA 08

⇤ ⇤⇤⇤⇤⇤⇤⇤⇤ ⇤⇤⇤

⇧⇧⇧ ⇧ ⇧

⌥⌥

⌥⌥⌥⌥⌥⌥⌥⌥

⌅⌅

⌅⌅⌅⌅⌅⌅⌅⌅⌅ ⌅

⇥⇥⇥⇥⇥⇥ ⇥

10 102 103 104

10⇤3 10⇤2 10⇤1

Energy in GeV E3 e e ⇥GeV2 ⇤cm2 sec

ATIC

PPB⇤BETS08 EC

background?

⇤⇤⇤⇤⇤⇤⇤⇤

⇤⇤⇤⇤

1 10 102 103 104

10⇤5 10⇤4 10⇤3 10⇤2

p kinetic energy in GeV

p⇤p

background?

PAMELA 08

DM with M ⌅ 1 TeV that annihilates into ⇧

⇧⇧

⇧ ⇧

⇧ ⇧

⌃⌃⌃

⌃ ⌃

1 10 102 103 104

1 10

0.3 3 30

Positron energy in GeV

Positronfraction

background?

PAMELA 08

⇤ ⇤⇤⇤⇤⇤⇤⇤⇤ ⇤⇤⇤

⇧⇧⇧ ⇧ ⇧

⌥⌥

⌥⌥⌥⌥⌥⌥⌥⌥

⌅⌅

⌅⌅⌅⌅⌅⌅⌅⌅⌅ ⌅

⇥⇥⇥⇥⇥⇥ ⇥

10 102 103 104

10⇤3 10⇤2 10⇤1

Energy in GeV E3 e e ⇥GeV2 ⇤cm2 sec

ATIC

PPB⇤BETS08 EC

background?

⇤⇤⇤⇤⇤⇤⇤⇤

⇤⇤⇤⇤

1 10 102 103 104

10⇤5 10⇤4 10⇤3 10⇤2

p kinetic energy in GeV

p⇤p

background? PAMELA 08

DM with M ⌅ 1 TeV that annihilates into ⇧

Can  cit  with  DM  decay   or  annihilation  only  if   dark  matter  particles   are   leptophilic    

 

(Seems  rather  contrived   nevertheless  many  such   models  were  proposed)  

This  is  a  serious   constraint  on  dark   matter  models  of  the   PAMELA/AMS-­‐02  

positron  anomaly  

(9)

DM annihilation/decay energy release would increase the ionisation fraction of the intergalactic medium and broaden the ‘last scattering surface’ of the CMB  

Monthly Notices of the Royal Astronomical Society 301, 210-214 (1998)

Cosmic microwave background anisotropy in the decaying neutrino cosmology J. A. Adams, S. Sarkar and D. W. Sciama

This  would  result  in  damping  of  the  ‘acous3c’  peaks  in  the  power  spectrum  of  

CMB  fluctua3ons  –  as  we  noted  originally  for  a  model  of  decaying  dark  ma@er  

(10)

The results are easily generalised to any source of ionising photons (E >13.6 eV) e.g. generated in the annihilation of dark matter particles (and resulting cascade)  

Now  that  the  CMB  TT  power  spectrum  is  known  to  O(%)  accuracy,  Planck  data  sets  a   strong  limit  on  this,  disfavouring  DM  interpreta3ons  of  the  PAMELA/AMS-­‐02  anomaly  

Ade  et  al,  arXiv:  

(11)

The inclusive jet differential cross section has been measured for jet transverse energies, E

T

, from 15 to 440 GeV, in the pseudorapidity region 0.1≤|η|≤0.7. The results are based on 19.5 pb

-1

of data collected by the CDF Collaboration at the Fermilab Tevatron collider. The data are

compared with QCD predictions for various sets of parton distribution functions. The cross section for jets with E

T

> 200 GeV is significantly higher than current predictions based on O(α

s3

)

perturbative QCD calculations. Various possible explanations for the high-E

T

excess are discussed.

Abe  et  al,  PRL  77:438,1996    

 

This is not the first time an anomalous excess over background has been seen …

…  it  turned  out  to  be  a  mis-­‐estimation  of  

the  QCD  background  –  not  new  physics!    

(12)

What particle physicists have learnt through experience ( UA1 monojets, NuTeV anomaly, CDF high E

T

excess, … )

Yesterday s discovery is today s calibration

Richard Feynman

… and tomorrow s background!

Val Telegdi

…  is  also  now  a  major  issue  for  astroparticle  physics   viz.  

just  how  well  do  we  know  the   astrophysical  background  for  

signals  of  apparently  new  particle  physics?

(13)

The background is the production of secondary e ± during propagation of nuclear cosmic rays in Galaxy

Acceleration  of  protons  

interstellar  medium  

~90%  H,  ~10%  He

¯

p

(14)

Diffusion of galactic cosmic rays

Transport   equation:  

energy  losses  

diffusion   injection  

Boundary  conditions:  

Green s  function:  describes  clux  from  a  discrete,  burst-­‐like  source  

…  integrate  over  spatial  distribution  and  time-­‐variation  of  injection    

GALPROP  (Moskalenko  &  Strong,  ApJ  493:694,1998,  509:212,1998)  solves  time-­‐dependent   transport  equation  …  yields  ~the  same  answer  for  equilibrium  cluxes  as  the   leaky  box   model  in  which  cosmic  rays  have  small  energy-­‐dependent  probability  of  escape  from  Galaxy    

⇒  exponential  distribution  of  path  lengths  between  cosmic  ray  sources  and  Earth     Expectation:  secondary/primary  ratio   E

,  where  the  diffusion  co-­‐efcicient  D E

δ

…  `it  to  nuclear  ratios  (e.g.  B/C)  gives:   δ  ~  0.4-­‐0.7

(15)

All  measured  ratios  consistent  with  τ

esc  

~  E

-­‐δ

,  δ  ~  0.3-­‐0.7    

NB:  Kolmogorov  spectrum  for  interstellar  magnetic  cield  turbulence     would  imply  δ  =  1/3,  while  Kraichnan  spectrum  yields  δ  =  1/2  

Secondary-to-primary ratios (using GALPROP code)

Trotta  et  al,  ApJ  729:106,2011  

The Astrophysical Journal, 729:106 (16pp), 2011 March 10 Trotta et al.

D0 (1028 cm2 s−1

δ

68%, 95% contours

4 6 8 10 12

0.2 0.25 0.3 0.35 0.4

D0 (1028 cm2 s−1 v Alf (km/s)

4 6 8 10 12

30 35 40 45 50

δ v Alf (km/s)

0.2 0.3 0.4

30 35 40 45 50

D0 (1028 cm2 s−1 z h (kpc)

4 6 8 10 12

0 2 4 6 8 10 12

vAlf (km/s) z h (kpc)

30 40 50

0 2 4 6 8 10 12

D0 (1028 cm2 s−1

ν 1

4 6 8 10 12

1.7 1.8 1.9 2 2.1

δ

ν 1

0.2 0.3 0.4

1.7 1.8 1.9 2 2.1

vAlf (km/s)

ν 1

30 40 50

1.7 1.8 1.9 2 2.1

zh (kpc)

ν 1

0 5 10

1.7 1.8 1.9 2 2.1

δ

ν 2

0.2 0.3 0.4

2.2 2.3 2.4 2.5 2.6

vAlf (km/s)

ν 2

30 40 50

2.2 2.3 2.4 2.5 2.6

ν1

ν 2

1.7 1.8 1.9 2 2.1

2.2 2.3 2.4 2.5 2.6 (

(

(

(

Figure 3. Two-dimensional marginalized posterior probability distributions for some parameter combinations. The yellow and blue regions enclose 68% and 95%

probability, respectively. The encircled red cross is the best fit, the filled green dot the posterior mean.

(A color version of this figure is available in the online journal.)

5.3. Quality of Best-fit Model

We now assess the quality of our best-fit model. Define the χ2 as

χ2

!5 j=1

Nj

!

i=1

X(Ei,Θ, φ) − ˆΦijX

#2

σij2j , (18) i.e., we compute the χ2 using the rescaled error bars for the data points (note that the χ2 ̸= −2 log P (D|Θ, φ, τ ), i.e., the χ2 is not minus twice the log-likelihood because of the pre- factor containing τ appearing in Equation (8)). There are N = 76 total data points and M = 16 fitted parameters, including both the modulation and the error rescaling parameters. Therefore, the number of degrees of freedom (dof) is 60, and for the best-fit model we find χ2 = 69.3, which leads to a reduced chi-squared χ2/dof = 68/60 = 1.15. This is not surprising, since by construction the error bar rescaling parameters, τ , are adjusted dynamically during the global fit to achieve this. A more detailed breakdown of the contribution to the total χ2 by data set is given in Table 3.

The predictions for the fitted CR spectra of the best-fit model parameters are shown in Figures 4–6, including an error band delimiting the 68% and 95% probability regions. The species shown are B/C and 10Be/9Be ratios, and the spectra of carbon and oxygen. In each plot, we show the spectrum modulated with the potential corresponding to our best-fit parameters from our global fits for each of the data sets employed. We also show the data sets, each with error bars enlarged by the best-fit value of our scaling parameters, τ , as given in Table 2. The yellow/

blue band delimits regions of 68% and 95% probability, and is modulated according to the potential given in the each panel.

We emphasize that the power of our statistical technique is such that we can, for the first time, provide not only a best- fit model but also an error band with a well-defined statistical meaning.

In order to better visualize the comparison of our best-fit model to the fitted data, we plot in the bottom part of each panel the best-fit residuals, i.e., the difference between data and best- fit model, divided by the experimental error bar (enlarged by the

10

0 0.1 0.2 0.3 0.4

Ratio

0 2

102 103 104 10

102 103 104 10

102 103 104 10

102 103 104 10

(16)

However  e

±

 lose  energy  readily  during  propagation,  so   only  nearby  sources  dominate  at  such  high  energies

…  the  usual  background  calculation  is  then   irrelevant

Delhaye  et  al,  A&A  501:821,2009    

Might  there  be  primary  sources  of  e+  (with  a  hard  spectrum)  in  our  Galactic  neighbourhood?  

⌧ ' 5 ⇥ 10

5

yr

✓ 1TeV E

100 MeV 10 GeV

1 TeV 100 GeV

1 GeV

Kobayashi  et  al,  ApJ  601:340,2004

(17)

A nearby cosmic ray accelerator?.

Rise  in   e

+  

fraction  could  be  due  to  secondaries  produced   during  acceleration  …  which  are  then  accelerated  along   with  the  primaries      

(Blasi,  PRL  103:051104,2009)

.

..  generic   feature  of  a   stochastic   acceleration  process,  if    

τ

1➛2    

<

     

τ

acc      

(Cowsik  1979,  Eichler  1979)

This  component  has  a  harder  spectrum  so   naturally      

`its  the   PAMELA / AMS-­‐02   positron   excess!

Ahlers,  Mertsch  &  Sarkar,PRD80:123017,2009  

(18)

Flux:

Conservation  equation:

Steady  state:

Diffusive (1 st -order Fermi) shock acceleration

density  change   acceleration convection injection

log f

log p

i.e. = 4 for strong shock (u

1

/u

2

= 4)

Courtesey:  Luke  Drury

(19)

Acceleration  determined  by  compression  ratio:

Solve  transport  equation:

Diffusive (1 st -order Fermi) shock acceleration

u f

x = D 2f

x2 + 1 3

du

dxp f p

f

x⇥ ⇤

⇤ f

inj

(p), lim

x⇥⇤

f ⇥ ⌅

Solution  for:

where,

f

0

(p) = ⇤

p 0

dp

p

p

p

f

inj

(p

) + Cp

As  long  as      is  softer  than      at  high  energies:

  f(x, p) p

f

inj

(p) p

(20)

● 

Secondaries  have   same  spectrum  as  primaries  (Feynman):

● 

Only  particles  with      are  accelerated

● 

Bohm  diffusion:  

⇒  Fraction  of  accelerated  secondaries  is      

 i.e.  steady  state  spectrum  is:

DSA with secondary production

p2 > p1

…  thus  yielding  a  r ising  positron  fraction

log n

log p

(21)

Diffusion near shock front

Ø 

Diffusion  coef`icient  not  known  

a  priori   in  neighbourhood  of  shock

Ø 

‘ Bohm  diffusion’  sets  a  limit:

Ø 

Actual  rate  may  be  parametrised  by:

Ø 

Can  try  and  determine  diffusion  rate   from  simulations  (dif`icult!)

Ø 

 So  we  `ix   K

B

 by  `itting  to  the   Fermi   e

±  

excess  …  can  then   predict   e

+

/ ( e

+

+

 

e

-­‐

)  

for   PAMELA/AMS-­‐02,   and  other  

secondary-­‐to-­‐primary  ratios  (e.g  B/C)

D = D

Bohm

/K

B

, K

B

= B

2

/ B

2

(22)

where

      is  downstream  volume

The downstream spectrum, integrated over SNR lifetime …

Mertsch,  Sarkar,  Phys.Rev.D90, 061301(R),2014  

(23)

It  is  not  just  the  few  (optically)  observed  SNRs  which  contribute  to   observed  cosmic  rays  …  there  must  be  many  other   hidden   SNRs  

(if  there  are  ~3  SN/century  and  cosmic  rays  diffuse  in  Galaxy  for  ~10

7

 yr)

!" ! ! !"

!"#

!"$

!"%

!"&

!"'

!"(

)*+,-./0 12/

,*3045

602705

84/9:

;<!""'

=03*.>-

?::2!

@:.:>03

A07-B4>.C+ ='&D$ &D(EF #!

;!%(;< !G&

!"# $%&%'() %! *+"#"!& ,)#

H

!" ! ! !"

!"#

!"$

!"%

!"&

!"'

!"(

)*+,-./0 12/

,*3045

!"# $%&%'() %! *+"#"!& ,)#

10  GeV   100  GeV   1  TeV  

Known Simulated

Ahlers,  Mertsch  &  Sarkar,PRD80:123017,2009  

(24)

Electrons in the Galaxy

 

The  behavior  of  cosmic  ray  electrons  in  our  Galaxy  is  very  energy  dependent  because  of  radiative  losses.  

Some  movies  made  of  the  electron  density  in  our  Galaxy  based  on  the  Galprop  simulation  code  have  been   made  by  Simon  Swordy.  Each  of  these  starts  with  an  empty  Galaxy  and  runs  for  about  10  million  years   (although  ~20  seconds  in  real  time!)  with  standard  SNR  rate  and  distribution  used  in  GALPROP.  One  shows  

electrons  at  1  GeV,  where  radiative  losses  are  minimal,  and  the  other  with  electrons  at  100TeV,  where   radiative  losses  remove  electrons  very  quickly.  The  end  frames  of  each  simulation  are  shown  below,   together  with  links  to  the  Galactic  electron  density  movies.  The  purpose  of  these  is  to  show  how  measured  

electron  cluxes  are  subject  to  the  time  and  positional  distribution  of  local  SNR  at  high  energies  (>~1TeV)   (Please  cite  Simon  Swordy  as  author  of  these  movies)  

http://astroparticle.uchicago.edu/resources.html

(25)

×

!"#

!"$

!#

$

#

"$

"#

!"# !"$ !# $ # "$ "#

%&'()

%&'()

! " #! #" $! $"

!

"

#!

#"

$!

Statistical distribution of SNRs in our neighbourhood

•  Draw  source  positions  from  this  distribution  

•   Inject   e

-­‐  

&

 

e

+  

normalized  to  observables  

•   Propagate  to  Earth  accounting  for  synchrotron  and              inverse-­‐Compton  scattering  energy  losses  

•   Confront  total  e

-­‐

+e

+

  clux  at  Earth  with  data  

•               The  best  Hit  to  data  is  closest  to  real  distribution  

(Case  &  Bhattacharya,  ApJ  504:761,1998)  

Ahlers,  Mertsch,  Sarkar,PRD80:123017,2009  

(26)

Ahlers,  Mertsch  &  Sarkar,  PRD80:123017,2009

The  propagated  primary   e

-­‐  

spectrum  is  much  too   steep  to   match  the  Fermi  LAT  data  ...  but   the   accelerated   total   secondary     ( e

+

+

 

e

-­‐

)

 

component  has  a  harder  

spectrum  so  does  `it  the   bump !

Fitting the e + + e - flux

(27)

The ‘ postdicted’ positron fraction

1 10 102 103 104

10 2 10 1 1

Energy GeV

Positronfraction

PAMELA

Standard  Solar  modulation  

Charge-­‐sign  dependent  Solar  modulation  

Ahlers,  Mertsch,  Sarkar,  PRD80:123017,2009  

(28)

Our proposal is different from:

“Inhomogeneity  in  the  SNR  distribution    

as  the  origin  of  the  PAMELA  anomaly”  

Shaviv,  Nakar  &  Piran,  PRL  103:111302,2009  

Idea:  Electrons  from  nearby   SNRs  cool  above  ~  20  GeV   (through  synchrotron  and  

inverse-­‐Compton  losses)  before   reaching  us  …  but  protons  do  not   cool,  so  secondary  positron  

production  is  less  affected    

⇒  enhancement  of  e

+

/e

-­‐  

But  with  usual  propagation  parameters    

(D

0  

~  10

28  

cm

2

 s

-­‐1

,  δ  ~  0.6,  τ

esc

 ~  10

16  

s)    

the  break  energy  is  2  TeV,  not  20  GeV  …  

also  nearby   invisible  SNRs  (e.g.  Geminga)  

will  cill  in  the  dips  in  the  energy  spectrum  

(29)

Nuclear secondary-to-primary Ratios

Dark  matter     Pulsars   ✗   Acceleration  of  

secondaries  

(TBD)  

 

Since  nuclei  are  accelerated  in  the  same   sources,  the  ratio  of  secondaries  (e.g.  

Li,  Be,  B)  to  primaries  (C,  N,  O)  must   also  rise  with  energy  beyond  ~100  GeV  

If  this  is  con`irmed,   both  dark  matter  and  

pulsar  origin  models   would  be  ruled  out!

Mertsch,  Sarkar,  PRL  103:081104,2009  

spallation during propagation only spallation during acceleration

Energy per nucleon, GeV

10 102 103

B/C ratio

0 0.05 0.1 0.15 0.2 0.25 0.3

0.35 ATIC, experiment

HEAO-3, experiment [1]

Osborn & Ptuskin, leaky box model [4]

HEAO-3 model, leaky box model [1]

?

(30)

We  cit  the  AMS-­‐02  p,  He  cluxes  to  cix  the  spectral  indices  and   normalisation,  and  the  e

-­‐

 clux  (in  accordance  with  radio  data)    

100 101 102 103 104 kinetic Energy E [GeV/n]

102 103 104

E2.7 Jp,E2.7 JHe[(GeV/n)1.7 m2 s1 sr1 ]

Rmax = 103GV Rmax = 3 ⇥ 103GV Rmax = 104GV

p (AMS-02) He (AMS-02)

100 101 102 103 104

kinetic Energy E [GeV]

100 101 102

E3 J e,E3 J e+[GeV2 m2 s1 sr1 ]

Rmax = 103 GV Rmax = 3 ⇥ 103GV Rmax = 104 GV

e (AMS-02) e+ (AMS-02)

Mertsch,  Sarkar,  Phys.Rev.D90, 061301(R),2014  

(31)

10 1 100 101 102 103 104 kinetic Energy E [GeV]

10 1

positronfraction

Rmax = 103 GV Rmax = 3 ⇥ 103 GV Rmax = 104 GV

(AMS-02)

10 1 100 101 102 103 104 105 kinetic Energy E [GeV/n]

10 1

B/C

Rmax = 103GV Rmax = 3⇥ 103GV Rmax = 104GV

AMS-02 CREAM TRACER

We  can  then  predict    secondary  to   primary  ratios  –  the  only  free   parameter  is  the  maximum  energy   of  the  cosmic  accelerator  (taken  to  

be  1,  3,  10  TeV  for  illustration)        

10 1 100 101 102 103 104

kinetic Energy E [GeV]

10 6 10 5 10 4 10 3

pbar/p

Rmax = 103GV Rmax = 3⇥ 103GV Rmax = 104GV (PAMELA)

Mertsch,  Sarkar,  Phys.Rev.D90, 061301(R),2014  

Measurements  of  B/C  and                

by  AMS-­‐02  at  higher  energies  

then  calibrate/test  our  model  

(32)

10 1 100 101 102 103 104 105 kinetic Energy E [GeV/n]

10 1

B/C

Rmax = 103 GV Rmax = 3⇥ 103 GV Rmax = 104 GV

AMS-02 CREAM TRACER

10 1 100 101 102 103 104

kinetic Energy E [GeV]

10 6 10 5 10 4 10 3

pbar/p

Rmax = 103GV Rmax = 3⇥ 103GV Rmax = 104GV (PAMELA)

…   and  here  are  our  predictions  confronted  with  the  latest  AMS-­‐02  data   Looks  like  the  cutoff  is  closer  to  ~500  GV?    

Mertsch,  Sarkar,  Phys.Rev.D90, 061301(R),2014  

(33)

We  have  been   trying  (late  last  

night!)  to  get   better  cits  to   the  new  data  

but  it  is  not   easy  …  perhaps  

our  model  is   too  simple  and  

some  further   recinements  are  

necessary.  

This  is  justicied    

now  that  we  

have  precision  

data  from  AMS!  

(34)

The   PAMELA/AMS-­‐02  anomaly  may  be  the  signature  of  a   nearby   hadronic  accelerator  (rather  than  of  dark  matter)

Summary

Prediction is very difficult … especially about the future !

Niels  Bohr  

Data  on  the  antiproton  fraction  and  B/C  from   AMS-­‐ 02   are   beginning  to  provide  a  de`initive  resolution

Armed  with  such  a  reliable  understanding  of  cosmic  ray  

propagation,  the  search  for  new  physics  can  indeed  begin  …

Riferimenti

Documenti correlati

The specific novel contributions of this thesis are: i) definition of a context taxonomy, based on SKOS concepts [67], and association of contexts to data and queries; ii)

The diagnostic process, as stepwise approach, in routine clinical practice is reviewed for chronic urticaria (CU), hereditary angioedema (HAE) and mastocytosis, resulting in

Detection is then performed by comparing the the test-frame representation with the previously learned normal pattern (e.g., using a one-class SVM [141] or a probabilistic model

Si descrivono quindi la piattaforma sulla quale vengono modellati i dati dai sistemi sorgente (Oracle) con relativo strumento di sviluppo, la piattaforma in cui viene sviluppato

prestazioni energetiche degli edifici al fine di favorire lo sviluppo, la valorizzazione e l’integrazione delle fonti rinnovabili e la diversificazione energetica, contribuire

In addition to its ability to consistently capturing proportional and non-proportional loading &amp; response fatigue damage effects, the path-dependent-maximum-range and

Here, we report that the water extract of Ruta graveolens L., commonly known as rue, induces death in different glioblastoma cell lines (U87MG, C6 and U138) widely used to test

Abstract GS4-03: randomized comparison of adjuvant tamoxifen (T) plus ovarian function suppression (OFS) versus tamoxifen in premenopausal women with hormone receptor-positive