• Non ci sono risultati.

Modellistica 3D di componenti cellulari

N/A
N/A
Protected

Academic year: 2021

Condividi "Modellistica 3D di componenti cellulari"

Copied!
16
0
0

Testo completo

(1)

Modellistica 3D di componenti cellulari

Pietro Lupetti

Dip. Scienze Della Vita

III lotto Polo Scietifico S. Miniato Tel. 0577-234402

e-mail: [email protected]

(2)
(3)
(4)

Robert Hooke (1635-1703)

.  .  .  I  could  exceedingly  plainly  perceive  it  to  be   all  perforated  and  porous,  much  like  a  Honey-­‐

comb,  but  that  the  pores  of  it  were  not   regular.  .  .  .  these  pores,  or  cells,  .  .  .  were  

indeed  the  first  microscopical  pores  I  ever  saw,   and  perhaps,  that  were  ever  seen,  for  I  had  not   met  with  any  Writer  or  Person,  that  had  made   any  menAon  of  them  before  this.  .  .  

(5)

.  .  .  my  work,  which  I've  done  for  a  long  Ame,   was  not  pursued  in  order  to  gain  the  praise  I   now  enjoy,  but  chiefly  from  a  craving  aEer   knowledge,  which  I  noAce  resides  in  me  more   than  in  most  other  men.  And  therewithal,   whenever  I  found  out  anything  remarkable,  I   have  thought  it  my  duty  to  put  down  my   discovery  on  paper,  so  that  all  ingenious   people  might  be  informed  thereof.  

Antony  van  Leeuwenhoek.  LeHer  of  June  12,   1716  

(6)

Hooke  had  discovered  plant  cells  -­‐-­‐  more  precisely,  what  Hooke  saw  were  the  cell  walls   in  cork  Assue.  In  fact,  it  was  Hooke  who  coined  the  term  "cells":  the  boxlike  cells  of  cork   reminded  him  of  the  cells  of  a  monastery.  Hooke  also  reported  seeing  similar  structures   in  wood  and  in  other  plants.  In  1678,  aEer    Leeuwenhoek  had  wriHen  to  the  Royal  

Society  with  a  report  of  discovering  "liHle  animals"  -­‐-­‐  bacteria  and  protozoa  -­‐-­‐  Hooke   was  asked  by  the  Society  to  confirm  Leeuwenhoek's  findings.  He  successfully  did  so,   thus  paving  the  way  for  the  wide  acceptance  of  Leeuwenhoek's  discoveries.  Hooke   noted  that  Leeuwenhoek's  simple  microscopes  gave  clearer  images  than  his  compound   microscope,  but  found  simple  microscopes  difficult  to  use:  he  called  them  "offensive  to   my  eye"  and  complained  that  they  "much  strained  and  weakened  the  sight."  

(7)
(8)
(9)

Resolution ≈ ½ λ

(10)

In  microscopy,  the  numerical  aperture  of  an  opAcal   system  such  as  an  objecAve  lens  is  

 N.A.  =  n  (sine  α)‏  

 where  n  is  the  ndex  of  refracAon  of  the  medium  in   which  the  lens  is  working  (1.00  for  air,  1.33  for  pure   water,  and  typically  1.52  for  immersion  oil;[1]  see   also  list  of  refracAve  indices),  and  α

 is  the  half-­‐angle  of  the  maximum  cone  of  light  that   can  enter  or  exit  the  lens.    

 

In  microscopy,  NA  is  important  because  it  indicates   the  

resolving  power  of  a  lens.  The  size  of  the  finest  detail   that  can  be  resolved  is  proporAonal  to  λ/2NA,  where   λ  is  the  wavelength  of  the  light.  A  lens  with  a  larger   numerical  aperture  will  be  able  to  visualize  finer  

details  than  a  lens  with  a  smaller  numerical  aperture.  

Assuming  quality  (diffracAon  limited)  opAcs,  lenses   with  larger  numerical  apertures  collect  more  light  and   will  generally  provide  a  brighter  image,  but  will  

provide  shallower  depth  of  field.  

(11)

Ernst Abbe 1840 - 1905

0.61 λ R.P. = --- N.A.

N.A. = n (sine α)‏

n = index of refraction

α = half angle of illumination

(12)

0.61 λ

R.P. = --- N.A.

In light microscopy the N.A. of a lens and therefore resolution

can be increased by a) increasing the half angle of illumination,

b) increasing the refractive index

of the lens by using Crown glass

and c) decreasing the wavelength

( λ ) of illumination.

(13)

0.61 λ

R.P. = --- N.A.

In light microscopy the N.A. of a lens and therefore resolution

can be increased by a) increasing the half angle of illumination,

b) increasing the refractive index of the lens by using Crown glass and c) decreasing the wavelength ( λ ) of illumination.

In electron microscopy the refractive index cannot

exceed 1.0, the half angle is very small, and thus

the only thing that can be adjusted is decreasing

the wavelength of illumination

(14)

Transmission Electron Microscopy

Louis de Broglie

1923

(15)

Transmission Electron Microscopy

h = Planck's constant (6.624 X 10-27 erg/second)‏

m = mass of an electron (9.11 X 10-28 gram = 1/1837 of a proton)‏

v = velocity of the electron

(16)

Riferimenti

Documenti correlati

Candidates for sur- gery can enjoy a predictable refractive proce- dure with rapid recovery that addresses all re- fractive errors, including presbyopia, and never develop

In the general elections campaign of 2013, a group of PES Activists from all over Europe, contributed to the mobilization activities of the Democratic Party in Rome, as had

Moreover, the gain of the antenna obtained with nec2c compared with a commercial program and the analytic solution [ 117 ] is reported in Figure 6 , in case of a thin wire dipole..

The interest also was to analyze whether nitrates in the two populations (old and young) have a significant effect on the main hemodynamic components. We intent also

Thus, to test the software performance we designed the system with features similar to the human eye in terms of visual resolution, lenses dimension and optical power

The anxiolytic-like effects exhibited were completely antagonized by flumazenil (at a dose of 100 mg/kg ip, a dose at which flumazenil was able to antagonize the anxiolytic effect

For example, if vmPFC is necessary to initiate and maintain mind-wandering endogenously, vmPFC lesions should lead to reduced mind-wandering when no cue is provided or no strong

The optical tube length (OTL), typically 160mm, is the distance between the rear focal plane of the objective and the intermediate image plane.. In light microscopy the N.A. of